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ABSTRACT
Peer learning, as a form of collaborative learning, has been widely
used in programming courses as a means of promoting active learn-
ing and enhancing students’ programming skills. However, it is
challenging for instructors to group students effectively so that
they can have fruitful conversations. We conducted a study with
15 students from an introductory programming course to investi-
gate whether and how grouping students with similar or different
solutions affects the discussions that take place within groups. The
findings indicate that pairing students by the similarity of their
code might influence students’ learning and coding skills. Specif-
ically, students who were paired with people that had different
solutions had, on average, more engaging conversations and were
more likely to write more diverse solutions in the future. The results
also highlight the need for tools to facilitate the pairing process in
programming courses in order to optimize the learning outcomes
for students.
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1 INTRODUCTION
The number of students who chose to take a computer science class
or major in computer science has been dramatically increasing
throughout the years, which has led to a growth in enrollment
for introductory programming classes. However, programming
skills can be difficult to learn, especially for novice programmers.
Getting familiar with different kinds of IDEs and environments,
writing syntactically correctly code, understanding the logic of
code, and debugging code are all essential skills for a developer,
but all these can be quite challenging for beginners. What makes
it more challenging is that teachers and tutors sometime struggle
to help individual students due to large enrollments. Therefore,
instructors often use peer learning, a form of collaborative learning
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where students provide mutual support and feedback by working
together or discussing code in groups. Studies have shown that
peer programming can be beneficial for students by improving their
ability to read and write code [17]. By discussing different methods
of solving the problem and reading other’s solutions, students can
expose themselves to different thought processes and enhance their
coding skills.

Despite these benefits, little prior research has focused on how
to effectively group students in order to maximize students’ learn-
ing. Große’s study [5] demonstrated that grouping students with
different solutions has been effective in the field of mathematics,
but there has been limited research on the effectiveness of grouping
individuals in peer programming in the field of computer science.
This is the primary motivation for conducting our study. In this
paper, we conducted a study to explore whether and how grouping
people with similar or different solutions affects their subsequent
discussions in peer learning. We used OverCode [4], a tool that clus-
ters code segments by their similarity, to help us group participants.
We grouped the participants into two main groups—one group with
a similar solution to their partners, and one with a different solution
to their partners. And by observing their discussion and their code,
we explored how grouping students by the similarity of their code
in peer programming affects their learning of programming skills.
We found that on average, pairing students with different solutions
improved the quality of their discussion, it also helped students
for having a better understanding of solving coding questions in
different methods. In our study, students described benefiting from
viewing alternative approaches. The results also highlighted the
need for tools to facilitate the pairing process in programming
courses in order to optimize the learning outcomes for students.

2 RELATEDWORK
2.1 Computer science education and Peer

programming
Prior work has recognized the need to improve computer science
education. Based on literature reviews, students are having diffi-
culties in understanding the coding language, writing code using
the correct syntax, and establishing strategic knowledge such as
debugging the program [13]. For instance, Piwek et al. indicated
that introductory Python students find it difficult to understand
and effectively use different IDEs, as well as understanding Python-
specific topics [10].

Due to large enrollments in introductory programming courses [15],
there are limited interactions between the lecturer and the students
while novice programmers need more support. Instructors take a

https://orcid.org/0009-0009-6891-3555
https://orcid.org/0000-0001-5978-3714
https://orcid.org/0000-0002-5823-1499
https://doi.org/10.1145/3544549.3585837
https://doi.org/10.1145/3544549.3585837
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3544549.3585837&domain=pdf&date_stamp=2023-04-19


CHI EA ’23, April 23–28, 2023, Hamburg, Germany Shiyu Xu, Ashley Zhang, and Steve Oney

variety of approaches such as using a flipped classroom to encour-
age interactive activities and collaboration inside the classroom [1].
Peer learning is a widely used learning technique happening in labs
or discussions for effective programming learning, and previous
research has shown that peer learning, as a form of collaborative
study, enhanced students’ abilities to learn computer science [9].
Sitthiworachart et al. designed a peer coding assessment by di-
viding students into small groups where they review each other’s
code [16]. This study indicated that by reading and understanding
other’s codes, students improved their proficiency in understand-
ing the code’s syntax and problem-solving skills [16]. Our research
further explores how group work and viewing other’s solutions
affect learning efficiency in introductory programmers.

