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Abstract 
A Graphical User Interface (GUI) is defined by its appearance and its behavior. A GUI’s behavior 
determines how it reacts to user and system events such as mouse, keyboard, or touchscreen 
presses, or changes to an underlying data model. Although many tools are effective in enabling 
designers to specify a GUI’s appearance, defining a custom behavior is difficult and error-prone. 
Many of the difficulties developers face in defining GUI behaviors are the result of their reactive 
nature. The order in which GUI code is executed depends upon the order in which it receives 
external inputs. 

Most widely used user interface programming frameworks use an event-callback model, where 
developers define GUI behavior by defining callbacks—sequences of low-level actions—to take in 
reaction to events. However, the event-callback model for user-interface development has several 
problems, many of which have been identified long before I started work on this dissertation. 
First, it is disorganized: the location and order of event-callback code often has little 
correspondence with the order in which it will be executed. Second, it divides GUI code in a way 
that requires writing interdependent code to keep the interface in a consistent state. This is 
because maintaining a consistent state requires referencing and modifying the same state variables 
across multiple different callbacks, which are often distributed throughout the code. 

In this dissertation, I will introduce a new framework for defining GUI behavior, called the state-
constraint framework. This framework combines constraints—which allow developers to define 
relationships among interface elements that are automatically maintained by the system—and 
state machines—which track the status of an interface. In the state-constraint framework, developers 
write GUI behavior by defining constraints that are enforced when the interface is in specific 
states. This framework allows developers to specify more nuanced constraints and allows the 
GUI’s appearance and behavior to vary by state. I created two tools using the state-constraint 
framework: a library for Web developers (ConstraintJS) and an interactive graphical language 
(InterState). 

ConstraintJS provides constraints that can be used both to control content and control display, 
and integrates these constraints with the three Web languages—HTML, CSS, and JavaScript. 
ConstraintJS is designed to take advantage of the declarative syntaxes of HTML and CSS: It 
allows the majority of an interactive behavior to be expressed concisely in HTML and CSS, rather 
than requiring the programmer to write large amounts of JavaScript.  

InterState introduces a visual notation and live editor to clearly represent how states and 
constraints combine to define GUI behavior. An evaluation of InterState showed that its 
computational model, visual notation, and editor were effective in allowing developers to define 
GUI behavior compared to conventional event-callback code. InterState also introduces 
extensions to the state-constraint framework to allow developers to easily re-use behaviors and 
primitives for authoring multi-touch gestures.   
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1 Introduction 

Creating a good Graphical User Interface (GUI) requires more than carefully 
arranging the graphical elements that define its appearance; it also requires defining 
the interface’s behavior. A GUI’s behavior consists of the dynamic parts of an 
interface: how it changes in response to user inputs and other stimuli. It can be 
described as the feel of a GUI, as opposed to its look. Although there are many 
effective tools that allow designers to specify a custom GUI’s appearance, defining its 
behavior is costly, error-prone, and typically limited to expert developers [85,101]. 

1.1 Interactive Behaviors 

A GUI’s behavior is made up of smaller interactive behaviors, which describe the 
behavior of specific interface components. An interactive behavior might determine 
how a button reacts when a user’s mouse cursor hovers over and presses on it or how 
a sliding menu appears on a touchscreen when a user swipes their finger from the left 
edge. Taken in aggregate, these interactive behaviors define a GUI’s behavior. 

Throughout this dissertation, the terms behavior and interactive behavior are 
interchangeable. Additionally, the granularity of interactive behaviors is subjective, 
as very few behaviors are entirely independent. For example, in a shape drawing 
application, we might consider the behavior of a color selector to be a singular 
behavior. Still, whether the color selector is enabled or disabled might depend on 
factors outside of the scope of the behavior, such as whether a shape in the drawing 
panel is currently selected. 
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1.1.1 Implementing Interactive Behaviors 
Most user interfaces are developed using general purpose programming languages—
programming languages whose features are designed to support a wide variety of 
programming goals. Nearly all widely deployed user interface frameworks built for 
these languages—e.g., Cocoa, QT, Java Swing, .NET Windows Forms, and 
JavaScript/Web development—rely on an event-callback programming model [38,50]. 
In this model, developers specify interactive behaviors by writing imperative code 
that determines how the user interface should react to every relevant stimulus. 

The problem with defining interactive behaviors in this model is that a typical 
interactive behavior involves many events, which has several detrimental effects for 
developers. First, it splits the implementation of a single behavior across many 
callbacks in a GUI’s source [110,132], making it more difficult to reason about the 
control flow of a given interactive behavior. Second, a typical GUI component’s 
behavior and appearance often depend upon its state [4] but general-purpose 
programming languages currently do not support a notion of state. Thus, developers 
need to properly track and maintain an implicit notion of state across these callbacks. 
Third, the interactions between distinct GUI behaviors further complicate their 
implementation, making it more difficult to implement independent, re-usable 
behaviors. The net result of all these challenges is that event-callback code tends to 
produce error-prone, interdependent “spaghetti” code [110]. 

Of course, one way to address the challenges developers face writing interactive 
behaviors is by providing reusable widgets—pre-built, customizable interactive 
behaviors. A number of GUI toolkits and GUI builders allow developers to drop 
common widgets into their applications, including scroll bars, buttons, and menus. 
These widgets can help experienced and novice GUI developers by providing basic 
scaffolding upon which they can build their application.  

However, reusable widgets and GUI builders do not represent a complete solution 
for the problems UI developers face. Although these widgets allow developers to 
work at higher abstraction levels—button presses instead of mouse clicks or menu 
item selections rather than touchscreen presses—the interactions between these 
components can still be challenging to implement correctly. For instance, a 
developer might be able to re-use a color selection widget in the context of a drawing 
application, but they still must program what the effect of the user picking a color 
should be (to change the color of the currently selected shape) and when it is 
activated (when a shape is selected). 

Also, widget creators cannot anticipate all of the widgets that developers will want or 
all of the ways they will want to customize a widget. When a designer or developer 
has an idea for a new interaction technique to help users accomplish a task in their 
interface, to implement or explore their idea, developer must write it from scratch. 
Thus it is important that the underlying frameworks and tools they use address the 
difficulties of creating interactive behaviors. Because designing, implementing, and 
evaluating new interactive behaviors are common in the Human-Computer 
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Interaction (HCI) community, making interactive behaviors easier to implement is a 
fundamental problem in HCI [98]. 

1.2 Problem Statement 

Many of the factors that make interactive behaviors difficult to implement in 
general-purpose programming languages can be attributed to the reactive nature of 
interactive behaviors [85,133]. Unlike sequential systems, which execute code in the 
same order it is written, reactive systems execute code in an order that depends upon 
external inputs, such as mouse, keyboard, touchscreen, timer, or network events that 
may occur at any time. 

Further, many features that make a GUI more usable also make its interactive 
behaviors more difficult to design and implement [112]. Giving users visibility of system 
status [118] requires developers to write code to provide end-users with immediate 
feedback for any number of ways they might interact with a GUI. Presenting 
context-relevant information and controls, which helps prevent user errors and 
contributes to an aesthetically pleasing and minimalist interface [118], requires tracking 
the GUI’s status and modifying its appearance and behavior based on that status. For 
example, widgets that are not available in a particular state (like the aforementioned 
color selector when no shape is selected) should be visibly disabled or not shown in 
that state. 

To address this issue, researchers and practitioners have created libraries that 
augment existing languages and GUI frameworks with new programming models, 
including constraints (relationships that are maintained automatically) [94,110,126] 
and state machines [4,137]. However, when producing a user interface is the 
programmer’s primary goal, many aspects of the underlying language are often not 
ideal for expressing interactive behaviors [85]. 

1.3 A Paradigm for Expressing Interactivity 

This dissertation begins with the insight that programming tools can better support 
user interface development by supporting language primitives designed to address 
the challenges of expressing interactive behaviors. I will first present a set of new 
language primitives and illustrate how they fit together to express interactive 
behaviors. I then describe a visual notation and live editor to represent these 
primitives, and a series of evaluations of these primitives. I then will present 
extensions to these languages primitives to further support developers in creating and 
re-using custom gestures.  

The Application Program Interface (API) primitives outlined in this dissertation 
combine constraints—relationships that are declared by the developer and 
automatically maintained by a constraint solver—with state machines—which control 
an interface's behavior by tracking its state and include a set of rules that control 
when it changes state. Its use of constraints was motivated by previous research 
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showing how constraints can help developers avoid writing spaghetti code [94,110]. 
In contrast with the event-callback model, which requires writing a snippet of code 
that considers every possible user event or model change, the relationships specified 
by constraints are maintained regardless of user events or model changes. Its use of 
state machines was motivated by the stateful nature of GUIs—the state of an 
interface or component often dictates its appearance and behavior. However, 
tracking and maintaining a consistent state can be challenging in event-callback code 
[137]. 

In this dissertation, I will describe two programming tools that I created based on 
this paradigm: ConstraintJS and InterState. 

1.3.1 ConstraintJS: A Library for Web Developers 
ConstraintJS is a JavaScript library that enables constraints to control content and 
control display features in interactive Web applications. ConstraintJS is designed to 
take advantage of the declarative syntaxes of HTML and CSS: it allows the majority 
of an interactive behavior to be expressed concisely in HTML and CSS, rather than 
requiring the programmer to write large amounts of JavaScript. The example in 
Figure 1.1 (whose code is shown in Figure 1.2), for instance, requires almost no 
imperative code. 

 

Figure 1.1 An example ConstraintJS application that uses the Facebook API to retrieve a list of a user’s 
friends and subsequently a picture for every friend. While the list of friends is loading, the 
message “Loading friends…” is shown. After the list of friends has loaded, this interface 
displays the name of every friend next to their picture. While any user’s picture is loading, a 
spinning loading icon is displayed next to their name.  

Loading Friends…

Karen Collins Eric Marshall

Sarah Kelly Keith Malcom

Ellyn ToddCorey Smith

(after friends list has loaded)
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1 friends = cjs.async(fb_request("/me/friends")); 
2 pics    = friends.map(function(friend) { 
3    return cjs.async(fb_request("/" + friend.id 
4           + "/picture")); 
5   }); 
6  
7 //display code: 
8 {{#fsm friends.state}} 
9  {{#state pending }} Loading friends... 
10  {{#state rejected}} Error 
11  {{#state resolved}} 
12   {{#each friends friend i}}{{#fsm pics[i].state}}  
13    {{#state pending }} <img src = "loading.gif"/> 
14    {{#state resolved}} <img src = "{{pics[i]}}"/>  
15    {{#state rejected}} <img src = "error.gif"  /> 
16   {{/ fsm }} 
17   {{friend.name}} 
18  {{/each}} 
19 {{/fsm }} 

Figure 1.2 ConstraintJS code to create the interface shown in Figure 1.1. Here, the Facebook API is 
called (asynchronously using fb_request) to fetch a list of friends and a profile picture for 
each friend. The rest of the code displays the data fetched in the first five lines by specifying 
which graphics should appear by state. Chapter 3 further describes this example in detail. 

Chapter 3 describes ConstraintJS in detail and shows how it can simplify the 
development of interactive behaviors by integrating Finite-State Machines (FSMs) 
with constraints. Further, it explains how state-oriented constraints integrate well 
with existing event architectures when necessary, including JavaScript’s event-
callback architecture. 

1.3.2 InterState: An Interactive Editor 
InterState explores whether the programming primitives introduced by ConstraintJS 
can also simplify other aspects of programming interactive behaviors, including 
understanding how interactive behaviors operate and re-using custom interactive 
behaviors. To do this, InterState extends the ideas behind ConstraintJS in four 
primary ways. First, it removes much of the boilerplate required to express 
constraints by allowing users to express constraints with simple equations—like those 
in spreadsheets—rather than requiring inline JavaScript functions [94,126]. Second, 
it enables behavior reuse with a new set of language primitives for inheritance and 
templating. Third, it introduces a visual notation that groups together the states and 
properties relevant to an interactive behavior. Finally, it provides a live editor that 
enables quicker exploration by removing the edit-compile-run evaluation cycle. 
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Figure 1.3 An illustration of a basic InterState object, named draggable. Properties, which control 
draggable’s display, are represented as rows (e.g. x, y, and fill). States and transitions 
are represented as columns (e.g. no_drag, drag, and drag_lock). An entry in a property’s 
row for a particular state specifies a constraint that controls that property’s value in that 
state. Chapter 4 further describes this example. 

An illustration of a basic InterState object is shown in Figure 1.3. InterState displays 
properties as rows and states as columns. Just as a spreadsheet allows users to scan 
categories of information quickly by looking across rows and columns, this layout 
allows developers to see which events affect a property by scanning across the 
property’s row and which properties an event affects by scanning the event’s column. 

1.4 Reusing and Combining Behaviors 

Beyond defining custom interactive behaviors, developers often need to re-use and 
combine interactive behaviors. This dissertation presents a framework for behavior 
re-use that extends traditional prototype-instance inheritance. This framework for 
behavior re-use is implemented in the context of the InterState interactive 
development environment, but is generalizable beyond InterState and declarative 
development environments. It leverages the state-constraint framework that 
ConstraintJS and InterState introduce. 

1.4.1 Behavior Inheritance 
Interactive behaviors are often inherited and combined to produce new, compound 
behaviors. However, the traditional notion of inheritance in languages like Java or 
JavaScript only allows properties and methods to be inherited. InterState introduces 
a style of inheritance that extends traditional prototype-instance inheritance 
mechanisms to allow full behaviors to be inherited. For example, a developer might 
create a custom slider behavior once and use it throughout their applications. 

1.4.2 Event and Gesture Abstraction 
A separate, but related concept is the idea of behavior re-use through abstraction. 
Event abstraction allows developers to create customizable events types that can be 
used in the context of the state machines for another behavior. For example, a 
developer might define a custom n-click gesture (double click, triple click, etc.) where 
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developers can customize the number of clicks (n). They can then abstract away this 
gesture and use it like any other built-in event in other behaviors’ state machines. 

1.5 Multi-Touch Development 

Another important consideration in the design of a development model combining 
states and constraints was scalability and generalizability beyond mouse-keyboard 
platforms. To explore how states and constraints can help define behavior outside of 
the mouse-keyboard paradigm, I also created several primitives to enable expressive 
multi-touch development in InterState. 

Multi-touch development is often more challenging than mouse-keyboard 
development for several reasons. First, multi-touch behaviors often have a larger 
state-space than mouse-keyboard as a result of tracking multiple pointers rather than 
one. This often means that in addition to tracking the state of their interface, 
developers often need to track the state of the gesture itself. Second, multi-touch 
gestures often contain ambiguities where the target of a gesture cannot be 
determined until after some delay. This makes it more difficult for developers to 
provide intermediate feedback in their behaviors. Finally, multi-touch gestures often 
are feature-rich relative to mouse-keyboard gestures. Unlike mouse-keyboard 
gestures, the direction and speed of finger movement often determine which gesture 
a user is performing. 

To explore how InterState’s touch primitives could better scale to the challenges of 
multi-touch programming, I extended InterState’s primitives to enable developers to 
describe higher-level multi-touch events including multi-finger touch events and 
“path crossing” events that fire when a set of fingers cross a given path. I also 
extended InterState’s event model to add mechanisms to resolve many of the types 
of conflicts that developers face when defining multi-touch gestures. Chapter 6 will 
describe these primitives in further detail. 

1.6 Contributions 

This dissertation contributes new frameworks, techniques, and tools aimed at 
reducing the barriers to implementing interactive behaviors. Specifically, it 
contributes: 

• A framework to make constraints more expressive by integrating a notion of 
state, allowing developers to write constraints that only are enforced under 
certain conditions. 

• Evidence that such constraints can help developers implement interactive 
behaviors in the context of imperative code. 

• A JavaScript library (ConstraintJS) that enables developers to make use of 
these frameworks using a familiar syntax. 



Chapter 1: Introduction / Outline  

 

23 

• A visual notation to help developers visualize and understand how these 
constraints and state machines are combined. 

• A new model for inheritance and behavior re-use by augmenting the 
prototype-instance behavior inheritance model. 

• A live editor (InterState) for this visual notation. 
• Evidence from a comparative laboratory study that this live editor is effective 

in helping developers implement interactive behaviors compared to the 
standard event-callback model. 

• Extensions to this interactive editor for creating custom gestures and 
touchscreen behaviors. 

Thesis statement: 

An interactive editor combining constraints with state can express nuanced 
interactive behaviors more clearly and concisely than event-callback code.  

To explore this statement, my dissertation will evaluate three hypotheses: 

• The programming primitives presented in this document lower the barrier 
to creating custom interactive applications by addressing the difficulties 
developers face creating interactive software, including dealing with state 
and maintaining constraints [85],  

• the visual notation and live editor described in this document helps 
developers to write and understand interactive behaviors better than the 
event-callback paradigm [132], and 

• these primitives can scale to effectively support the kinds of nuanced and 
complex interactive behaviors that developers are often tasked with creating 
[129]. 