2.2 Impact of viewing different solutions during
collaborative learning

Study shows that pair programming built an environment that en-
courage students to identify alternative solutions for the problem
with their partners [8]. In the pair programming tasks, the students
are expected to design, code, test, and assist others to complete the
task assigned, which has a more positive influence on learning [8].
Solving a problem with different approaches are also called “multi-
ple solution methods”. Multiple solution methods have been widely
encouraged and discussed in teaching mathematics. Rittle’s study
shows that learners with little prior knowledge gain flexibility by
comparing different approaches [14]. Große’s study showed that ap-
proaches with similar representation but different strongly from a
mathematical point of view are extremely helpful [5]. Nevertheless,
when provided different types of solutions, students with individual
learning styles might not be good at self-evaluating themselves,
which could lead to a shallow understanding of the knowledge, or
so-called “illusions of understanding” [5]. Zeller indicated that ex-
posing students to different codes, especially proving students with
a targeted solution that differs from their answer can encourage
students’ self-teaching and inspiration [18]. In our study of col-
laborative learning, we attempt to leverage the power of multiple
solution methods but mitigate the ‘illusion’.

We aim to delegate the responsibility of evaluation to each par-
ticipant, when everyone elaborates their solution to others and
exchanges solutions, learners’ comprehension has been enhanced.
The impact of viewing different solutions has been studied in other
subjects, but rarely in computer science. We did the study to explore
the benefits of viewing diverse solutions in collaborative learning
in computer science.

2.3 Code clustering tools
One difficulty that introductory coding courses face is large enroll-
ments. Sahami et al. indicated that enrollment for computer science
courses has dramatically increased since 2007 and due to the size
of the class, it is difficult for teachers to give individual feedback
for in-class exercises and homework assignments [15].

Code clustering can help instructors make sense of large num-
bers of code samples. In code cluster, large amounts of code is
grouped using clustering algorithms for similarity detection, so
code that is more similar to each other will be grouped together.
Instructors can then find larger meaningful patterns by analyzing

these clusters [12]. Code clustering tools are essential to computer
science education and have been commonly used to support grad-
ing [3], generate feedback for coding assignments [6], visualize
massive assignment solutions [11], and detect code plagiarism [2].
Helminen et al. created Jype, a web-based visualization tool that
used code clustering to provide immediate feedback and visualize
errors in code through line-by-line execution [7]. Another exam-
ple of a code clustering tool is OverCode where Glassman et al.
designed OverCode for analyzing and clustering similar results
in students’ coding solutions [4]. OverCode puts similar solutions
into piles with a visualization interface so teachers can provide
feedback at scale for various solutions. However, there are also
same limitations on the current code clustering tools [4]. For ex-
ample, OverCode only targets solutions that pass the autograder,
so the coding piles will exclude code with errors [4], while novice
programmers create lots of syntax errors and logical errors [13].
Our study uses clustering tools to cluster in-class exercises so it can
help us group students by the similarity of their solutions, helping
us group the participants in order to explore the effectiveness of
exposing and discussing different solutions in peer programming.