To evaluate the first two hypotheses, I conducted a laboratory study comparing 
developers using the InterState development environment with event-callback code. 
Developers were able to complete tasks in nearly half the time. Section 4.8 will 
describe this study in detail. To evaluate the third hypothesis, I created several fully 
featured example applications with ConstraintJS and InterState. Sections 3.7 and 
4.9.1 will focus on these example applications. 

1.7 Outline 

The following section describes related work. Chapter 3 will cover the design and 
contributions of ConstraintJS in further detail. Chapter 4 will describe InterState’s 
basic mechanics and how they build on the work of ConstraintJS. Chapter 5 will 
cover InterState’s event model. This event model was built to allow developers to 
build reusable custom gestures and help developers resolve conflicts between gestures 
and events. Chapter 6 will cover InterState’s primitives for helping developers define 
touchscreen gestures. This dissertation concludes with a summary of its scope, 
limitations and a description of promising areas for future work. 
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2 Related Work 

The work in this dissertation, which combines ideas from multiple programming 
models, is informed by previous work in several domains, including constraints, 
finite-state machines, event architectures, visual programming, and spreadsheet 
programming. This chapter will relate previous research systems in these domains to 
InterState and ConstraintJS. Because many of the systems described here fit into 
multiple categories, different aspects of the same system might be described in 
different subsections. 

2.1 Motivating Research 

This work is motivated by previous research showing that developing complex 
custom interactive behaviors is particularly challenging [112]. Previous research has 
pointed out the drawbacks of relying on the event-callback paradigm: producing 
code that is often error-prone and difficult to debug [94,110,137]. Researchers have 
also proposed creating new frameworks for interaction-oriented programming [85]. 
Although most of these frameworks are intended for developers, tools to help users 
specify interactive behaviors could be more broadly useful. In particular, interaction 
designers—who are often responsible for specifying an interface’s behavior before 
developers implement it—are not satisfied with existing tools for sketching and 
evaluating custom behaviors [40,101]. 

The API primitives described in this dissertation were designed around two aspects 
that are particularly challenging in creating custom interactive applications: 
expressing constraints [110] and dealing with state [137]. Two motivating studies 
found that designers think about relationships between graphical objects with state, 
constraint, and event-based concepts [132]. Additionally, tools for designers must 
allow them to evaluate an interface as they are creating it (also known as reflection-
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in-action [129,143]). To support reflection-in-action, InterState is implemented as a 
live editor, where changes to the program source are immediately reflected in the 
running program. 

2.2 Constraints 

ConstraintJS and InterState both integrate constraints into their programming model. 
Constraints are relationships that are declared once and automatically maintained 
by an underlying constraint solver. Constraints have a long history in user interface 
development tools, starting with Sketchpad [150], one of the first graphical user 
interfaces. Sketchpad allowed users to specify geometric constraints that determine 
relationships between the shapes they draw. For example, users could specify that a 
pair of lines should be of equal lengths or that two lines should always be 
perpendicular. These constraints would hold as other lines are moved. Many of the 
early constraint systems, including Sketchpad [150], used constraints to control 
graphical element layouts. Researchers soon built more intricate constraint solvers 
for various purposes, including Borning’s ThingLab [16] to emulate dynamic 
physical systems and Sussman’s Hierarchical Constraint Networks (CONSTRAINTS) 
[149] to simulate electrical circuits and physical systems. 

The discussion of the parts of the constraint literature that are most relevant to this 
dissertation are divided into subsections below. The first subsection discusses systems 
that integrate constraints into user interface development toolkits. The second 
subsection discusses JavaScript data-binding libraries. The next subsection discusses 
systems that allow designers to specify relationships among graphical drawing 
elements. 

Although most spreadsheets are also constraint-enabled, related work in the domain 
of spreadsheets is discussed separately in section 2.3.1 below. Note that this section 
will focus on systems where a constraint solver is responsible for computing variables’ 
values, as opposed to assertion systems [53] (sometimes known as restriction systems) 
where developers declare relationships between variables as an error prevention 
mechanism. This section also will not go into detail regarding related work on 
constraint solver efficiency; discussions of ConstraintJS’s and InterState’s 
performance can be found in their corresponding chapters. 

2.2.1 Constraints in User Interface Toolkits 
Researchers have shown the potential for constraints to aid developers in defining 
user interface behavior. Constraints help developers by automatically keeping 
interface components consistent [110][31]. 

Most of the early constraint systems, such as GROW [8], HIGGENS [55], and 
Garnet [106][105], used one-way constraints, as ConstraintJS uses. One-way 
constraints compute the value of a variable based on others, but not vice-versa. For 
instance, if a is constrained to b+1 (expressed a <= b+1) then a <= b+1 solves for 
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a, but does not express what happens to b if a changes.  The kinds of constraints that 
user interface developers often want to express require nuanced control over how 
values are propagated [139]. To allow developers to maintain better control over 
value propagation, Vander Zanden introduced constraint grammars [171]. Constraint 
grammars use multi-way constraints, where relationships can be calculated in any 
direction [141] (a <=> b+1 solves for a or b). In order to give developers more 
control over how constraints are computed, constraint grammars allow developers to 
specify priorities or hierarchies [15]. 

Although constraint grammars are powerful and can be implemented efficiently 
[140,141], they can be difficult for developers to predict and control [98]. When 
developers want fine control over the order or direction of constraint maintenance, 
more sophisticated constraint solvers may be a hindrance, requiring developers to 
understand the mechanics of the constraint solver [98]. In order to keep the 
simplicity and understandability of one-way constraints with the expressiveness of 
multi-way constraints, ConstraintJS combines constraints with finite state machines. 

Despite a wave of constraint systems in the research space that were created during 
the 1980s, imperative code and the event-callback model became the predominant 
way to specify interactive behaviors [98]. Still, a number of constraint systems 
implemented constraints in the context of procedural code, including Garnet [106] 
in LISP, subArctic [59] in Java, Kaleidoscope [34] in C++, Amulet [99] in C++, 
and Ubit in C++ [84]. Because constraints are declarative in nature, integrating 
constraints with imperative code can be challenging and the underlying language 
features can influence design decisions. For example, Amulet used C++’s 
overloading and type-conversion features to make its syntax more consistent with 
standard C++. As the ConstraintJS chapter will discuss, features of JavaScript and 
the Web guided many API design decisions for ConstraintJS. Additionally, part of 
the motivation for creating InterState as a full development environment was the 
limitations on the ideas that ConstraintJS could explore as a JavaScript library. 

Of previous constraint systems, this dissertation was most influenced by Amulet [99]. 
ConstraintJS uses a constraint solver similar to Amulet’s [168], with features added 
to work in conjunction with finite-state machines and to help Web developers deal 
with asynchronous values. Like Amulet, InterState also builds its inheritance model 
on prototype-instance inheritance. However, my systems (ConstraintJS and 
InterState) differ from Amulet in several key ways, three of which I will describe 
here: first, both of my systems allow developers to integrate finite-state machines to 
control constraint execution. Second InterState extends prototype-instance 
inheritance to allow interactive behaviors to be inherited, rather than relying on 
interactor primitives [56,99]. Third, InterState is implemented as a complete 
development environment. Although GILT [103] and other interactive tools 
[57,71,102,169] allow constraints to be declared visually, InterState allows custom 
behaviors to be created visually (although not in a direct manipulation environment 
like GILT; see Future Work). 
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2.2.2 Data Bindings 
Despite their advantages, general constraints still largely have not been integrated 
into mainstream programming languages. However, many user interface 
frameworks include a limited version of constraints called data bindings. Data bindings 
are constraints that connect GUI elements with the underlying application variables. 
Relative to constraint libraries, however, data binding libraries are limited in the 
types of relationships that programmers can declare. 

Data bindings are particularly popular in frameworks that use the Model-View 
Controller (MVC) pattern [2,10,11,82]. MVC is an architecture pattern to help 
separate the logic of a user interface’s underlying model from the specification of its 
user interface. MVC separates the implementation of the user interface into three 
parts: a model, a view, and a controller. The model represents the underlying data, 
independent of the user interface. The view presents information in the model to a 
user. The controller handles user input in the view to update the model. Data-
bindings are common in MVC frameworks to help developers keep the view in sync 
with the model. 

Several data-binding libraries are available for JavaScript. Many of these libraries 
enable declarative bindings between JavaScript objects and Document-Object 
Model (DOM) objects, which specify a web page’s content [5,17,37,73,138,157]. 
Some of these libraries also contain templating features that allow DOM nodes 
created by these templates to be automatically updated when a property’s value 
changes. Data binding libraries are also available for the related ActionScript 
language [3]. While all of these libraries can be effective in allowing skilled 
developers to write clearer code for interactive applications, none of them include 
primitives for dealing with state or a visual notation for the data bindings. 

AngularJS [37] enables multi-way data bindings where developers can update an 
underlying model based on UI components. ConstraintJS uses a more general 
constraint solving method than other JavaScript libraries that enable data-bindings 
to allow constraints to be declared between variables. It also uses finite-state 
machines to allow developers to control the direction of the constraints. These finite-
state machines can define the same interactions as multi-way data bindings. Other 
systems also do not allow programmers to attach bindings to control attributes or 
Cascading StyleSheet (CSS) values of arbitrary DOM nodes, which control how those 
nodes are displayed. 

2.2.3 Constraints for Visual Layouts 
Sketchpad influenced a number of other constraint systems in the 1980s as 
researchers saw the potential for constraints to help users in a number of domains.  

In addition to data-bindings, another domain in which constraints have been 
adopted is in the specification visual layouts. Early research in geometric constraints, 
including The Constraint Window System (CWS) [31], IDEAL [166], Juno [116], 
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Animus [29], and GITS [123], and OPUS [57] focused on maintaining relationships 
in drawings or animations. Peridot [97] inferred geometric constraints and 
interactive behaviors from designers’ interactions with a direct-manipulation 
interface. 

Many current interface builders also use a form of constraints to determine 
application layout. Typically, such constraint systems use special-purpose constraint 
solvers to determine visual layout.  For example, iOS development libraries enable 
“springs and struts” and “auto-layout” to help developers write applications that can 
work across multiple screen sizes and resolutions. 

Cascading Style Sheets (CSS), one of the three Web languages, has limited support 
for constraints built in. For example, media queries allow CSS rules to depend on the 
user’s display size. Constraint Cascading Style Sheets (CCSS) [6] extends CSS by 
enabling more general hierarchical constraints to control CSS properties. While 
these types of constraints increase the flexibility of CSS, they do not provide any way 
to add constraints that use values from JavaScript variables to control the behavior. 

2.2.4 Maintaining Constraints across Clients 
As section 4.7 will discuss, InterState’s runtime and editor use constraints to 
communicate and stay in sync. This is particularly important when the runtime and 
editor are running on separate clients, such as when the runtime is on a tablet and 
the editor is on a desktop. MEL [51], Unidraw [158], Doppler [13], and Rendezvous 
[49] use constraints to help developers create multi-user applications across devices 
that also stay in sync. Rendezvous [49] introduced the Abstracting-Link-View (ALV) 
paradigm, which used constraints to help keep clients in multiuser applications in 
sync.  Conceptually, these systems use constraints across devices in a way that is 
similar to the InterState runtime and editor. However, implementation-wise, 
InterState’s communication mechanism does not resemble ALV. 

2.3 Declarative Models for UI Development 

Declarative programming systems allow developers to specify the logic of a program 
without defining the specific steps it should take. In effect, declarative paradigms 
allow programmers to specify what should happen without specifying how the 
computer should do it. Constraints, for example, are declarative in nature.  Although 
neither InterState nor ConstraintJS are fully declarative systems, both systems have 
significant declarative components as a result of their reliance on constraints. The 
following sections discuss the related declarative work. 

2.3.1 Spreadsheet Programming 
InterState borrows many of its interactions from the spreadsheet paradigm. 
Spreadsheets are considered by many researchers to be the most popular form of 
“programming” [98]. Part of their appeal lies in their beginner friendliness: the user 
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always has a working program and errors can be localized. Constraints are also a 
fundamental part of the spreadsheet paradigm: users can write equations that 
establish relationships between cells. By automatically propagating values, 
spreadsheets allow users to express relatively advanced concepts without learning the 
syntax or control structures of imperative code. Spreadsheets also help guide design 
decisions for how to make constraints learnable and understandable in InterState. 

There is a long and rich history of researchers adopting the spreadsheet model. 
NoPumpG [86] extends the traditional spreadsheet model to allow users to control 
graphical objects’ properties with spreadsheet cells. This relatively simple extension 
greatly reduces the burden of syntactic knowledge for non-developers to use 
constraints. C32 [111], Penguims [61], and Forms/3 [20] also extend the 
spreadsheet model to enable GUI programming. Penguims [61] extends the 
spreadsheet model further by enabling more complex constraint expressions, adding 
primitives for re-use, and integrating imperative code. Penguims, like InterState, is a 
full development environment, allowing developers to write a dynamic interface. 
Penguims and InterState also extend the prototype-instance model to enable 
behavior re-use.  InterState extends the ideas beyond these systems by including state 
as a primitive, which allows users to have more nuanced control over how interface 
objects react to user events. 

Spreadsheets have also been extended to allow them to use Web data and APIs. FAR 
[22], Quilt [12], and Gneiss [24,25,26] all allow spreadsheets to be integrated with 
standard Web sites and Web services. However, whereas these applications aim 
primarily to make it easier for developers to handle data flows, the goal of InterState 
is to improve the development of interactive behaviors. As I will discuss in the 
Error! Reference source not found. chapter, a future version of InterState 
could use the ideas behind these other systems to enable better integration with Web 
services. 

2.3.2 Functional Reactive Programming 2.3.2 Functional Reactive Programming 
Functional Reactive Programming (FRP) [30] is an approach for GUI programming 
that allows developers to declaratively define reactive systems. The original 
formulation of FRP [30] introduced behaviors (sometimes called signals) and events 
(sometimes called event streams). Behaviors represent values that change over time, 
such as an animated object’s position or a mouse’s coordinates. Events represent a 
series of discrete events to which the system might react, such as button presses or 
animation timer events. 

A number of variants of FRP have been proposed since its initial creation (see [28] 
for an overview). Although intended for declarative environments, the increased 
code clarity, conciseness, and error-resistance of FRP over traditional event-callback 
code [94] has led to it being incorporated into many imperative languages, including 
several JavaScript frameworks [28,94,95,130,155]. FRP represents another 
promising approach to help developers define interactive behaviors. 
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Functional Reactive Programming has a similar goal to ConstraintJS and InterState 
but the mechanisms are not related. Although FRP uses constraint-like primitives (in 
its behaviors), it does not include mechanisms for defining state. Instead, most FRP 
systems focus on enabling developers to define events that are more descriptive than 
would be possible in other paradigms, including event-callback and ConstraintJS’s 
transition events. Still, by including a notion of state, ConstraintJS and InterState 
make it easy to declare relationships that depend on the application status. 

2.4 State Machines in User Interface Tools 

ConstraintJS and InterState extend the constraint model by integrating finite state 
machines (FSMs) or state machines for short. FSMs are formalisms in which the state 
machine has one1 active state, or status. Researchers have used state machines across 
many domains, including text parsing, input handling, and modeling embedded 
systems. However, this section will focus on previous research that uses state 
machines in the context of user interface development tools. 

Newman [117] and Parnas [133] first proposed using state machines to describe user 
interface behavior in 1968 and 1969 respectively. State machines are a natural way 
to describe a GUI’s interactive behaviors because they allow developers to handle 
user and system events in a way that depends on the current state of the GUI. State 
machines are also beneficial in GUI programming because a GUI’s appearance and 
behavior often depend on its state. However, no mainstream programming language 
currently supports a notion of state. Thus, researchers have built toolkits and 
libraries that enable GUI developers to use FSMs. 

Most of the early work on integrating state machines with user interface toolkits used 
state machines to model users’ paths through various states [117,133] rather than 
implementing behaviors with the state machine. Subsequently, a number of User 
Interface Management Systems (UIMS) used state machines (or related formalisms, 
such as petri nets [7,135] and context-free grammars [120]) as part of their 
development model [7,32,38,48,63,121,122,159,160]. Garnet [106] and Amulet 
[99]  rather than including a general state machine mechanism, used the same three-
state machine (with “start”, “running”, and “outside” states) for all of their 
interactors [109]. Developers could control their interactive behavior by specifying 
how to react to the pre-built transitions among those three states. 

InterState’s state machines contain several features introduced by Statecharts [44], 
including concurrent and nested states. Concurrent states allow multiple state 
machines to operate independently, meaning that multiple states may be active 
simultaneously. Nested states allow any state to contain substates. Both features aim 
to avoid the “state explosion problem”, where the number of states to describe a 
                                                        

1  InterState’s state machines, like Harel’s Statecharts [44], allow multiple states to be active 
simultaneously to reduce the verbosity of expressing certain state machines [45]. However, 
state machines that enable multiple simultaneous states are functionally equivalent to state 
machines in which only one state may be active at a time [62,148]. 
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behavior grows exponentially. Propositional Production Systems (PPS) [122], an 
alternative notation for describing high-level GUI behavior with state machines, also 
enabled a similar notion of parallel states. 

Some recent examples include SwingStates [4], Chasm  [163], IntuiKit, and HsmTk 
[4,14,83,163]. SwingStates [4] integrates state diagrams into the Java Swing toolkit. 
It features parallel state diagrams (the ability to have multiple diagrams affect one 
object) and fits well with the standard Java syntax. Chasm [163] used a tiered 
representation to describe 3D user interfaces while allowing developers to specify 
finite state machines as part of the paradigm. However, neither framework includes 
mechanisms for specifying constraints or permanent relationships among objects. 

Adobe Flex [3] includes mechanisms for customizing views based on states using its 
MXML language, and also includes the ability to bind data to attributes. However, 
the notion of states in Flex is specific to components, which makes it difficult for a 
widget’s behavior to depend on other states such as the application or parent 
widget’s state. Also, in Flex, data bindings are restricted to MXML attributes and 
require extra syntax for dealing with collections of objects. 

Although developers can use state machine libraries in combination with constraint 
libraries, the constraint library would need to deal with a number of potential 
complications to properly integrate with state machines. Not only would the 
constraint library need to allow constraints to be switched on and off; they would 
also have to correctly deal with potential timing issues related to the order in which 
constraints are evaluated. Additionally, the syntactic differences of a separate 
constraint and state library could raise the learning curve for developers. 
ConstraintJS shows how integrating constraints with state can be more expressive 
than combining separate libraries for expressing state and constraints. InterState 
shows how fully featured interfaces can be created with these primitives alone, 
without imperative code. 

2.4.1 Promises and Futures 
Asynchronous variables are variables that have an indeterminate wait time before 
returning a value. They are common in Web programming when fetching 
information from third-party Web services. As section 3.5.3 below discusses, 
handling asynchronous values can be particularly challenging because developers 
have to manage the state of the asynchronous call, correctly propagate values, and 
handle any possible errors that might occur during the call. 

Although not explicitly state machines, promises (also known as futures) are one 
approach to helping developers deal with the states of asynchronous values. 
Friedman first proposed promises as a way to handle values that are unknown (as an 
asynchronous call is until it has a value) by representing them as proxy objects [35]. 
jQuery [65] and other libraries support promises through a standardized API. In this 
API, promise objects have three states: pending (the asynchronous value does not have 
a value yet), fulfilled (the asynchronous value has a value), and rejected (there was an 
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error of some sort). As section 3.5.3 below discusses, ConstraintJS uses these three 
states in its state machine for asynchronous values. 

Promises help developers correctly handle the state of asynchronous calls, and the 
timing of changed asynchronous values—when the developer cannot make one 
asynchronous call until another has finished. However, by combining the notion of 
state used in promises with constraints, ConstraintJS also helps developers manage 
the propagation of asynchronous values—ensuring that objects that depend on their 
result stay in sync when the value is fulfilled. 

2.4.2 Event Languages and Models 
ConstraintJS and InterState utilize events to trigger the transitions between states of 
an FSM. Event-callback mechanisms have a long history in GUI programming [121]. 
Many commercial and research systems have used and augmented the event-
callback framework. Early event models, like Sassafras [50] and the University of 
Alberta User Interface Management System [39] inspired the features of future 
commercial systems, most notably their event-based model [98]. One interesting 
extension of the standard event model is the elements, events, & transitions (EET) 
model, which allowed programmers to more concisely express how user interfaces 
should respond to user events [33]. ConstraintJS and InterState built on some of the 
ideas introduced in these systems, such as dynamic event targets in transitions, to 
increase the expressiveness of the state machines. 

2.4.3 Probabilistic State 
As I will discuss in section 6.1.2 below, many multi-touch gestures cannot be sure of 
their current state until after some delay. For example, in an interface that reacts to a 
tap event and a press-and-hold event, when a user’s finger presses down, the 
interface cannot determine if the user is performing a tap or a press-and-hold until 
after some delay. Further, an interface should still ideally provide some visual 
feedback while it is uncertain which input it is receiving Hudson, Schwarz, et al. 
proposed using probabilistic states [58] to help developers track the possible 
application states for uncertain inputs (also applicable in domains beyond multi-
touch, like speech input) [144]. Like Schwarz et al.’s approach, InterState 
differentiates between confirmed and possible events (see section 5.3 below). However, 
Schwarz et al.’s approach automatically manages the various probabilities and could 
be more useful when developers work in probabilistic terms. 

2.5 UI Management Systems and Frameworks 

Many of the related work systems described in the previous sections were 
implemented in the context of User Interface Management Systems (UIMSs) 
[9,23,121,153]. “UIMS” is an umbrella term to describe many systems that helped 
developers build UIs. Most UIMS also help developers separate the underlying 
program logic (the model) from the user interface logic (the view). Although the term 
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“UIMS” was coined by Kasik in 1982 [72], the separation of user interface logic and 
view logic is a longstanding idea [9]. Although the distinction between UIMS and 
non-UIMS systems is not cut and dried, I do not consider ConstraintJS or InterState 
to be a UIMS. Although ConstraintJS and InterState contain features to 
communicate with JavaScript objects, the goal of my systems is to simplify the 
specification of interface behavior, rather than separating the logic of interface 
behavior from an underlying data model. However, both systems and the ideas 
behind them can be incorporated into a UIMS. 

2.6 Behavior Re-Use 

One of InterState’s contributions is to provide a mechanism for re-using interactive 
behaviors. InterState includes two mechanisms for code re-use. The first is behavior 
inheritance, which extends standard prototype-instance inheritance [88] to allow 
interactive behaviors to be inherited as well as fields. The second is InterState’s 
copies (or templating) mechanism, which allows developers to easily create any 
number of copies of a behavior. 

Many of the early User Interface Management Systems (UIMSs) also included 
mechanisms for behavior abstraction and re-use. Although the mechanism varied 
across UIMS, they are sometimes called interactors and they typically encapsulate a 
graphical object’s behavior. Interactors are typically parameterizable. In some 
UIMSs, interactors are tied to graphics [57] and in others, interactors can be 
attached to graphical objects. When interactors are coupled with graphical objects, 
they are typically called widgets [57,93].  

Peridot [104,107] and Lapidary [106] allow developers to attach interactors to 
graphical objects in direct manipulation environments. Unidraw [134], Garnet 
[109], subArctic [56], and Amulet [99]  also allow multiple interactors to be attached 
to a group of graphical objects. Like these systems, InterState aims to make 
interactive behaviors easier to re-use and parameterize across multiple widgets. 
However, unlike these systems, InterState folds its behavior inheritance in with its 
standard inheritance mechanism. InterState’s inheritance mechanism also allows 
behaviors to be combined by inheriting from multiple behaviors. Thus, InterState’s 
inheritance mechanism reduces the need for specialized interactors. 

InterState’s templating mechanism allows developers to create multiple copies of a 
single widget for every item in an array. Unlike InterState’s inheritance model, the 
templating mechanism can be used when multiple items are similar enough that they 
can be created from the same prototype object. For example, in a list of similar items 
(such as songs in a playlist or items in a to-do list), a developer can define the display 
of one of these items and specify how many copies of that item they want. The 
number of copies can also be a dynamic constraint to create a dynamic list whose 
items depend on some underlying model. 
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Amulet’s [99] “maps” (see section 4.9 in [96]) helped guide several design decisions 
in InterState’s templating mechanism. Like Amulet’s maps, when developers create 
multiple copies of a prototype, each copy has two special fields to indicate the item 
and index of that copy. Both mechanisms also allow developers to enter a number or 
an array into the copies field. This value can also be a constraint, to allow for 
dynamically updating lists. However, InterState’s templating mechanism is more 
general than Amulet’s maps. InterState’s copies mechanism can be used for 
graphical objects, behavior objects, events, groups, or any other kind of InterState 
object. 

2.7 Visual Programming 

InterState can be considered a visual programming environment, since part of the 
programming involves non-textual elements. InterState’s visual notation primarily 
draws inspiration from spreadsheets (see section 2.3.1 above) and previous visual 
representations of state transition diagrams. Many programming environments 
provide non-textual elements. Outside of spreadsheets, perhaps the most widely used 
visual programming environments are interface builders, which allow users to create 
GUIs through direct manipulation techniques rather than programming. 

Trillium [47] and Menulay [23] were two of the earliest interface builders and were 
influential in the design of modern interface builders [98]. LiveWorld [154], OPUS 
[57], and several GUI builders allow users to set object properties using “property 
sheets.” These property sheets list settable properties and allow users to change 
them, sometimes updating the interface to reflect their current values. Property 
sheets can specify the look (colors, fonts, positions, etc.) of an application but 
InterState incorporates states and constraints to allow developers to also specify how 
an application behaves. 

InterState’s visual notation also includes a graphical representation for objects’ state 
machines, an idea explored by a number of visual programming systems—see 
[52,108,172] for surveys. State machines and Statecharts are typically represented as 
2-D diagrams [44]. Previous tools that allowed developers to visually manipulate 
state machines have also used 2-D representations [63,64,87]. As I will describe 
later, InterState’s visual notation introduces a way to “flatten” the visual 
representation of state machines, so that each state and transition can be allocated a 
column. This notation can also represent nested and concurrent states. This 
flattened representation is crucial to InterState’s representation of behaviors because 
it allows every state and transition to be represented as a column and every field to 
be represented as a row. 

2.8 Live Development  

Live development environments are ones that provide some form of immediate 
feedback when developers edit their programs. Liveness is a relatively common 
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feature in visual programming languages [21,151], particularly in spreadsheets 
[20,161]. Live development environments can help developers by allowing them to 
switch between editing and debugging quickly [81] and informing them of the 
current status of an application [20,146]. 

Tanimoto, who coined the term “liveness” to describe such development systems, 
described four levels of liveness [21,151,152]. Level 1 provides no semantic 
information to the developer. In level 2 liveness, developers must manually request 
semantic information about their program and it is provided at a later time. Level 3 
live environments automatically provide developers with feedback when they 
perform an edit. Level 4 live systems provide developers with immediate feedback 
when they perform edits and when the state of their program changes (in response to 
user events, etc.). Tanimoto later proposed two further levels of liveness for 
development systems that predict future programmer actions (level 5 liveness) and 
automatically synthesize working programs (level 6 liveness) [152]. 

InterState is a level 4 live development environment; changes in the editor are 
immediately reflected in the running application and the editor always displays the 
application’s current state and field values. One of the criticisms of level 4 live 
environments is that they are too computationally expensive [152]. Burnett et al.  
recommended several implementation methods for level 4 live systems [21]. 
Although performance was a secondary consideration in the implementation of the 
InterState runtime, behind design considerations for the environment itself, these 
recommendations might improve the implementation of future versions of 
InterState. 

2.9 Multi-touch Gestures 

InterState also contains features to help developers define behaviors that involve 
multi-touch touchscreen events. These multi-touch gestures can be particularly 
challenging to write in event-callback code because multi-touch gestures are often 
distinguished by nuanced differences in touch timing and trajectory. Further, custom 
multi-touch gestures are common [41,68], as developers invent new multi-touch 
gestures [113] or mix and match previous gestures [69]. Researchers have proposed 
a number of systems to help developers define multi-touch gestures. The following 
sections will review a few of the previous approaches researchers have taken. 

2.9.1 Declarative Multi-Touch Event Models 
One way to address the difficulties of writing multi-touch gestures in event-callback 
frameworks is by introducing declarative event models, where developers specify the 
features of the gestures in which they are interested rather than how to classify them 
[54]. CoGest [36], GeForMT [70], Coder [90], GDL [75], Midas [142], Proton 
[77], and Proton++ [78] all introduce various declarative syntaxes for defining 
multi-touch gestures based on regular expressions. These regular expressions (which 
are functionally equivalent to state machines), abstract away many of the difficulties 
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of implementing these behaviors in event-callback code. The focus of all of these 
systems is on building more intuitive and understandable event architectures. The 
goals of ConstraintJS and InterState are related, but different: to focus on ways that 
constraints can help build highly state-oriented interactive behaviors. 

2.9.2 Recognition Techniques 
An alternate way to help developers define multi-touch gestures is by allowing them 
to train and use a gesture recognizer. GRANDMA [136] was one of the first 
automatic gesture recognition systems. The $1 gesture recognizer [164] focuses on 
making it easier to include custom gestures into applications. Gesture Coder builds 
on previous work by allowing developers to create state machines for classifying 
multi-touch gestures by demonstrating gesture examples to its learning system [90]. 
InterState does not currently support machine learning for multi-touch gestures, but 
future versions of InterState could allow developers to write a multi-touch gesture by 
demonstration and automatically generate a state machine. 

2.9.3 Crossing Gestures and Picking Views 
InterState’s multi-touch development primitives also include a notion of “crossing 
events”, which fire when a user’s finger crosses a path that is specified by the 
developer. Crossing gestures have been proposed as an interaction technique in 
mouse and keyboard environments [1], but InterState’s use of crossing gestures is to 
help developers define the state of a multi-touch gesture. Crossing events have also 
been used in EventHurdle [76] to help designers prototype mobile applications. 
However, InterState’s crossing gestures are more expressive by allowing developers 
to define crossing gestures on custom, dynamic paths and enabling crossing events to 
be combined in the context of a larger multi-touch gesture. 

InterState’s multi-touch primitives also include a way for developers to “draw” 
custom shapes on the screen and bind events to them. This idea is analogous to 
“picking views” in MDPC (an extension of MVC) [27]. For instance, in both systems, 
developers can specify that they want a menu to slide out if the user presses in the 
bottom left corner by drawing a rectangle in the bottom left corner of the screen and 
binding event handlers to touch events on this rectangle. This rectangle would not be 
visible to users of the applications but would be visible for developers to help them 
debug. InterState extends picking views by allowing such shapes to be dynamic 
through constraints. 

2.10 Conclusion 

As this chapter overviews, ConstraintJS and InterState have been influenced by a 
number of previous systems. The computational model for both systems also extends 
two previous paradigms that have been the subject of much previous work: states 
and constraints. Many of the contributions described in this dissertation stem from 
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the ways that ConstraintJS and InterState combine and augment these features in 
cohesive development tools. 
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3 ConstraintJS2 

ConstraintJS is a JavaScript library to help Web developers create custom interactive 
behaviors. ConstraintJS enables constraints that can be used both to control content 
and control display across interface states, and integrates these constraints with the 
three Web languages— HTML, CSS, and JavaScript. ConstraintJS is designed to 
take advantage of the declarative syntaxes of HTML and CSS: it allows the majority 
of an interactive behavior to be expressed concisely in HTML and CSS (see Figure 1), 
rather than requiring the programmer to write large amounts of JavaScript. 

This chapter begins with an overview of Web development tools and particular 
challenges of Web development. It then will give an overview of how ConstraintJS 
and its features address some of these challenges—first through a motivating 
example and then with a more specific breakdown of ConstraintJS’s contributions. 
Finally, it will detail how ConstraintJS is implemented and describe example 
applications built with ConstraintJS. 

3.1 Web Development Technologies 

The World Wide Web is perhaps today’s most widely used GUI platform. The three 
standard publishing languages used today on the Web are HTML, CSS, and 
JavaScript.  These languages interact through a shared representation of the web 
pages called the Document Object Model (DOM). 

3.1.1 The Three Web Languages 
In theory, the Web’s three languages have complimentary, pre-defined roles. HTML, 
a declarative markup language, defines a page’s content. CSS defines the appearance 
                                                        

2  Portions of this chapter were adapted from [126] 
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of that content with a declarative language that allows developers to specify stylistic 
properties of particular DOM nodes. CSS uses a “selector” language to allow 
developers to specify the DOM nodes they are controlling. JavaScript defines a 
page’s interactivity by modifying the DOM tree. 

In practice, these roles are not set in stone. Dynamic Web pages, which load data 
from a third-party server without requiring users to reload their browser, define 
significant portions of the page’s content using JavaScript. CSS can also define a 
limited range of interactive behaviors using “dynamic pseudo-classes”. Dynamic 
pseudo-classes—most notably the “hover” pseudo-class, which is activated when the 
user hovers their mouse over an element, can be used in combination with style 
definitions to show and hide elements. 

Like most general-purpose languages, JavaScript uses the event-callback mechanism 
to define interactive behaviors. Specifically, developers write callbacks for user events 
that change the content of the page by adding, removing, and modifying the content 
of the DOM. The browser’s rendering engine then immediately propagates any 
changes to the DOM. 

3.1.2 Web Frameworks and UI Toolkits 
A number of frameworks and libraries have been created to help Web developers 
script interactive behaviors. Because the landscape of JavaScript libraries is prone to 
rapid change, this section will give an overview of some of the most relevant and 
widely used libraries as of the writing of this dissertation. Whereas the related work 
section of Chapter 2 focused on the most relevant and state of the art research 
systems, this section will focus on JavaScript libraries that are currently widely used 
by Web developers. 