3 METHOD
3.1 Study setup
We conducted a one-hour study with novice learners from introduc-
tory python courses on campus after the study was approved by the
IRB. Due to the ongoing pandemic and the prevalence of online pro-
gramming courses and programs, we conducted the study virtually
through Zoom. Audio and video were recorded during the section,
and students used Google Colab for writing solutions during this
study. The study involves four main steps with the research aim
to see whether and how reading and understanding of multiple
solutions in a collaborative learning environment benefits students’
coding skill and their discussion.
Step 1:
First, the participants were asked to use Python programming lan-
guage to pick the longest word that ends with ‘e’ from an array of
words within a 10 minute time frame. Participants are free to use
any resources such as Stack Overflow. The level of difficulty for the
Python question was intentionally aligned with the level of their
Introductory Python courses.
Step 2:
The participants were assigned to a partner according to their so-
lution. The participant was either paired with a partner who has
a solution similar to the participants’ or different from the partic-
ipants’. There were two focused groups. One group consisted of
participants who have similar solutions to their partners, and the
other group of participants who have different solutions compared
to their partners. To facilitate this step and reduce bias, the study
coordinators first used Overcode [4] to generate initial clusters and
then assigned students to groups manually. The study had four dif-
ferent solution groups with two-person per group and three similar
solution groups with one group of three people and two groups
of two people. While the study coordinators worked on grouping,
participants were asked to fill out a survey with questions about
their background in programming skills and the approach they took
in order to solve the coding problem.
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Step 3:
After placing all participants into groups, the participants took turns
explaining their solutions to their partners during a 15-minute dis-
cussion. While they are explaining their solutions, we asked the
participants to share their solution screens and record the session
so we can observe their interactions later.
Step 4:
The participants were then asked to solve a similar Python coding
question that involves picking the smallest even number from a
numbered array, and we asked our participants to solve the problem
in as multiple ways as possible if applicable. We designed these
two coding questions, in which students can solve the question
in a similar approach as the question in step 1. The two Python
questions both require students to extract a specific word or num-
ber from a given array and can be solved using a common concept
such as a ’for loop’. Then they finished the study by filling out a
second questionnaire. The second questionnaire was a post-study
survey that collected information on how the participants felt about
solving the two questions, the methods and approaches they tried,
and the nature of their discussion. Additionally, the questionnaire
included some general questions that asked participants to rate
their partner’s level of activity during the discussion and their per-
ceptions of their partner’s skill level. The study was designed in
this way for us to compare if grouping students by the similarity of
answers (similarity, in this case, is by human judgment) has effects
on the efficiency of collaborated learning, and whether reading
and understanding multiple solutions is beneficial for beginner
programmers.

3.2 Recruitment Process
We reached out to instructors who teach introductory Python
courses on campus. These instructors then sent the study infor-
mation to their current students to guarantee that we are finding
participants that fit our study design. All participants are 18 years
of age or older, and they signed the consent form prior to the be-
ginning of the study.

3.3 Recruited Participants’ background
This case study included a total of 15 participants, consisting of 13
females and 2 males. Among the participants, 9 were between the
ages of 18 and 24, 4 were between 25 and 30, and 2 did not disclose
their age. were selected under the condition that they finished at
least one introductory Python course, or are currently enrolled in
an introductory Python course on campus. Eleven participants have
less than 6 months of experience in Python coding and have taken
at least one introductory Python course.

4 OBSERVATIONS
Peer Discussions:
When explaining their concept to their partners, the first thing
students usually do is to go through the code line by line for ex-
plaining their process. As they are walking through their lines of
code, they also mention what variable they created, what functions
and methods they used or intended to use during their explanation.
For example, most students explain the concept following a similar
style to "I first built a dictionary with words ending with e. Then

with a for loop to get the length of that item. And then I use the
max function to find the max value."

During their explanation, eleven participants assumed that their
partner understood them while four of participants asked their
partner whether they understood/explained the concept clearly.

After students finished explaining, some students will share their
thought processes and how to improve the answer. Students will
generally talk about how different strategies might be better in
solving the question. They will also answer their partner’s question
if there is a question raised.

During the peer discussion, students also helped their partners
in clarifying the coding question’s instruction or misunderstanding
a concept. We have three groups of students who had a partner that
ignored the requirement of "finding words that end with e" and
instead they only found the longest word. They either discovered
that themselves or their peers pointed out their misunderstanding
of the question.