Currently, one of the most widely used libraries is jQuery [65], a JavaScript library 
that provides a wide array of useful functions. Of the functions most relevant to 
implementing interactive behaviors, jQuery simplifies the process of modifying the 
DOM with JavaScript by providing a mechanism by which developers can query the 
DOM. jQuery also provides several functions to help developers write correct, 
succinct event specifications for event-callback code and pre-defined UI widgets [66]. 
jQuery also includes a “promise” API (sometimes called “futures”) that helps 
developers track the status of asynchronous calls (described in section 3.4 below). 
jQuery’s functions help JavaScript developers write interactive behaviors in a more 
succinct and readable fashion, but it does not address many of the control flow issues 
that make event-callback code difficult to write and debug. 

Other JavaScript libraries use variations of the Model-View-Controller (MVC) 
framework to improve Web development. At the time of writing, the most popular of 
these frameworks is AngularJS [37]. Like ConstraintJS, Angular supports data 
bindings that help connect the visual appearance of a Web page with some 
underlying data model, reducing the need for writing callbacks. It also introduces 
mechanisms for creating templates and to help developers structure their code in a 
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readable and maintainable way. However, whereas the goal of ConstraintJS is to 
introduce primitives for defining interactive behaviors, Angular is intended to help 
developers structure large Web applications. Although MVC Web frameworks like 
Angular reduce the need for event-callback code through data-bindings, templates, 
and other built in primitives, they still rely on the event-callback paradigm for 
developers to define new interactive behaviors. 

Differentiating Libraries and Frameworks 

Another consideration in the design of ConstraintJS was the need for interoperability 
with other JavaScript libraries and frameworks. In order to be more practical for 
JavaScript developers, many of ConstraintJS’s features were designed to avoid fixing 
developers into one particular code structure. In other words, whereas most UI 
toolkits are frameworks, I wanted to implement ConstraintJS as a library. A library is a 
set of methods or utilities that can be called or referenced anywhere within a 
developer’s code. A framework inverts that control structure and decides when to call 
the developer’s code. Although there are tradeoffs for libraries and frameworks, 
frameworks generally require a larger buy-in on the part of developers because they 
put more requirements on how a developer structures the code. 

3.2 Contributions 

ConstraintJS shows how constraints and FSMs can be effectively integrated with 
three Web languages—JavaScript, CSS, and HTML Although both constraints and 
state machines have been subject to a large body of prior research, ConstraintJS is 
the first library to show how combining constraints with states augments the 
expressive power of constraints and allows developers to write interactive behaviors 
more succinctly and clearly. 

3.2.1 Constraints 
As section 2.2 describes, constraints can help developers avoid writing spaghetti code 
[94,110]. However, constraints have only caught on in GUI programming in two 
special-purpose ways: 1) data bindings for frameworks that use the Model-View-
Controller (MVC) or related design patterns to keep the GUI view in sync with its 
model (e.g., [5,73,138]) and 2) special-purpose graphical constraints that control the 
layout of graphical elements (e.g., [17]). Similarly, for Web programming, CSS offers 
a limited constraint language for specifying graphical layout, and separately, there 
are several JavaScript-based data-binding libraries [5,73,138]. 

While both of these types of constraints are useful to programmers, they are often 
limited in expressiveness, and further are almost entirely distinct and unaware of 
each other, despite their conceptual similarities. For instance, while current 
JavaScript data binding libraries allow developers to create constraints to set the 
content of DOM nodes, they do not allow them to create constraints that control CSS 
or DOM attributes. 
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3.2.2 States in GUIs  
One of the main differentiators of interactive behaviors from general programming 
is that GUIs are often stateful [85]—the application state determines the appearance 
and behavior. When thinking about graphical layouts and data bindings, interaction 
designers often think in terms of states, along with constraints [101]. As an example, 
consider the requirement: “when the toolbar is docked, it is displayed above the 
workspace; when it is dragging, it follows the mouse.” Here, each constraint (“the 
toolbar is above the workspace” or “the toolbar follows the mouse”) applies in 
different application states (“when the toolbar is docked” or “when the toolbar is 
being dragged”). Transitions describe when and how the application changes state—
for example, when the user presses the toolbar header in docked mode, it enters 
dragging mode. 

3.2.3 Integrating Constraints and States 
As the introduction describes, ConstraintJS goes beyond the existing constraint 
literature by integrating the notion of state into its constraint system, allowing 
developers to write constraints that sometimes hold. This chapter will describe how the 
development of interactive behaviors in GUIs can be simplified by integrating finite-
state machines (FSMs) with constraints in ConstraintJS. 

Not only does ConstraintJS allow developers to create more expressive constraints; 
developers can also create many interactive behaviors using only FSMs and 
constraints, without extra JavaScript. The example in Figure 3.3, for instance, 
requires almost no imperative code. Furthermore, I found that ConstraintJS’s state-
oriented constraints integrate well with existing imperative languages, including 
JavaScript (see sections 3.5.7 and 3.5.9 below for examples of how ConstraintJS can 
work with third-party JavaScript libraries). Further, this model enables 1) support for 
the asynchronous behaviors which are inherent in Web programming, and 2) the full 
control provided by one-way constraints that programmers desire [98], but with 
much of the expressiveness provided by multi-way dataflow constraint solvers [141]. 

3.3 Terminology 

Throughout this chapter, I will use the term constraint to mean a one-way constraint 
[170]. As described in section 2.2.1, one-way constraints compute the value of a 
variable based on others, but not vice-versa, and are therefore like spreadsheet 
formulas. For instance, if a is constrained to b+1 (expressed a <= b+1) this 
constraint solves for a. A constraint’s definition is the equation that specifies its value. 
For example a’s definition is b+1. This is in contrast to its value, which is the 
computed value of that equation. If the value of b is 1, the value of a is 2; if the value 
of b is 100, the value of a is 101. 
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3.4 Motivating Example 

To help concretely illustrate ConstraintJS’s features, consider the example shown in 
Figure 3.1, which uses the Facebook API3 to pull in a list of Facebook friends and 
display their names alongside their pictures. The Facebook API makes this a three-
step process (not counting the required initial authentication): first, the code must 
retrieve a list of friend IDs. This is done using one Facebook API call, which returns a 
list of friend IDs and names.  After the list of friends has been retrieved, the second 
step is to take this list of friend IDs and retrieve a URL pointing to a picture for each 
friend. This means that the code must make another Facebook API call for each 
friend the user has. Finally, once these data are retrieved, they must all be correctly 
displayed. 

 

Figure 3.1 The target application for the motivating example. An asynchronous Facebook API call 
returns a list of friends. While the list of friends is loading, “Loading Friends…” appears on 
screen. After the list of friends has loaded, the profile picture of each friend is then 
independently requested. While the application is waiting for the Facebook API to return a 
picture URL for a friend, a loading image is displayed. 

To further complicate matters, every JavaScript Facebook API call is asynchronous. 
This means that when a call is made to the Facebook API, Facebook does not 
provide a return value immediately. Instead, a callback function is executed at a later 
point when the data are ready. This introduces three types of complications. First, 
the system must wait for the initial API call (which fetches the list of friends) to finish 
before attempting to make API calls for each friend the user has. Second, when 
fetching the friends’ pictures, the code cannot rely on the API to send return values 
back in the same order in which they are requested. For example, if the code asks for 
pictures for Alice and then Bob, the Facebook API might return Bob’s picture before 
Alice’s. The developer must take measures to ensure that the right friend is mapped 
to the right picture. Finally, the code must gracefully handle the failure of any of 
these asynchronous calls.  

1 var people = $(selector).text("Loading friends..."); 
2 FB.api("/me/friends", function(answer) { 
3     var friends = answer.data; 

                                                        
3 This example code is based on version 1 of the Facebook API 

Loading Friends…

Karen Collins Eric Marshall

Sarah Kelly Keith Malcom

Ellyn ToddCorey Smith

(after friends list has loaded)
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4     if(friends) { 
5         people.text(""); 
6         friends.forEach(function(friend) { 
7             var img = $("<img />"); 
8             people.append($("<div>" +  
9                               friend.name + 
10                               "</div>")) 
11                     .prepend(img); 
12  
13             img.attr("src", "loading.gif"); 
14             FB.api("/" + friend.id + "/picture", 
15                    function(picanswer){ 
16                         var picture = picanswer.data; 
17                         if(picture) { 
18                            img.attr("src", picture); 
19                         } else { 
20                            img.attr("src", "error.gif"); 
21                         } 
22             }); 
23         }); 
24     } else { 
25         people.text("Error"); 
26     } 
27 }); 

Figure 3.2 The JavaScript code for the example shown in Figure 3.1. This code, which uses the jQuery 
library to increase clarity, first creates an element to display the “Loading friends…” loading 
indicator (line 1). It then makes an asynchronous call to load the user’s friends (line 2, handler 
lines 3-26). Then, for every friend, it creates a loading indicator (lines 6-23) and updates their 
picture when it has loaded (lines 15-22). This code requires three levels of nested callbacks: 
one for the initial friends list request, another to create a scope closure for every friend (a 
JavaScript convention), and another to load the picture for every friend. 

The fact that the API calls are asynchronous means that the developer will need to 
write code to wait for all three steps to be completed: first, for the list of friends to 
load, then for the URL for each friend's photo, and finally for the image located at 
that URL to load. To provide a good user experience, however, the system should 
indicate progress by displaying whatever information is available: the application 
should start with a “Loading friends…” screen, then add in the name and a picture-
loading graphic when it has a friend’s name but not a picture, and finally replace the 
loading icon with the photo when it has a photo URL. 

Implementing this in JavaScript without ConstraintJS requires writing opaque and 
error-prone code, as the code block in Figure 3.2 shows. It requires three levels of 
nested callbacks and scope checking to ensure that the pictures are loaded and 
displayed in the right places, that the friends’ pictures do not attempt to load before 
they are ready, and that images and text indicating loading delays and errors are 
properly displayed for every profile. It also requires code to ensure that the view 
stays in sync with the model—that the place-holder symbols show up and then 
disappear when a picture is available, that the list of friends and pictures is in the 
right order, and that each picture is linked properly to each friend. 
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In fact, when I submitted the ConstraintJS paper for publication, it included the 
code in Figure 3.3. One reviewer countered that they could create the same behavior 
in almost the same amount of lines of code with CoffeeScript and sent a code snippet 
in response. However, their implementation contained two errors. Figure 3.2 is that 
reviewer’s code, but with these errors corrected. The first error is that as a result of 
an error in how it handles the state of the asynchronous call, their code never 
removed the “Loading Friends…” message after the list of friends had been loaded 
(line 5 in Figure 3.2 was not in the original snippet). Second, as a result of not 
correctly handling value propagation correctly, it did not properly set the picture for 
every friend as it was fetched (line 6 in Figure 3.2 did not evaluate in the correct 
context in the original snippet). 

I include this anecdote not to complain about the reviewer, particularly because he 
or she was willing to illustrate the claims with solid evidence. Instead, I believe it 
illustrates how difficult it is to reason about asynchronous values. This reviewer was 
clearly a skilled programmer, but even so produced buggy code as a result of making 
an error in reason about the code state and how values are propagated. The root of 
this problem is not JavaScript's syntax (addressed by CoffeeScript and others) or its 
lack of built-in functions (addressed by libraries like jQuery). Instead, it is the 
fundamental callback/side-effect mechanism that JavaScript requires. 

1 friends = cjs.async(fb_request("/me/friends")); 
2 pics    = friends.map(function(friend) { 
3               return cjs.async(fb_request("/"+friend.id 
4                                              +"/picture")); 
5           }); 
6  
7 // display code: 
8 {{#fsm friends.state}} 
9    {{#state pending }} Loading friends... 
10    {{#state rejected}} Error 
11    {{#state resolved}} 
12        {{#each friends friend i}} 
13        <div> 
14             {{#fsm pics[i].state}} 
15                {{#state pending }} <img src = "loading.gif"/> 
16                {{#state resolved}} <img src = "{{pics[i]}}"/>  
17                {{#state rejected}} <img src = "error.gif"  /> 
18             {{/fsm}} 
19             {{friend.name}} 
20          </div> 
21       {{/each}} 
22 {{/fsm}} 

Figure 3.3 The ConstraintJS code for the example in Figure 3.1. Here, the Facebook API is called 
(asynchronously using fb_request) to fetch a list of friends (line 1) and a profile picture for 
each friend (lines 2—5). These values are placed into the friends and pics constraint 
variables respectively. Lines 8—20 declare a template that depends on these variables. As 
the list of friends is loading, friends.state will be pending, so the message “Loading 
friends…” is displayed (line 9). After the list of friends has loaded (lines 11—21) the pictures 
for all friends are displayed alongside their names. While the application is waiting for the 
Facebook API to return a picture URL for a friend, a loading image (loading.gif) is displayed 
(line 15). The code also correctly notifies the user of any errors (lines 10, 17). 
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With ConstraintJS, things are much easier. The code is shown in Figure 3.3. At a 
high level, this code sets up a constraint variable (friends) whose value is the list of 
friends (line 1). This variable will have no value until the list of friends has been 
fetched. It then declares a constraint variable (pics) with a picture URL for each of 
these friends. pics will not have a value until friends returns a list of friends. 
When friends returns, pics takes that list and returns a list of picture URLs for 
each friend (lines 2–5). Before any of these constraint variables have values, we 
create an HTML/Handlebars template [74] whose value depends on friends and 
pics (lines 9–22). This template looks at every friend and its state. If friends has 
not loaded, it displays the text “Loading friends…” (line 10). When friends has 
loaded, it displays the name of each friend (line 19). For each friend, if the picture 
URL has not been loaded yet, then the code displays a loading image (line 15). If it 
has been loaded, then it displays the friend's photo (line 16). 

Overall implementing this example with constraints produces relatively clear and 
straightforward code. Another benefit of using constraints is that if our list of friends 
were a changing entity (i.e. the code intermittently updates the list of friends) the 
code in Figure 3.3 would automatically update (and not completely replace) the list 
of friends to reflect any changes over time. Further, this example shows how 
ConstraintJS can work well with existing event architectures, such as the event-
callback model used for third-party APIs. 

3.5 ConstraintJS Overview 

The following sections describe the ConstraintJS application programming interface 
(API). All of ConstraintJS’s functionality is accessed via a global cjs() JavaScript 
function4 to avoid potential conflicts with other libraries. 

3.5.1 Basics: Creating Constrainable Variables 
Any JavaScript object or widget may be turned into a constrainable variable using 
the cjs function with the JavaScript variable as a parameter. For instance, this code 
snippet creates x as a constrainable variable whose value is 1: 

var x = cjs(1); // x <= 1 

The .get() function fetches the value of a constrainable variable and 
.set(value) sets its value: 

x.get();  // = 1 
x.set(2); // x <= 2 
x.get();  // = 2 

                                                        
4 In JavaScript, function objects may have properties, so although cjs is a callable function, it 

also has subfields (for example, cjs.mouse). 
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Dynamically computed variables can be created by passing a function as the 
parameter: 

var y = cjs(function() { 
   return x.get() + 1;   // y <= x + 1 
}); 
 
x.get();  // = 2 
y.get();  // = 3 
x.set(9); // x <= 9 
y.get();  // = 10 

Constrainable variables also have several utility methods to create new dependent 
variables. For instance, the declaration of y above may seem cumbersome but the 
same thing can be achieved with: 

y = x.add(1);  // y <= x + 1 

In this case, .add() is a built-in function that creates a new constrainable variable. 
Custom constraint functions may also be created, as we describe in “Convenience 
Methods” below. 

Constraints may be “conditional” if an object with a “condition” property is 
passed in: 

var z = cjs({ condition: x.gt(0), // if x > 0   
            value: x },           // z <= x 
 
             { condition: "else", // else 
            value: x.mul(-1)});   // z <= x*-1 

A Note on Non-Constraint Variables 

ConstraintJS requires a thin wrapper for its constraint variables (the get() and 
set() methods described above) because JavaScript currently does not have any 
widely adopted standard for overriding variable setters and getters. Unfortunately, 
this can be a source of confusion when developers mix constraint and non-constraint 
(standard JavaScript) variables. For instance, consider the following code snippet: 

var should_compute = false, 
    x = cjs(1), 
    my_constraint = cjs(function() { 
        if(should_compute) { 
            return x.get() + 1; 
        } else { 
            return 0; 
        } 
    }); 
     
console.log(my_constraint.get()); // 0 
should_compute = true; 
console.log(my_constraint.get()); // 0 
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Many developers would expect the last call to my_constraint.get() to return 
the value 2, because x is 1 and x+1 is 2. However, because should_compute is not 
a constraint variable, my_constraint is not recomputed when it changes. This is 
because when constraints are computed, the constraint solver caches their value 
(imagine if the getter function for my_constraint contained an expensive 
computation; the constraint solver should avoid calling the getter if its value does not 
change). Thus, the first call to my_constraint.get() calls the getter and caches 
the result. The second call to my_constraint.get() then returns the cached 
value because my_constraint was never invalidated. my_constraint was never 
invalidated because it is impossible to automatically determine that it should be 
invalidated when should_compute is set to true. Instead, this block should be 
expressed as (changes are underlined): 

var should_compute = cjs(false), 
    x = cjs(1), 
    my_constraint = cjs(function() { 
        if(should_compute.get()) { 
            return x.get() + 1; 
        } else { 
            return 0; 
        } 
    }); 
     
console.log(my_constraint.get()); // 0 
should_compute.set(true); 
console.log(my_constraint.get()); // 1 

The difference is that in the second snippet, should_compute is a constraint 
variable, so the constraint solver knows to invalidate my_constraint when it 
changes. 

3.5.2 Finite State Machines 
Because many pages have properties and graphics that depend on the current state, 
ConstraintJS integrates its FSMs with constraints and the page’s HTML and CSS. To 
illustrate, suppose a developer wants to implement the behavior shown in Figure 3.4. 
Here, there are two DOM elements and hovering over one has the effect of 
highlighting the other element. The code to create the FSM shown in the right side of 
Figure 3.4 is shown below5: 

var block_a_fsm = cjs.fsm() 
          .add_state("idle") 
            .add_transition(cjs.on("mouseover", block_a), 
                             "myhover")         
          .add_state("myhover") 
            .add_transition(cjs.on("mouseout", block_a), 
                             "idle") 
          .starts_at("idle"); 

                                                        
5 The state name myhover is used in this example instead of hover to emphasize that this is 

not the standard CSS built-in hover. 
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This snippet uses “chaining,” a convention in JavaScript where an object property 
performs an operation on that object and returns the object back. Here, cjs.fsm() 
creates an FSM and .add_state("idle") adds a new state named “idle” to that 
FSM and returns the FSM back. The .add_transition() method then creates a 
transition from the last state added to any other state. Its first argument specifies when 
the transition should occur. ConstraintJS has several built in event types, including 
cjs.on(<event>, <element>), which listens for <event> to occur on 
<element>. Custom events may also be created. The second argument to 
.add_transition() is the state to which the FSM will transition when the event 
occurs. Finally, .starts_at specifies the initial state of the FSM. 

 

Figure 3.4 (Left) An illustration of an interactive behavior where hovering over one block highlights the 
other block. (Right) the FSM used by both blocks to track their state.  

Binding Constraint Values to FSM states 

The developer would then create variables and constraints that depend on this FSM. 
The two blocks shown in Figure 3.4 would require two FSMs: block_a_fsm and 
block_b_fsm. The behavior for block_a would be as follows (the code for 
block_b is analogous): 

block_a.css("background-color", 
                block_b_fsm, { 
                   "idle":    "black",  
                   "myhover": "yellow" 
                }); 

The second parameter passed into block_a.css is an FSM. The third parameter is 
an object where the keys ("idle" and "myhover") represent states in the FSM 

passed in6. The values ("black" and "yellow" respectively) represent the value for 
the constraint in the different states. Alternatively, we could create a constraint for 
the hover color to be whatever color is shown in the hex variable in Figure 3.4: 

                                                        
6 Multiple states may be selected by joining them with a comma: "idle, myhover" or with 

wildcards: "*". Transitions may also be used to instantaneously set constraint values: "idle 
-> myhover". 
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block_a.css("background-color", 
                block_b_fsm, { 
                   "idle":    "black",  
                   "myhover": hex 
                }); 

Every FSM also has a variable called .state whose value is the name of its current 
state. For instance, block_b_fsm.state.get() returns either "idle" or 
"myhover" depending on the current state of block_b_fsm. This allows an 
alternate implementation approach: the class attribute of block_a and block_b 
could be constrained to the value of state. Then, custom CSS for the classes idle 
and myhover could be used to specify how the block is displayed visually: 

// JavaScript 
block_a.class(block_b_fsm.state); 
block_b.class(block_a_fsm.state); 
 
// CSS 
.idle    { background-color: black;  } 
.myhover { background-color: yellow; } 

3.5.3 Asynchronous Values 
In JavaScript, developers often have to deal with asynchronous calls: requests that do 
not provide a return value right away, but instead use a callback to provide the 
return value at some later time. The Facebook API described earlier in the paper 
uses asynchronous callbacks. For example, the fb_request function takes a query 
(e.g., "/me" to fetch the information of whomever is logged in) and a callback 
function that will be called whenever the return value is ready. 

Sometimes, the asynchronous callback will receive an error, (e.g. if we passed in an 
incorrectly formatted query in the initial call) or might not return at all (e.g., if there 
was a network problem). To handle these cases in conventional JavaScript code, a 
developer would need to both create custom error handling code inside the callback 
and also manage a timeout after which a query is considered failed. 

Constraints are particularly well-suited to handling asynchronous values because 
they automatically propagate values when values become available. ConstraintJS 
includes two mechanisms for handling asynchronous values: using a state machine or 
by pausing and resuming constraint getter functions. The state machine method is 
intended to handle most types of asynchronous calls using a built-in FSM. The 
pause/resume method is intended to handle asynchronous calls where a developer 
wants to define their own set of states rather than use the built-in FSM.  

Dealing with Asynchronous Values using State Machines 

The first method for defining asynchronous constraints is through state machines. 
ConstraintJS allows developers to handle asynchronous values with a combination of 
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a built-in FSM and a constrainable variable that depends on that FSM [126]. The FSM 
for asynchronous constraints has three states: 

 

 

Figure 3.5 The FSM of asynchronous constraints in ConstraintJS. Asynchronous constraints are 
constraints that don’t have a value until after some delay period, e.g. data returned from 
network or file system queries. While the constraint is waiting for a value, the FSM is in the 
“Pending” state. When it successfully receives a value, it enters the “Resolved” state. If there 
is an error or the request times out, it enters the “Rejected” state. 

• "pending"  – waiting for a result 
• "resolved" – a result was successfully returned 
• "rejected" – an error occurred 

Asynchronous constraints are created with the cjs.async() method, which 
automatically creates the FSM in Figure 3.5 to track the state of the constraint. 
cjs.async() returns a constraint whose .state property is the FSM in Figure 3.5. 
This constraint can be treated just the same as normal constraints; we can depend on 
them, set up dependencies in them, etc. However, the variable will not have a value 
until the asynchronous callback has returned. If we want to update the variable’s 
value, we can call its .refresh() method, which puts the state machine back in the 
pending states and redoes the asynchronous request. The .refresh() method 
cannot be called automatically because there is currently no standard way for third-
party services to indicate that there was a data update.  

Handling Asynchronous Values by Pausing and Resuming Getters 

To give developers more flexibility when making an asynchronous calls, 
ConstraintJS also allows a constraint’s getter function to pause and then resume 
when the asynchronous value is ready. Thus, constraints contain the functions 
pauseGetter and resumeGetter, which are illustrated in the snippet below. This 
snippet defines async_result as the result of do_async_call (which accepts a 
function to handle its asynchronous result, as is standard in JavaScript) but only if 
needs_result is true: 

Pending

ResolvedRejected

successerror
refresh timeout

refresh
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var needs_result = cjs(true), 
    async_result = cjs(function(self) { 
        if(needs_result.get()) { 
            self.pauseGetter("waiting for value..."); 
            do_async_call(function(result) { 
                self.resumeGetter(result); 
            }); 
        } 
}); 

It may seem that the pause/resume functionality of the constraint solver could be 
implemented by simply setting the value of a constraint after an asynchronous call. To 
see why setting the value of a constraint after an asynchronous call is not sufficient, 
consider the following code snippet: 

var needs_result = cjs(true), 
    async_result = cjs("waiting for value..."); 
 
if(needs_result.get()) { 
    do_async_call(function(result) { 
        async_result.resumeGetter(result); 
    });  
} 

In the first snippet, async_result’s definition was do_async_call and its value was 
the result of do_async_call. In the second snippet, async_result’s definition 
and value are set to the result of do_async_call. The difference is that in the first 
snippet if needs_result or some other constraint that async_result depends on 
changes, the constraint solver will know to call do_async_call again. 

3.5.4 Templates 
ConstraintJS also allows HTML templates to be declared using the syntax similar to 
Handlebars.JS [74] or Ember [73] with values that update based on the constraint 
variables. We extend the syntax of Handlebars by allowing states to be included in 
the template declaration. These templates accept snippets of HTML code with 
constraints that automatically update the values of parameters. Templates are 
created with the cjs.template function and variables are specified using double 
curly braces ({{x}}). For instance, this template creates a <div /> element whose 
text is constrained to the variables firstname and lastname: 

<script id="greeting" type="cjs/template"> 
    <div>Hello {{firstname}} {{lastname}}</div> 
</script> 
 
var fn = cjs("Mary"), 
    ln = cjs("Parker"); 
cjs.template("#greeting", {firstname: fn, lastname: ln}); 

These templates may also include conditionals (omitting the <script/> tag in 
subsequent examples): 
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{{#if logged_in}} 
<div>Hello {{firstname}} 
           {{lastname }}</div> 

{{#else}} 
 <a href="login">Log in</a> 
{{/if}} 

and iterations through collections: 

{{#each people person}} 
<div> 
    Hello {{person.firstname}} {{person.lastname}} 
</div> 

{{/each}} 

and state diagrams: 

{{#fsm selected_lang}} 
 {{#state english}} 
        <div>Hello   {{firstname}} {{lastname}}</div> 
 {{#state french}} 

 <div>Bonjour {{firstname}} {{lastname}}</div> 
{{/fsm}} 

3.5.5 Arrays 
ConstraintJS also allows developers to create constraint arrays (which work like 
normal arrays but are incorporated into the constraint network). The .map() 
function creates an array whose values depend on the values of a constraint based on 
another array. For instance: 

var x = cjs([1,2,3]), 
    y = x.map(function(val) { 
                 return val + 1; 
             }); 
 
y.get(); // = [2,3,4] 

When the source array (x) changes, .map() computes the difference from the 
previous value in terms of items removed, items added, and items moved. If the 
value of x changes to [3,4], then y should get the value [4, 5]. The .map() 
function will detect that 3 was already in the source array and so it only computes 
the mapped value for 4. The same difference mechanism is used in the 
.children() method (described in section 3.5.8 below) to avoid removing and re-
adding DOM child nodes unnecessarily.  

3.5.6 Convenience Methods 
We previously showed that CJS provides a convenience method for add, as in: x = 
y.add(z). Suppose a developer wanted to be able to express power functions in the 
same way, as in: 
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var x = cjs(2);   // x <= 2 
var y = x.pow(3); // y <= x^3 
y.get();          // = 8 
x.set(3);         // x <= 3 
y.get();          // = 27 

The developer can define this method as follows: 

cjs.Constraint.prototype.pow = function(to_the) { 
        return Math.pow(this.get(), to_the); 
    }); 

3.5.7 Constraints from UI Widgets 
Developers can also create constrainable variables tied to user widgets. For example, 
suppose a developer wants to create a constrainable variable whose value is always 
the value of the jQuery UI slider widget shown in Figure 3.6, called jq_ui. 

 

Figure 3.6 An illustration of a jQuery UI slider widget. Constraint variables can be attached to track its 
value. 

The constrainable variable s will have a getter function that returns the slider’s value 
using the jQuery UI syntax: 

var s = cjs(function() { 
            return jq_ui.slider.option("value"); 
        }); 

The variable s now knows how to compute its value but it does not know when to 
compute its value. One possible answer is to get its value whenever it is requested. 
However, as the “A Note on Non-Constraint Variables” above discusses, 
recomputing the value may be expensive and it is best to avoid recomputing values 
more than necessary. For this reason, when a constrainable variable’s value is 
requested, its value is cached and not recomputed until the cached value has been 
invalidated using the .invalidate() function. Invalidation marks a pulled 
constraint (see section 3.6) to re-evaluate its value the next time it is requested, rather 
than using its cached value. Normally, when a constraint’s value depends on other 
constraints, invalidation occurs automatically. However, when depending upon pure 
JavaScript widgets, the invalidation stage needs to be called explicitly. For example, 
in the jQuery slider described above, the invalidation call must occur whenever the 
slider’s value changes, which can be done using the jQuery UI syntax: 

jq_ui.on("slide change", s.invalidate); 

Thus, it only takes four lines to create a variable whose value always represents the 
slider’s value. This can now be treated just like any other constrainable variable and 

59
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have any number of other variables, including DOM elements (as shown below) 
depend on it. 

3.5.8 Constraining DOM objects to variables 
We have shown how to create constrainable variables from regular JavaScript 
variables. However, to affect any user-visible behaviors, these constraint variables 
must be linked to the Document Object Model (DOM), the underlying 
representation for every element on a webpage. 

 

Figure 3.7 A color selector that uses constraint variables to automatically update the preview color and 
hex value text. A constraint variable tracks the values for each of the red, green, and blue 
sliders (r, g, and b respectively). A fourth constraint variable (hex) computes a hex color 
value. Finally, constraints update the background color and text of the color selector to 
reflect the slider values. 

Suppose a developer wants to create the color selection interface shown in Figure 
3.7. As the user selects a color with the sliders, the background color of the 
container element and the text value in hexval automatically update. Three of 
the sliders shown in Figure 3.7 and implemented in the previous section are used, 
named r, g, and b. A constrainable variable named hex will hold the hexadecimal 
color value: 

// decimalToHex converts an integer to hex 
var hex = cjs(function() { 
              return "#" + decimalToHex(r.get()) 
                         + decimalToHex(g.get()) 
                         + decimalToHex(b.get()); 
          }); 
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Next, the developer binds the hex constraint variable to the background color of the 
container (called container) and the text value of the color display (called 
hexval). To enable this, ConstraintJS includes several built-in functions to 
constraint DOM element properties to dynamic constraint values: 

• domElem.class(cjsVar)—constrains the class name of domElem (a DOM 
element) to the current value of cjsVar. 

• domElem.attr(attrName, cjsVar) — constrains the attribute named 
attrName of domElem (a DOM element) to the current value of cjsVar. 

• domElem.css(styleName, cjsVar) — constrains a CSS attribute named 
styleName of domElem (a DOM element)  to the current value of cjsVar. 

• domElem.text(cjsStr) — set the text content of domElem (a DOM element) 
to the current value of cjsStr. 

• txtElem.val(cjsStr) — constrains the value of txtElem (a text input 
element) to the current value of cjsStr. 

• domElem.children(cjsArr)— constrains the child nodes of domElem (a DOM 
element)  to the elements in cjsArr. 

In Figure 3.7, to constrain the background color of container and the text value of 
hexval, we would respectively use .css() and .text() methods: 

container.css("background-color", hex); 
hexval.text(hex); 

As the user moves the slider, the background color and text of the surrounding box 
also change. Now suppose that if the variable changes values too quickly, the 
developer does not actually want to update our DOM element every time the 
constraint changes, but limit it to a certain number of changes per second. All of the 
six methods mentioned above take an optional argument specifying the maximum 
update interval: 

hexval.text(hex, 500); 

This will ensure that there is at least a 500 millisecond delay between consecutive 
updates to hexval but that hexval will always have the latest constraint value. 

3.5.9 Working with Third Party Libraries 
So far, we have described how to attach constraints to regular DOM objects but 
JavaScript has a number of libraries that do not use standard DOM objects. We have 
already extended ConstraintJS to work with the jQuery UI library, as explained 
above, but we could never provide support for every possible future library ourselves. 
Therefore, I provide an extension mechanism so that developers can easily get 
ConstraintJS’s constraints, FSMs and other features to work with new libraries. This 
mechanism is also used internally to allow constraint variables to control DOM 
properties. 
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For instance, suppose a developer wants to attach constraints to elements in the 
RaphaelJS drawing library (found at raphaeljs.com), which uses its own graphics 
primitives. RaphaelJS objects use the .attr(prop, val) method to change 
display properties, as in: 

circle.attr("fill", "red"); 

A natural way of expressing a constraint on a RaphaelJS graphics primitive might 
be: 

cjs(circle).raphael_attr("fill", constraint_var); 

ConstraintJS supports this through the function: 

cjs.binding.bind(ctx, attr_val, setter, max_update_interval); 

which accepts an object (ctx), a value or constrainable value to set that object to 
(attr_val), a function to call to set the object value (setter), and an optional 
maximum update interval (max_update_interval). This provides a convenient 
way to add new output types by extending the cjs.Binding prototype that defines 
functions to bind visible elements’ display properties to the value of constraint 
variables: 

1 cjs.Binding.prototype.raphael_attr = 
2 function(attr_name, val, max_updates) { 
3   var setter = function(raphael_obj, val) { 
4     raphael_obj.attr(attr_name, val.get()); 
5   }; 
6   return cjs.bind(val, setter, max_updates); 
7 };  

In this code, the first line extends the cjs.Binding.prototype object to add a 
new function called raphael_attr (which accepts arguments attr_name, val, 
and max_updates). This function defines a setter that defines how to set an 
attribute named attr_name to the value val in a raphael object (raphael_obj). 
The last call to cjs.bind then automatically calls setter at the appropriate times 
after the value of the val constraint variable changes. 

3.6 Implementation 

Most data-binding libraries have opted for the eager evaluation constraint model 
(also known as the “push” model), where whenever a constraint’s value changes, 
updates are “pushed” to any constraint that depends upon it. However, in 
ConstraintJS, constraints may be turned on and off depending on application state, 
meaning that the eager evaluation implementation for constraints might do 
unnecessary work if values are pushed to constraint variables that are turned off and 
do not currently affect the DOM (see [60] for an deeper efficiency analysis of a 
similar constraint algorithm). 