Problem Solving Results:
For the first question, ten participants successfully solved the ques-
tion without any syntax or logical errors, three participants solved
the question partially by only finding the longest words rather than
finding the longest words that end with ‘e’, and two participants
failed to solve the question. For the second question, thirteen partic-
ipants were able to solve the question and seven participants were
able to solve the question in multiple ways. Figure 1 and Figure 2
are detailed results of how participants solved their questions.

Figure 1: The left column is summarized meth-
ods/descriptions of code that appeared in the participant’s
answer. In the right column are the indexes that were given
to the methods/descriptions that will be used in Figure 2.

5 FINDINGS
5.1 Students’ thinking process is not fully

presented in their code. Pair programming
helped them express their knowledge.

When we are reviewing the recorded video discussion and the
questionnaires where participants were explaining their thought
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Figure 2: The first column is the participants. The middle
column represented question 1 and the right-most column
represented question 2. The indexes in the middle and the
right-most column represent what specific method the par-
ticipants used in order to solve question 1 and question 2.
The participant’s name with grey background represented
participant’s from different solution groups and the white
background represented participants from similar solution
groups.

processes, we found that students have a deeper understanding of
the problem than what was been reflected by their code. For exam-
ple, during the discussion, the participant explained her thought
process in solving the problem to her partner (Figure 3, Example 2),
which demonstrated her understanding of for loop, append func-
tion, and max function. While on her answer sheet there was only
one line of code using the max function. We think that without
collaborative learning and discussion among peers or tutors, it’s
very hard for students to accurately express their knowledge.

5.2 Participants tend to provide more insights
on how to solve the question after
discussion with partners who have different
solutions

Both groups has similar ratings on how active their discussion was.
According to the questionnaire, the average rating on how actively
the participant was involved in the discussion (rated by participants
themselves) for different groups’ active levels was 4.75 out of 5, and
for the similar-solution groups, it was 4.571 out of 5 (𝜎 = 0.535).
And for how actively their partner was involved in the discussion
was 4.75 out of 5 for the different-solution groups, and 4.571 out
of 5 (𝜎 = 0.535) for the similar-solution groups. These numbers
indicated both groups’ participants perceive their conversations
as engaging. However, more details were provided by students
who paired with different solution partners when answering the
questionnaire question "What did you learn from your partner’s
solution?" and "What specific aspects of the discussion do you find
useful". Participants who paired with different solution partners
provided more details on the specific function and variables used
such as the sort method, dictionaries, and lambda function. They
thoroughly described how different their solutions are compared
with their partners. In contrast, the participants in a similar solution
group answered those questions vaguely without listing details on
how to approach the question.

Figure 3: Examples of the participant’s thought process ex-
pressed during the discussion compared to their submitted
codes.

5.3 Difficulties in learning code for novice
programmers

Our participants listed some difficulties they encountered during
their studying in python in their questionnaire including but not
limited to, understanding the logical thinking of the codes, find-
ing relevant resources over the internet, debugging, and testing
their code, and finding tutors when they need help. This relates to
what Qian et al found on difficulties that novice programmers are
experiencing [13].
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5.4 The different answer paired group have
slightly longer discussions with their
partner compared to the similar group

Discussions among groups with different answers tend to discuss
more on how they can approach the question with different strate-
gies, how they can solve the questions differently with better ef-
ficiency, and what functions they can use to achieve this, while
similar groups’ participants tend to only walk through their so-
lutions with their partner with fewer conversations on how to
approach the question. However, whether the participants have
the same level of experience in programming and whether both
participants read the questions correctly/solved the question are
some factors that can influence this result.

5.5 Students express that pairing is very
important for pair programming

During the discussion, one participant mentioned that "it is strange.
it’s nice to learn with someone else and look at different perspec-
tives. but if you have a bad partner, it can mess up your whole
experience". The importance of finding a partner with the same
level of skills was also mentioned as an important factor of peer pro-
gramming so that both partners have the opportunity to code rather
than one partner do the majority of work. In the questionnaire, we
asked the participants to rate their partner’s programming ability as
well as their own ability, and some students gave their partners high
scores and themselves low scores vice versa. However, although
there is a gap in between their coding skill scores, improvements
in coding skills were seen in both participants. We cannot draw the
conclusion that pairing two different coding skill level students is
bad, but it can be something to take into consideration for future
work when considering how to pair students in peer programming.