Chapter 3: ConstraintJS / Implementation  

 

57 

By default, the constraints in ConstraintJS are demand driven constraints (also called 
“pull” constraints), meaning that a constraint’s value is not computed until it is asked 
for. As section 3.6.2 below discusses, ConstraintJS also allows developers to emulate 
eager evaluation (also called “push” constraints) in situations where developers want 
constraint variables to be re-evaluated as soon as they are invalidated. 

ConstraintJS’s basic constraint solving algorithm is based on the pointer-constraints 
algorithm outlined by Vander Zanden et. al [168]. Using this algorithm, 
dependencies between variables are automatically computed and values are cached 
until they are invalidated. ConstraintJS modifies this constraint solver by allowing 
constraint evaluation to be paused and resumed (for asynchronous values) and by 
enabling eager evaluation for constraint variables whose values affect DOM 
properties (similar to the algorithm described by Hudson [60]). 

To parse the equations used in ConstraintJS’s templates, I also wrote a JavaScript 
string parser available at http://jsep.from.so/. This parser is capable of parsing 
simple expressions, such as function calls, field names and mathematical equations.  

3.6.1 Pausing and Resuming Constraint Evaluation 
As section 3.5.3 discusses, ConstraintJS allow developers to handle asynchronous 
values using pauseGetter and resumeGetter. ConstraintJS’s implementation of 
pausing and resuming constraint evaluation works by assigning paused constraints a 
temporary, internal value when the developer calls pauseGetter. This temporary 
value becomes the node’s computed value until the developer calls resumeGetter 
(typically after an asynchronous call has returned). This temporary value behaves 
like a normal constraint value: it can be passed on to other constraint variables or 
used in computation. When resumeGetter is called, the node is assigned a value 
(the result of the asynchronous call). If the new value is different form the temporary 
value assigned by the pauseGetter call, the node is then invalidated. This 
invalidation then proceeds like a standard invalidation call.  

3.6.2 Eager Evaluation for DOM Nodes 
As section 3.5.8 describes, ConstraintJS allows developers to bind constraint values 
to DOM objects’ attributes and children. Doing this requires emulating the eager 
evaluation model to update DOM nodes whenever the constraint’s value changes. 
Thus, ConstraintJS’s constraint solver allows constraints to specify callbacks (as an 
optional parameter) to be called when the constraint’s value is invalidated. These 
callbacks are called after the invalidation stage has run (during invalidation, a list of 
change callbacks is stored). In order to emulate eager values, developers can simply 
call the constraint’s getter to fetch its new value whenever it is invalidated (this is why 
callbacks are called after the invalidation state, so that all of the dependencies are 
marked as needing to be recomputed). 



Chapter 3: ConstraintJS / Example Applications  

 

58 

3.6.3 Constraint Cycles 
Another potential problem with push-based constraints is in handling cycles, such as:  

a <= b+1 
b <= a+1 

If not handled carefully, cycles may cause an infinite evaluation loop as each variable 
involved in the cycle is updated and invalidates the next. Pull-based constraints can 
be resistant to cycles by computing constraints with a “once around” algorithm, 
which evaluates each constraint in the cycle only once per invalidation [106,168]. In 
ConstraintJS, the constraint solver tries to satisfy the constraints for a and b once but 
stops once it encounters a cycle, as shown in the code block below: 

var a = cjs(1),   
    b = a.add(1); // b <= a+1 
 
b.get(); // 2 
 
a.set(b.add(1)); // a <= b+1 
 
b.get(); // 2 
a.get(); // 3 

Ideally, a library would also check for cycles in constraint networks and throw an 
error when it encounters a cycle (which the developer could choose to ignore). 
However, I did not implement automatic cycle detection in ConstraintJS because of 
potential performance concerns of checking for cycles whenever the constraint 
network changes. 

3.6.4 Size & Performance 
The version of ConstraintJS described in this thesis is a 25 KB file when compressed 
using UglifyJS and Gzip. It can be included in any JavaScript application, including 
phone/tablet web browsers and server-side JavaScript applications that use the Node 
platform. In testing the current version of ConstraintJS inside the Safari web browser 
on a Macintosh with a 2.6 GHz Core 2 Duo processor, our system was able to 
handle without any noticeable delay up to around 1,000 simultaneously evaluated 
constraints all affecting DOM objects and simultaneously smoothly animating 
around 200 DOM properties. 

3.7 Example Applications 

We further illustrate ConstraintJS through a series of examples, which we briefly 
describe below. For the sake of space, we do not include the full example code, but 
only the relevant snippets. In full, these examples are relatively small, with each 
example being roughly 200 lines of code. 
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3.7.1 Bubble Cursor (Custom Graphics) 
Although the most of examples explained in the API section have been standard 
interaction techniques, constraints and FSMs can also be used to more easily define 
novel interactions. In this example, we implement a bubble cursor [42] – a cursor 
that searches for the nearest target (represented as grey-filled circles) to the mouse 
within a maximum radius (the dotted grey circle outline in Figure 3.8-A). The targets 
are animated to move continuously, and when there is a single target sufficiently 
near to the mouse, the dotted outline around the mouse is red and the selected target 
is a darker grey (shown in Figure 3.8-B). 

 

Figure 3.8 An illustration of Bubble Cursors [6]. Clickable “targets” are light grey-filled circles. When the 
cursor is too far from any of the targets, a grey dotted halo appears around the cursor (A). 
When a target is in range (B), the halo becomes red and shrinks enough that it intersects the 
target, which turns dark grey. The ConstraintJS implementation of this application allows all 
of this behavior to be expressed declaratively. 

All of the interaction, including the display colors, position, and movement of the 
targets and cursor, are defined using constraints. Additionally, this example uses the 
extensions for the RaphaelJS drawing library, explained in the previous section. In 
contrast with the equivalent imperative version, the constraint version of the code for 
the bubble cursor is shorter and uses less interdependent components. For instance, 
the code to set the radius and color of the cursor is relatively self-contained: 

// max_bubble_select_distance is a constraint in case 
//      we want it to vary based on mouse speed 
// select_cursor_radius is a constraint that 
//      depends on closest_target 
cjs(cursor_halo) 
.raphael_attr("stroke", cjs({ // stroke color 
         condition: closest_target.isNull(), 
         value: "grey" 
    }, { 
       condition: "else", 
       value: "red" 
    })) 
.raphael_attr("r", cjs({      // radius 
       condition: closest_target.isNull(), 
       value: max_bubble_select_distance 
    }, { 
       condition: "else", 

(A) (B)
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       value: select_cursor_radius 
})); 

In contrast, in a conventional implementation, this functionality would necessarily be 
spread across callbacks that listened for changes to the closest target and maximum 
selection distance. 

3.7.2 Scatter Plots (Multi-Way Constraints) 
As explained earlier, ConstraintJS uses a one-way constraint solver, as opposed to a 
multi-way constraint solver. Multi-way constraint solvers have been touted as a way 
to represent some useful constraints that could not be represented as one-way 
constraints [139]. In particular, multi-way constraints have been claimed to make it 
easier to create variables with dependencies that go both ways. Take as an example 
the scatterplot application in Figure 3.9. When a data point is being dragged, a 
constraint sets the model’s value for that data point depending on its current display 
position, which in turn is constrained to follow the mouse. When the user releases 
the point, a constraint in the opposite direction maintains the x and y display 
positions based on the underlying model, so if the underlying model’s data changes, 
the point will be updated. 

 

Figure 3.9 A scatterplot application implemented with ConstraintJS. By default, constraints set the 
position of every data point to reflect the values of an underlying data model (A). When a 
point is dragged (B), a constraint in the opposite direction updates the underlying data model 
based on the position of the point, which in turn, is constrained to the mouse’s position. The 
axes may also be dragged (C) and constraints automatically update the axis labels to reflect 
its position. Finally, axes’ scales may be changed (D) by dragging a point while holding 
SHIFT. This example illustrates how one-way constraints in ConstraintJS may be combined 
with FSMs to enable functionality that was previously only possible with multi-way 
constraints. 

This example was originally used to demonstrate the advantages of multi-way 
constraints over conventional one-way constraints [139,141]. However, by 
combining one-way constraints with FSMs, ConstraintJS makes this example easy to 
implement without the overhead of a multi-way solver. In the default state for every 
point, a constraint sets the display position based on an underlying data model, 
where the data model consists of constrainable variables (A). When the user starts to 
drag a point (B), its state changes, so a different set of constraints are enforced that 
compute the model’s values based on the graphics. When the dragging stops, the 
state reverts to the default. This is expressed with the following constraint (div and 
sub are convenience methods for division and subtraction respectively): 

0 100
0

100

15 115

0

100

0 100
0

200

0 100
0

100

(A) (B) (C) (D)
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cjs(dot_fsm, { 
       "init, idle": x.div(scale_x), 
       "dragging"  : (cjs.mouse.x).sub(offset.x) 
}); 

A similar pattern is used for the axes and changing the scale. Note that dataflow 
multi-way solvers required developers to write the constraints in both directions 
[139,141], just as ConstraintJS does – those solvers just select which set of constraints 
to use. However, developers often found that they needed to extra features, such as 
constraint hierarchies [141] to control the direction. In ConstraintJS, FSMs (which 
are likely to be more understandable and controllable for developers [98,101]) keep 
track of the dragging state for each point and axis and manage enabling and 
disabling constraints. 

3.7.3 Multi-touch Moveable/Resizable Image (Tablets) 
Although all of the examples we have discussed so far are based on mouse and 
keyboard input, ConstraintJS is not limited to desktop applications. ConstraintJS 
works with any kind of user input that can be translated into JavaScript events. 
Figure 8 illustrates a simple multi-touch photo manipulation interface for tablet 
devices we built with ConstraintJS. In this application, users can move and 
manipulate photos in a virtual workspace. Touching a photo with one finger drags 
the photo within the workspace. Manipulating a photo with two fingers changes the 
rotation, scale, and position of the photo. When a photo is touched with two fingers, 
a red slider widget that controls the photo’s opacity appears and may be 
manipulated with a third finger. The slider indicates the current value by its position 
and text. 

 

Figure 3.10 An illustration of a touchscreen-based application written with ConstraintJS. Constraints 
control the position, scale, and angle of photos, which users can manipulate with one or two 
fingers. When two fingers touch a photo, a red slider appears that controls the photo’s 
opacity and can be changed using a third finger. Constraints set the position and text of the 
slider. 

The layout of every component in this application is controlled by constraints – 
photo position, scale, rotation, & opacity and the position, visibility & text of the 

61
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opacity slider. Compared to an implementation of this example that does not use 
constraints, the ConstraintJS implementation requires fewer lines of code and fewer 
callbacks. 

3.7.4 ConstraintJS in Other Projects 
ConstraintJS is currently used in two research projects: InterState (Chapter 4) and 
Gneiss [25]. InterState’s use of ConstraintJS as its underlying constraint solver will 
be described in more detail in section 4.10. Gneiss augments spreadsheets to allow 
developers to interact with Web services and simplify programming dynamic data 
bindings. Gneiss uses ConstraintJS to define its front end and to manage 
relationships between spreadsheet cells and between cells and external Web APIs. 
One change that I made to the ConstraintJS API as a result of Gneiss was to expose 
the (previously hidden) ConstraintJS parser. In Gneiss, this parser helps convert cell 
strings to constraints. 

3.8 Conclusion 

ConstraintJS integrates constraints and finite-state-machines (FSMs) with Web 
languages. ConstraintJS can be included in any JavaScript application without 
browser modifications and it can interoperate with other JavaScript libraries. By 
integrating constraints and FSMs, ConstraintJS can help simplify the development of 
interactive behaviors. In fact, many interactive behaviors can be built entirely as a 
combination of FSMs and constraints, which can both be specified declaratively. 
InterState (described in the next chapter) leverages this ability to create interactive 
behaviors using FSMs and constraints by introducing a visual representation of both 
primitives and an interactive editor. However, I feel that in its current form, 
developers will find that the ConstraintJS language and toolkit is a clearer way to 
program interactive behaviors for the Web. 
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4 InterState7 

InterState further develops the idea of integrating constraints and states by 
introducing a spreadsheet-like syntax, new language primitives, a visual notation, 
and a live interactive editor. InterState builds on ConstraintJS both conceptually and 
functionally. Conceptually, InterState builds on ConstraintJS’s paradigm of defining 
interactive behaviors by adding a visual notation and primitives for behavior re-use. 
Functionally, InterState builds on ConstraintJS by using ConstraintJS as its 
underlying constraint solver. This chapter discusses InterState’s contributions and 
design in detail and evaluates its effectiveness in allowing developers to create custom 
interactive behaviors. 

4.1 JavaScript Library Limitations 

There were a number of concepts that could not be explored in ConstraintJS. Some 
of these concepts are outside of the range of possibilities for any JavaScript library to 
implement. For example, one design goal in ConstraintJS was to reduce the 
boilerplate needed to express constraints as much as possible. In ConstraintJS, 
defining x <= y+1 is declared as: 

var x = cjs(function() { return y.get() + 1; }); 

I also introduced a syntax that simplified this somewhat: 

var x = y.add(1); 

However, developers should ideally be able to write “y+1”, which requires parsing 
constraint values at runtime or compiling ConstraintJS code before deployment, as 

                                                        
7 Portions of this chapter were adapted from [127,128] 
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JavaScript does not have an operator overloading mechanism. Other ideas, such as 
providing a visual notation to help developers understand ConstraintJS variables, 
also require a custom IDE. 

There were also a number of practical decisions that influenced the scope of 
ConstraintJS’s features. Most immediately, JavaScript libraries are limited in size 
because they are designed to minimize the bandwidth servers need to use when 
communicating with Web clients. A 30 kilobyte library, for example, would be 
considered large by current Web standards. Thus, ConstraintJS’s feature set was 
limited, in part, to minimize its size when deployed. 

Another consideration that limited the scope of ConstraintJS was the need for 
interoperability with other JavaScript libraries and frameworks (see the 
“Differentiating Libraries and Frameworks” section above). One particular example 
of how the need for interoperability influenced the design of ConstraintJS is the 
design decision to exclude behavior inheritance from the ConstraintJS feature-set. 
Behavior inheritance would allow UI elements to inherit the interactive behaviors of 
other UI elements. It is useful because behavior re-use is common in GUIs but not 
supported by JavaScript or many Web libraries. However, because JavaScript does 
not allow developers to override its default inheritance mechanism, implementing 
behavior inheritance in ConstraintJS would necessarily dictate the structure in which 
inheritable behaviors must be defined. 

Because of these limitations, I decide to implement InterState as a custom interactive 
development environment (IDE), rather than a library. Implementing InterState as a 
full IDE allowed me to explore designs for a visual notation, inheritance mechanism, 
and live editor. 

4.2 Contributions 

InterState improves user interface development by redesigning the language and 
runtime features in concert. InterState contributes to the state of the art for user 
interface development tools by introducing a number of innovations: in its 
computational model, visual notation, inheritance mechanism, and live editor for its 
visual notation. Further, InterState demonstrates how designing these features to 
work well together improves both the individual components and the usability of the 
system as an integrated whole. 

Computational Model — The state of a user interface often controls its appearance and 
behavior, which in turn are defined by relationships among objects. In event-
callback code, it is difficult to manage, maintain, debug, and understand these states 
and relationships (see chapters 3.4 and 4.3). InterState introduces a computational 
model that addresses these challenges by including state machines and constraints as 
fundamental language constructs. This model expresses interactive behaviors as 
constraints that are enforced only in particular states. It also removes much of the 
boilerplate that is required to express constraints in other systems (see 
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[94,99,106,126] for examples of boilerplate code required in other constraint 
libraries), allowing programmers to express constraints with simple equations—like 
those in spreadsheets—rather than with a complex syntax. 

Visual Notation — In most languages, understanding what user events affect a 
particular property or, conversely, what properties are affected by a particular user 
event, can be difficult because event-callback code is usually spread throughout 
multiple locations [110]. InterState introduces a visual notation that concisely 
represents interactive behaviors as a table whose rows are properties and columns 
are states. Combined with its computational model, the visual notation allows 
programmers to see which events affect a property by scanning the property’s row 
and which properties an event affects by looking at that event’s column. 

Behavior Reuse — Programmers often want to reuse, combine, and inherit interactive 
behaviors in user interfaces, but nearly every widely-used programming language 
only allows properties and methods to be inherited. InterState introduces a style of 
inheritance that extends traditional prototype-instance inheritance mechanisms to 
allow behaviors to be inherited. This is possible in InterState because its computational 
model defines behaviors using state machines whose structure can be inherited. 
Because interactive behaviors are often combined, InterState supports multiple 
inheritance by combining property values across states. The table-based 
representation of property values offers an intuitive way to resolve the ambiguities 
inherent in multiple inheritance in other systems: potential conflicts use left-most 
precedence, which is readily visible due to the clear visual notation. InterState also 
introduces a mechanism for templates that allows items in a list of interactive 
components to be dynamically created and updated to reflect changes in an 
underlying data model. 