6 LIMITATIONS
This research, however, is subject to several limitations. The pri-
mary limitation to the generalization of these results is the sample
size used in this study is rather small. It was hard to represent all
beginner programmers with a sample size of 15 people. The second
limitation is that we conducted this study virtually through Zoom
in a lab setting instead of a classroom setting. Participants might be
more comfortable in a classroom setting where peer programming
typically happens. This may have an impact on the participant’s
discussion section thus influencing the study results. A further lim-
itation of this study is that it only focused on the use of Python as
the coding language. Future studies could be conducted with indi-
viduals who are enrolled in courses involving other programming
languages to determine the generalizability of the findings.

7 FUTUREWORK
7.1 Need of better clustering tools
We previously planned to use OverCode for clustering similar an-
swers for coding question one in order to pair the participants with
their partners. However, when we run the coding results through
OverCode, we found that OverCode put every participant’s answer
in different piles, generating 14 piles in total, so we had to group
the participants by our judgment on similarity. Our study shows

that OverCode cannot cluster when errors are presented in the
code segment, and it’s difficult to cluster code with the same logic.
Further study should try to find or develop a clustering method
that can categorize code segments by their logic and method use
without excluding code with errors, this will improve the efficiency
when a massive number of students needs to be paired.

7.2 Design of Study
We think that another round of study with more participants should
be done in order to analyze how similarity of solution impact peer
programming. For our study design, multiple factors influence the
study result including participants’ coding skills, the personality
of the participants (which influence the quality of the discussion).
With a larger sample size, it will be easier to obtain a clear result.
A way for students to show their thought processes will also be
essential to this study since some students’ thought processes were
not reflected in their codes. Also, a system that clearly defines
standards of similar or non-similar codes will be helpful when
grouping participants. Moreover, further investigation could be
to examine how various techniques for warming up during pair
programming can facilitate the initiation of fruitful discussions.

7.3 Quality of Discussion
Another important topic that rises during our study is how to define
a “high quality” discussion. Right now we usually judge by whether
two participants are actively engaged in the conversation, and how
long their discussion lasted. Other factors like whether questions
were raised and solved between the participants, the time frame
that they spend on the actual coding questions versus other topics
like prior experiences can also be considered when judging the
discussion’s quality. Standard metrics for evaluating the quality of
discussions may be integrated, such as turn-taking patterns, level
of conceptual understanding, and other indicators of effective peer
learning, such as perceived utility, comprehensibility, and degree of
reflection. With a clear system in rating discussion quality, it will be
easier to compare study results and obtain non-biased conclusions.

7.4 Generalizability
The study was conducted with a limited number of participants,
which may limit the generalizability of the findings to real-world
programming courses. Future investigations could be conducted
in actual classroom settings, where larger student groups can be
observed, and the tool can be tested in a more realistic environment.
Moreover, the current study solely focused on exercises related to
selecting an element from a list in Python programming. It remains
uncertain how the outcomes would apply to other programming
languages and concepts. For example, students’ discussions on
fundamental syntaxmay differ greatly from those in object-oriented
programming, where the definition of a distinct approach is also
challenging. Conducting further research in real-world classrooms
that employ alternative programming languages and exercises will
allow for a more comprehensive understanding of the applicability
of our findings to general programming courses.
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8 CONCLUSION
In this paper, we presented a study around how pairing students by
the similarity of their solution affects peer programming. This study
was conducted with 15 participants that accomplished two coding
problems with one discussion with a paired partner in between.
From the results of the coding questions and observations from
the discussion, we found that pairing by the similarity of code will
influence students’ learning and coding skills. Different solution
groups had more engaging conversations and descriptive solutions.
Other questions like better tools for code clustering, how to reflect
students’ thought processes in exercise or assignments were also
raised. This study opens up various topics and studies that can be
done in the future.
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