Live Development — Quick experimentation and parameter tuning are crucial parts of 
the design process that are not well supported by today’s programming 
environments [18,19]. InterState introduces a live editor for its visual notation, 
where edits are immediately reflected in the running application (runtime) and 
changes in runtime state and property values are highlighted in the editor [152]. 
This helps bridge the “gulf of evaluation” in determining the effects of a change 
[119], which has been shown to be a significant barrier for experienced and new 
programmers [79] alike. 

Complimentary Features — In addition to innovations in the aforementioned areas, a 
significant contribution of InterState is in designing these features and concepts to 
complement each other in a cohesive programming environment. This chapter will 
detail the ways in which InterState’s primitive combine, such as how the visual 
notation provides an intuitive way for developers to understand inheritance conflicts 
and how InterState’s inheritance mechanism combines with its computational model 
to allow developers to define dynamic prototypes. 
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4.3 Motivating Example 

Drag-lock is an example of a common interactive behavior. Drag-lock is a standard 
accessibility feature that augments “drag and drop” to avoid the need to hold the 
mouse down during the entire drag operation. Instead, with drag-lock, users double 
click an object to initiate the dragging state. The object is then tied to the user’s 
cursor until they double click again. Suppose I want to implement drag-lock on an 
object named draggable. I will later re-use the draggable behavior (through 
inheritance in InterState) in multiple components of a user interface. I asked an 
expert programmer to implement this behavior in JavaScript and refactored their 
code for clarity by adding more descriptive variable names and removing 
unnecessary lines. The resulting code is shown in Figure 4.1. 

At 20 lines, it is compact but difficult to follow and even more difficult to write 
correctly. When a user double clicks on draggable to initiate a drag lock, five 
different snippets of code are executed in an order that is difficult to predict 
(mousedown, mu_listener, mousedown, mu_listener, then dblclick). Some 
of these listeners also activate and deactivate other listeners, making it even more 
difficult to understand the snippet’s state at a given time. 

1 var isDragLocked = false,     
2     mm_listener  = function(mm_event) { 
3         draggable.attr({ x: mm_ev.x, y: mm_ev.y }); 
4     }, 
5     mu_listener  = function(mu_event) { 
6         removeEventListener("mousemove", mm_listener); 
7         removeEventListener("mouseup",   mu_listener); 
8     }; 
9 draggable.mousedown(function(md_ev) { 
10     draggable.attr({ x: md_ev.x, y: md_ev.y }); 
11     addEventListener("mousemove", mm_listener); 
12     addEventListener("mouseup",   mu_listener); 
13 }).dblclick(function(md_event) { 
14     if(isDragLocked) { 
15         removeEventListener("mousemove", mm_listener); 
16     } else { 
17         addEventListener("mousemove", mm_listener); 
18     } 
19     isDragLocked = !isDragLocked; 
20 }); 

Figure 4.1 A representative JavaScript snippet that implements the drag lock behavior for an object 
named draggable. 

Compare this with InterState’s implementation of the same behavior, shown in 
Figure 4.2. With InterState, the execution flow is clearly illustrated, as are the 
different possible values for x and y. Further, InterState makes it easy to follow 
which state the draggable object is in by highlighting the active state and relevant 
values, and by animating transitions as they fire. In the evaluation described later in 
this paper, these features were found to be effective in helping programmers 
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implement this behavior in about half the time with InterState compared to 
JavaScript. 

 

Figure 4.2 An illustration of a basic InterState object, named draggable. Properties, which control 
draggable’s display, are represented as rows (e.g. x, y, and fill). States and transitions 
are represented as columns (e.g. no_drag, drag, and drag_lock). An entry in a property’s 
row for a particular state specifies a constraint that controls that property’s value in that 
state; while draggable is in the drag state, x and y will be constrained to mouse.x and 
mouse.y respectively, meaning draggable will follow the mouse while dragging. Note that in 
this example, when the user performs a double click to initiate drag lock, the drag_lock 
object does enter and then leave the drag state intermittently as a result of the mouse.down 
and mouse.up events that are fired during a double click. Section 5.1 will introduce a 
mechanism that would allow a developer to avoid having drag_lock enter the drag state 
during a double click by adding a delay before registering the mouse.down event used in the 
no_drag to drag transition. This delay would allow a double click (mouse.dblclick) event 
to register resulting in entering the drag_lock state without any mouse.down events 
registering. 

Further, suppose I want to extend this example to add some common usability 
features that users expect: keyboard accessibility and a visual indication of the 
current state. Specifically, in our example, pressing ESC should terminate drag lock 
and the color of draggable should change when it is “locked”. In JavaScript, 
adding keyboard accessibility requires at least eight more lines of code that are 
interwoven and interdependent with the previous code. In InterState, it simply 
requires the addition of two new transitions (from the drag and drag_lock states) 
and no modifications of the existing states or transitions. 

In JavaScript, adding a visual state indication to draggable (e.g. so it is black by 
default, blue while dragging, and navy when drag-locked) requires five more 
carefully placed lines that, again, would modify the original code. In InterState, this 
simply requires specifying the color in three existing states (the addition of ESC and 
state indication changes are both included in the code of Figure 4.4). Finally, 
modifying the behavior to use a single click to escape drag-lock rather than a double 
click, which is seemingly trivial, requires nearly a complete rewrite of the JavaScript 
code (to work with the original mouseup and dblclick listeners) but only requires 
modifying the event for one transition in InterState (from mouse.click to 
mouse.dblclick). 
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Figure 4.3 shows the resulting JavaScript code after these modifications have been 
incorporated. It is nearly twice as long and requires modifying significant portions of 
the initial code shown in Figure 4.1. 

1 var paper = new Raphael(0, 0, 500, 500), 
2     rect = paper.rect(0, 0, 150, 100); 
3  
4 rect.attr("fill", "black"); 
5  
6 var isDragLocked = false, 
7     mm_listener = function(mm_event) { 
8        rect.attr({ 
9          x: mm_event.x - rect.attr("width")/2, 
10          y: mm_event.y - rect.attr("height")/2 
11        }); 
12     }, 
13     mu_listener = function(mu_event) { 
14       window.removeEventListener("mousemove", mm_listener); 
15       window.removeEventListener("mouseup", mu_listener); 
16       rect.attr("fill", "black"); 
17     }; 
18  
19 rect.mousedown(function(md_event) { 
20         rect.attr({ 
21           x: md_event.x - rect.attr("width")/2, 
22           y: md_event.y - rect.attr("height")/2 
23         }); 
24         window.addEventListener("mousemove", mm_listener); 
25         window.addEventListener("mouseup", mu_listener); 
26         rect.attr("fill", "blue"); 
27     }).dblclick(function(dc_event) { 
28         if(isDragLocked) { 
29           removeEventListener("mousemove", mm_listener); 
30         } else { 
31           addEventListener ("mousemove", mm_listener); 
32           rect.attr("fill", "navy"); 
33         } 
34  
35         isDragLocked = !isDragLocked; 
36     }).click(function() { 
37         if(isDragLocked) { 
38           isDragLocked = false; 
39           removeEventListener("mousemove", mm_listener); 
40         } 
41     }); 
42 window.addEventListener('keypress', function(event) { 
43     if(event.keyCode === 27) { // esc 
44         if(isDragLocked) { 
45             isDragLocked = false; 
46             mu_listener(); 
47         } 
48     } 
49 }); 

Figure 4.3 The JavaScript code for drag lock (introduced in Figure 4.1) augmented to allow the user to 
press ESC to exit from drag lock (lines 42—49), use click rather than double click to exit from 
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drag lock (lines 36—41 and several lines removed from Figure 4.1), and change the fill color 
by state (lines 4, 16, 26, and 32). As the line numbers for these changes indicate, augmenting 
the example in Figure 4.1 requires significantly modifying the previous JavaScript code. 

Figure 4.4 shows the InterState code after all of these modifications have been made. 
It adds one more transition to enable ESC to take the user out of drag lock, one more 
row to specify the fill field by state, and modifies the mouse.dblclick (double 
click) event to end drag lock to be mouse.click (single click). 

 

Figure 4.4 The InterState code for drag lock (introduced in Figure 4.2) augmented to allow the user to 
press ESC to exit from drag lock (the topmost transition), use click rather than double click to 
exit from drag lock (the next topmost transition), and change the fill color by state (the 
bottom field). In this example, draggable indicates its current state with its fill color so that it 
is black by default, blue while it is dragging, and navy in the drag_lock state. 

Now, suppose I want to reuse our drag-lock behavior in other contexts (e.g. a drag-
lock slider). In JavaScript, I would need to carefully abstract and package this 
behavior to be reusable in a way that does not interfere with other behaviors. In 
InterState, this is supported by default since other objects can simply inherit from 
draggable.  

Frameworks that include a notion of state [4,14,126,162] would allow drag-lock to 
be declared in a more natural way than plain JavaScript. However, they lack 
InterState’s visual notation, which makes it relatively easy to understand and debug 
this behavior in InterState. Further, none of these other frameworks address the 
challenge of behavior reuse. 

4.4 Computational Model 

InterState starts with a computational model that builds on the idea of defining 
interactive behaviors using constraints that apply in specific states, as used in 
ConstraintJS and described in the previous chapter. However, whereas ConstraintJS 
enabled this paradigm in the context of JavaScript (an imperative language), 
InterState’s programming model is fundamentally declarative because its 
combination of states and constraints is the underlying language. The declarative 
nature of InterState also presented several language design challenges that required 
additions beyond the model used by ConstraintJS. 
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4.4.1 Storing Static Values 
First, InterState’s computational model needed to be modified to allow developers to 
store static values. In the context of imperative code, this is simply a matter of 
declaring a normal variable and setting its value at the proper time. However 
InterState’s development model is built on constraints, meaning that every field’s 
definition is interpreted as a dynamic value. Suppose I have a widget named 
myWidget whose position is determined by fields myWidget.x and myWidget.y. If 
myWidget is draggable, it might have dragging and not_dragging states and I 
might declare its position in a dragging state to be (as in previous chapters, <= 
signifies defining a constraint): 

myWidget.x <= mouse.x 
myWidget.y <= mouse.y 

However, when the mouse stops dragging, I want to express that its position keeps 
the values (mouse.x, mouse.y) from the specific instant when the mouse was 
released. In the context of an imperative language, a developer can create two 
regular (non-constraint) fields to store the mouse’s position when the mouse stops 
dragging and use them to set the position of myWidget. However, in InterState’s 
development model, every field is a constraint, so there needs to be a way to 
distinguish setting a field to the one-time value of an expression and dynamically 
constraining its value whenever the expression changes. 

To address this need, in InterState, field values can be set either on states (as usual) 
but also on transitions, in which case they are evaluated once when the transition is 
executed, so the value stays fixed afterwards even if dependencies change. In 
contrast, constraints on states are continuously updated whenever dependencies 
change while in that state. By setting values on transitions, InterState allows 
developers to store the value of an expression at specific points in time, as transitions 
control exactly when an expression’s value should be stored. For instance, this could 
be used in the example illustrated in Figure 4.2 to store the offset (the position where 
the mouse was pressed relative to the location of draggable) to drag from the 
mouse’s offset rather than the top left corner. 

Deprecated Special Values: KEEPVALUE, and ONCE 

Perhaps a more immediately obvious solution to address the problem of storing 
values was to include a method to allow developers to distinguish values that should 
be constraints versus static values. Previous versions of InterState (then called Euclase, 
short for End User Centered Language, APIs, System, and Environment) 
experimented with this, using special primitives to allow developers to store static 
values: KEEPVALUE and ONCE. However, these primitives were problematic for a 
number of reasons, explained below. 

KEEPVALUE was a special expression that specified that a field should retain its 
current value and stop updating. In other words, a field would retain its value as soon 
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as the InterState runtime evaluated its constraint expression as KEEPVALUE. ONCE() 
had a similar purpose, but allowed developers to enter an expression as a parameter. 
This expression would evaluate its value only one time; when the event was 
activated. For instance, a cell with the expression ONCE(mouse.x + this.foo) in 
the value column for some event E accesses the values of mouse.x and this.foo 
immediately when E is activated and creates a static value from their sum. 

However, there were several problems with KEEPVALUE and ONCE, notwithstanding 
the fact that they were two “magic” keywords for InterState developers to memorize. 
First, both expressions were incongruous with the rest of InterState’s constraint 
expression conventions. ONCE and KEEPVALUE both behave more like directives 
than constraint definitions. This particularly made it unclear how KEEPVALUE 
should work when it was used as part of a larger expression. 

The most salient problem with both expressions, however, was that they required 
precise control of when they were evaluated. In example applications, the timing 
requirements were nuanced (such as “after the user releases the mouse but before 
another field’s constraint is evaluated”). Thus, both KEEPVALUE and ONCE were 
almost always used on transitions, which are capable of specifying when something 
should happen. Further, it became apparent that in most example applications, 
nearly every value set on a transition contained a KEEPVALUE or ONCE, which led to 
the design decision to remove the two directives and allow expressions on any 
transition and treat these as instantaneous values. 

4.4.2 Maintaining Event Order Consistency 
The second problem that InterState’s computational model had to address in 
translating ConstraintJS’s model to a declarative environment was to ensure 
predictability and controllability for when transitions were executed. Suppose two 
transitions use a mouse click event to decide if their state should change. The order 
in which these two events are executed might be important; expressions that 
calculate the value to use in one transition could depend on values for the other 
transition, and since expressions on transitions are evaluated only once (Section 
4.4.1), the order would matter. Thus, it is important for developers to be able to 
understand and control the order in which transitions are executed and their 
expressions evaluated. In the context of most imperative languages, including 
JavaScript and Java, this is relatively easy to understand and control: the transitions 
will execute in the order in which they were declared in the source file. 

However, in a live declarative environment, this convention does not work as well. 
This is because in live environments, the order in which code is executed might 
depend upon the order in which the developer edited the source. The order in which 
developers perform editor operations should have no effect on the way in which their 
program executes because a developer cannot go back and inspect or change the 
order in which they declared two transitions in order to modify their program’s 
behavior. The left-to-right ordering convention used to resolve conflicts in constraint 
expressions is one viable solution. The problem with using object ordering to control 
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transition order is that when transitions with identical events are declared in multiple 
objects, the order of these objects would affect both the transition order and the 
display order, which also relies on object ordering. Instead, InterState modifies 
ConstraintJS’s development model to evaluate constraints in an order that makes it 
seem like they execute simultaneously. 

To illustrate, consider the two objects shown in Figure 4.5, which has two objects 
(obj1 and obj2) that simultaneously transition from the state noclick to the state 
clicked when the user clicks their mouse anywhere, which is expressed as 
mouse.click(). After the user clicks their mouse, obj1.x will be 3 (its value from 
the clicked state). The value of obj2.x will be 2 because its value was evaluated 
“during” the click event, where obj1.x was still 2. Because this value is on a 
transition rather than on a state, it does not re-evaluate its constraint expression 
during the clicked state. This example illustrates how the InterState runtime 
executes these two transitions “simultaneously”. 

 

 

Figure 4.5 Two objects (obj1 and obj2) have state machines with transitions that fire when the mouse 
clicks. InterState executes the constraints that are set on these transitions as if they are 
executed simultaneously. 

Internally, the simultaneous event mechanism is implemented by passing every event 
through an internal event-queue that evaluates the properties that are invalidated by 
a fired transitions twice: once “during” the transition, and then again after the 
transition has fired. Although to my knowledge, this mechanism is not fundamentally 
more expressive than any other execution order, its primary advantage is that is 
more predictable and understandable.  

4.4.3 Constraint Expressions 
Constraints are a built-in primitive in InterState, which allows many other InterState 
features to benefit from their expressiveness; state machine transitions can use 
constraints to express mutable targets and events (e.g., a transition could trigger on 
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obj1.ev1, with both obj1 and ev1 being calculated by constraints at run-time), objects 
can dynamically vary their prototypes using constraints, and constraints can express 
a dynamic list of items to be displayed with a given template. InterState allows 
programmers to express constraints with simple equations—like those in 
spreadsheets—rather than with a complex syntax, as required in previous work 
[94,99,106,126]. These equations are still capable of concisely expressing many 
complex constraints. For instance, constraints may contain indirection (the target 
object can itself be calculated by a constraint) [99,106,168] such as: 

this.currentlyPlayingSong.title 

It is also often useful to express operations on groups of objects [131]. InterState 
includes a function called find for making such queries with a chaining syntax 
inspired by other query languages, including EET [33] and HANDS [131]. For 
example, in a Breakout game, players reach the next level by destroying all of the 
blocks in the current level. This can be expressed as a transition: 

find(blocks).in_state('alive').is_empty() 

Naming and Containment Hierarchy 
Every InterState object exists in a containment hierarchy whose root is called 
sketch. References and scoping across a large containment hierarchy can be 
challenging, sometimes requiring specialized query languages—e.g. XQuery [165] 
or Sizzle [67]. In other frameworks, referencing objects elsewhere in the 
containment hierarchy requires long chains of “parent” expressions that are brittle 
with respect to changes to the program’s structure [99]. InterState makes referencing 
fields in constraints easier by naming every field, unlike the DOM and other XML-
based containment hierarchies. This allows references to jump up the containment 
hierarchy by using unique field names in a manner analogous to scoping rules in 
textual languages. Field names can be reused locally (for example, 
my_obj.x.x.prop uses a field named x in my_obj and in my_obj.x). When field 
names are reused, the cells referencing that field name return the object closest in the 
containment hierarchy (for example, if my_obj.x.x.prop’s cell definition is “x”, 
its value would be my_obj.x.x). Although it requires an effort on the part of the 
programmer to name every field and provide unique names for important fields, it 
makes the resulting code more readable and robust to structural changes. 

Custom Methods 
InterState also treats functions as first-class objects. A constraint’s value may be a 
function that can then be called and referred to in other constraints. For instance: 

myObj.plusOne <= function(x) { 
 return x+1; 
} 
myObj.x <= 1 
myObj.xPlusOne <= plusOne(x) 
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4.4.4 State Machines 
Including state machines as a built-in primitive allows InterState to handle the 
stateful nature of user interface behaviors [137]. While some previous systems have 
included state as a separate primitive [4,14,83,121], including state as a fundamental 
part of objects is crucial to InterState’s support of behavior inheritance and reuse. 
This is because an object’s state machines and fields define its behavior; so allowing 
both to be inherited makes it possible for other objects to reuse its behaviors. 

InterState objects contain one or more state machines and any number of named 
properties, which provide a definition across each state and transition of its state 
machine. This value can be empty (represented as a grey circle in the editor) in 
which case the property’s last value remains in use. Otherwise, the value can be a 
constant or a constraint. Thus, a property’s value in a state might depend upon 
which transition was fired to arrive at that state. 

Starting State 

As the “scalability” section below will discuss, scalability is a multifaceted issue in 
programming tools. Most of this chapter focuses on ways that InterState can scale up 
to express complex behaviors. However, it is also important to consider how 
programming frameworks scale down to concisely express simple behaviors. 

In InterState, creating static interfaces (no interactivity) is straightforward. InterState 
objects start with one state (the “start state,” represented as a filled in dot in Figure 
1.3) to match the simplicity of property sheets [154], which allow programmers to 
easily see and modify an object’s settable properties. However, whereas property 
sheets can only specify the look of an application, InterState’s state machines scale to 
allow programmers to specify its behavior. 

This is in contrast to previous systems that have integrated state machines as a layer 
[115,162] where interface behavior code goes inside of states. Consequently, these 
systems scale down to static interfaces only as well as their underlying imperative 
languages. Further, by relying on side-effects to define behavior, these systems can 
still be subject to the “spaghetti” code problem that makes it difficult to determine 
how an interactive behavior works [110]. 

Combining State Machines 

Multiple independent FSMs are often useful to describe the look and feel of a single 
interactive element. Consider the everyday example of radio buttons that may be 
selected with the mouse or keyboard, as illustrated in Figure 4.6. Each radio button 
is controlled by a combination of many states: if the radio button has keyboard focus, 
it should have an outline around it, and there are various events that change which 
button has keyboard focus. Separately, if the radio button is currently checked, it 
should have a dot in the center. Finally, the radio button changes its look while it is 
being interacted with using the mouse, based on whether it is idle, being hovered 
over, if the mouse is pressed down, or if it is pressed down and moved outside while 
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pressed. Combining all of these independent states into a single diagram would 
require 2×2×4 = 16 states, many of which will be semantically un-intuitive (e.g., 
mouse pressed and outside with keyboard focus and checked).  

 

 

Category States Display 

Selection 
not selected 

 
selected 

 

Keyboard focus 
not focused (no outline) 

focused  

Mouse state 

idle 
 

hover 
 

pressed 
 

pressed out  

Figure 4.6 An example of a standard radio button widget on the left. The table on the right shows the 
various states that a radio button item may be in with respect to whether it is selected, 
keyboard focused, and pressed. The FSMs for each category are independent, meaning that 
every item has one selection state, one keyboard focus state, and one mouse state. These 
states combine to form 2x2x4=16 possible states for any radio button item. 

As more categories and states are added, the total number of states that the radio 
button widget might be in grows exponentially, a problem known as the state explosion 
problem [121]. Addressing the state explosion problem is important in any tool for 
defining interactive behaviors because behaviors often combine multiple state 
machines; an object might, for instance, be draggable and selectable. In order to 
avoid requiring that programmers create combinatorial numbers of states (e.g. 
draggingAndSelected, idleAndSelected, etc.), InterState borrows two ideas 
from StateCharts [44]: concurrent and nested states. Objects can contain multiple 
state machines that operate independently. When multiple states are active, 
InterState uses left-to-right precedence (where only the left-most constraint is 
activated) to choose which value the properties should use in the event of conflicts, a 
convention that is easy to understand in InterState’s visual notation. Although this 
design decision has the limitation that it is not possible to give one state machine 
precedence for one property, and another precedence for a different property (for 
example, it would not be possible if both draggable and selectable diagrams 
set both x and y to use draggable’s x and selectable’s y), I have never seen this 
issue come up in practice. Figure 4.14 and Figure 4.9 show how parallel and nested 
state machines are represented in InterState’s visual notation. 
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Transition Events 

InterState’s event model is input agnostic. Any event exposed by the runtime 
environment (usually the browser) can be used. For instance, when the runtime is 
running on a mobile touchscreen device, InterState transitions can be triggered by 
touch and accelerometer events. Chapter 5 discusses advanced events in more detail. 

To allow programmers to concisely and declaratively express complex events, event 
targets can be computed by dynamic constraints, e.g. mouse.click(currently-
PlayingSong). Such dynamic targets have been tried in previous systems [33] but 
were hampered by performance and implementation challenges. In InterState’s 
runtime, I optimized performance for dynamic event targets by using JavaScript’s 
native event listener mechanism, rather than distributing events in the runtime. This 
required using ConstraintJS’s features for emulating pushed constraints (described in 
section 3.6.2 above), to update the native JavaScript event listeners whenever an 
event’s target is changed. 

Constraint Events 

Another innovative way that InterState allows events to be dynamically calculated is 
to support events that refer to changes in constraint values. For instance, in the 
Breakout example, the player should lose a life when the ball goes past the paddle. In 
imperative languages, this usually requires passing property changes through a setter 
method, which then triggers the corresponding state change. InterState simplifies 
this by introducing constraint events—Boolean expressions like (ball.cy > 

paddle.y)—that fire any time the value of the expression switches from false to 
true. While constraint events have technically been possible in other constraint 
systems [94], InterState reduces the syntactic burden of expressing them by allowing 
constraint events to be expressed using the same syntax as constraints. Further, the 
efficient eager evaluation mechanism discussed in section 3.6.2 makes these 
constraint events practical. 

4.4.5 Manipulating Visual Objects 
InterState is output-agnostic and can be made to work with any output supporting a 
structured graphics model (sometimes called a “retained object model”). I have fully 
implemented output mechanisms for HTML DOM objects and Scalable Vector 
Graphics (SVG) objects. I have also created a prototype to confirm the feasibility of 
using WebGL as an output mechanism for creating 3D interfaces. 

InterState allows developers to create SVG objects by setting any object’s 
prototypes field to include one of seven types of SVG objects: circle, ellipse, 
image, rectangle, text, group, and path. (Creating HTML DOM nodes and 
working with other output models works similarly.) All of these prototypes provide 
default values for their display properties (for example, rectangle has a width 
attribute with a default value of 150 and image has a src attribute with a default 
URI that points to the InterState logo). InterState SVG objects also include attributes 
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that allow developers to specify how display properties should animate between 
values, using CSS transitions. Finally, to enable a dynamic DOM hierarchy despite 
the static containment hierarchy of InterState objects (discussed in section 4.4.3 
above), InterState DOM objects include a property that allows programmers to 
express a node’s DOM children as a dynamic constraint. 

New outputs can be added by writing a JavaScript wrapper that maps changes in 
InterState objects’ fields and containment hierarchy to operations in the output 
mechanism. Depending on the specific output mechanism, additional code might 
also be needed to detect input events. In total, our wrapper for the SVG output 
mechanism only requires about 300 lines of JavaScript. 

Deprecated: The draw field 

In previous versions of InterState, every object contained a field named draw, which 
contained a method specifying how to draw that object. Objects with no graphical 
representation simply left the body of the draw field blank. One benefit of the draw 
field was that it added a level of transparency to the low-level primitives of how 
objects appeared on screen. Every built-in shape would have a draw field that 
referenced its relative fields; a circle prototype’s draw function would reference the 
cx, cy, and r fields and a square prototype’s draw function would reference its x, y, 
width, and height fields. When the InterState runtime determines that any field 
referenced by the draw field changes, it would schedule the object to be redrawn. 

However, there were two problems with built-in draw fields. First, it was unclear 
when the draw field would be called. When any of the fields upon which the draw 
method references change, the InterState runtime calls draw. However, when 
drawing objects with transparency (or when the draw method contains inadvertent 
side effects), calling draw multiple times can result in unexpected results. Another 
problem with the draw method was that it limited InterState to custom-drawn 
applications rather than being able to use and modify DOM objects. For these 
reasons, I decided to move InterState to the retained object model it currently uses, 
where the draw method is hidden and called at appropriate times internally [80]. 

4.5 Visual Notation 

InterState’s visual notation makes interactive behaviors easier to understand by 
grouping their relevant properties and states. In the event-callback paradigm, the 
code responsible for an interactive behavior is often distributed in multiple locations 
[94,110,126]. This makes it difficult for developers to understand what user events 
affect a particular property or conversely, what properties user events affect. 
InterState displays object properties as rows and states as columns, as illustrated in 
Figure 1.3. For example, to specify that rect’s color should be red when it is in the 
dragging state, the user only needs to enter 'red' into the color row and the 
dragging column. 
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In event-callback code, property values can be modified in any callback [94,110]. 
InterState’s computational model, by contrast, allows property values to change in 
two ways: either a constraint in that property is recomputed (e.g. mouse.x changes 
when the mouse moves) or the property’s specified value changes (e.g. a state change 
or the programmer edits the property’s value). This design trades some flexibility—
losing the ability to set properties anywhere—for readability by ensuring all of a 
property’s possible values are visible in its row. 

4.5.1 State Machine Layout and Design 
An important design requirement of the InterState editor is that it should lay state 
machines out in a 2D fashion. This section will overview the evolution of InterState’s 
state machine layout through three versions. 

Deprecated: Transition-Centric State Machine View 

Initial implementations of InterState displayed the program by giving transition 
events columns, without a notion of state. Although this design was very space 
efficient, because it lacked a notion of state, it set a low ceiling on the expressiveness 
of its objects. A screenshot of this version of InterState is shown in Figure 4.7. 

 

Figure 4.7 A preliminary version of InterState (then called Euclase). This version contains the basic 
object layout (states as columns and properties as rows). However, this version of Euclase 
does not differentiate between states and events. The state of an object is the last event that 
occurred on that object. Every object also has a draw field that specifies, in JavaScript 
canvas code, how it should be drawn (typically referencing other fields), as described in 
section 4.4.5. This example also utilizes the defunct KEEPVALUE primitive, described in 
section 4.4.1. Empty cell values are KEEP by default (greyed out in the figure); an idea that 
was maintained through the current version of InterState by replacing the “KEEP” keyword 
with a circle. 
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Deprecated: Trapezoidal State Machines 

To increase the expressiveness of InterState’s state machines, I then experimented 
with a visual notation in which states were represented as trapezoids. To achieve a 
tabular layout with every state and transition represented in a column, InterState’s 
visual notation flattened its state machines to allocate horizontal space for all local 
and inherited states. The trapezoidal shape of states was designed to allocate a 
column for every transition, horizontally centered where the transition’s arrow 
begins. A screenshot of this version of InterState state machines is shown in Figure 
4.8. 

 

Figure 4.8 The trapezoidal state machine design. This version of InterState also used a slightly different 
event type, with each transition using the parameterizable on() function to define events. 

However, the problem with this trapezoidal representation of state machines was 
that they took up too much horizontal space. As state machines got more complex, 
the horizontal scrolling space that they required made them less readable. 

Optimized State Machine View 

In the current design for state machines, the design goal was to reduce the horizontal 
space as much as possible while still allowing each transition to have an allocated 
column. The state machines also had to be capable of displaying nested and 
concurrent states. The final design optimizes for space by only allocating horizontal 
space for the transition start points (unlike the trapezoidal shape, which allocated 
space for transition start and end points) and by reducing the horizontal space taken 
for states that do not have any values set on them. For example, in Figure 4.9, 
active.out is narrower than active.hover because there is a property set on 
active.hover (x) but nothing set on active.out. 

 

Figure 4.9 The final state machine design for InterState state machines. This design reduces the 
amount of horizontal space taken by the state machines. 

Note that this design also enables nested states to be displayed and allocated their 
own column; active.out and active.hover are both substates of active and 
are displayed like any other states. InterState’s state layout allows for arbitrary levels 
of nesting this way. Incorporating a way to represent nested states in the 
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representation of state machines is important because, as section 3.2.2 above 
describes, nested states are an effective way to reduce the verbosity of state machines. 

Challenges and Areas for Improvement 

Although the current design is effective in reducing the amount of space required to 
show state machines, there is room for design improvement. First, for extremely 
large state machines (over 30 states), InterState’s representation of state machines 
could dynamically resize the display size to emphasize states that the developer is 
interested in. For example, the editor might allow developers to expand and collapse 
sub-states for state machines that do not fit on a single page. 

InterState’s state machine representation could also be better optimized for states 
that have large numbers of self-transitions. These types of states are useful for event-
oriented behaviors, such as those used in games (see section 7.1.1 on Application 
Areas). Figure 4.10 illustrates one such behavior from the Breakout example 
described in section 4.9.1 below. 

 

Figure 4.10 An InterState state machine for an “event-oriented” behavior with few states and many 
events. This state machine represents the behavior of a ball in the game of breakout. Here, 
the ball might bounce off of the paddles, blocks, walls, or might go out of bounds (the 
bottom wall). 

As Figure 4.10 shows, state machines grow larger both vertically and horizontally as 
more transitions are added. However, when a behavior involves large numbers of 
transitions, it can be difficult to understand which transition affects which property. 
One way to rectify this would be to include an alternate “transition-centric” view 
that allocates more space to transitions than the current state machine view. 

4.5.2 Navigating Between InterState Objects 
Navigability is an important consideration in any code editor [19]. Programmers 
should be able to navigate between objects in the editor and their representations in 
the runtime. InterState’s editor was built to enable quick exploration and navigation. 
The runtime allows users to inspect objects in the runtime display pane to open those 
objects in the editor window by pressing a built-in keyboard shortcut (CTRL+I) to 
enter inspection mode and clicking the object they want to navigate to. 
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Conversely, objects in the runtime display pane are highlighted whenever the mouse 
is hovered over the corresponding representation in the editor. When properties 
reference other objects in the containment hierarchy, programmers can click the 
name of the object to navigate to it and cause it to be displayed. For example, in 
Figure 4.11 below, if the developer clicks on the blue “(circle)” link, which is the 
current value of myShape.prototypes, the editor would navigate to the 
svg.circle object. 

 

Figure 4.11 The InterState editor shows one object at a time (in this case, myShape) and the fields and 
current values of every parent object in the containment hierarchy (in this case, sketch and 
paper). The editor also allows developers to pin objects to the screen by dragging them to 
the bottom of the window. 

By default, the InterState editor displays a single object at a time and the names and 
fields of every parent of the currently selected object in the containment hierarchy, 
as Figure 4.11 illustrates. This design balances the competing needs of space 
efficiency and for displaying relevant information. The editor also allows 
programmers to “pin” objects so their display stays on the screen so they can be 
referenced while editing another object. InterState’s editor includes an inline text 
editor useful for quickly editing of short constraint values and a full multi-line text 
editor useful for editing longer values, like expressions for constraints. 

Deprecated: InterState Tree View 

Early versions of InterState used a tree layout in which the containment hierarchy 
was shown in a collapsible tree structure (Figure 4.12). However, I found that the 
visual clutter of having so many objects on the screen at once would be detrimental 
to programmers, since it required too much scrolling to find the desired objects. 
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Figure 4.12 InterState (then Euclase) with a tree layout. However, the tree notation resulted in too many 
objects being visible at one time and visual clutter. 

4.6 Behavior Reuse 

User interfaces often re-use and combine behaviors. InterState supports this by 
introducing an inheritance mechanism that allows behaviors to be re-used as easily as 
fields and methods are in traditional inheritance. It does this by allowing objects to 
inherit not only properties and their constraints but also an instance 8  of the 
prototypes’ state machines, as section 4.6.2 below details. InterState’s visual notation 
also lets developers understand which properties and behaviors are inherited by 
showing them with a grayed background in the editor (for example, the 
my_square.height field in Figure 4.13). 

In addition to inheritance, InterState also supports dynamic templating—another 
form of behavior reuse. Dynamic templating allows developers to create a copy of an 
element or behavior for each item in some underlying dynamically changing data 
model. For example, a developer might want every item in a list view to have 
different text content but the same selectable behavior. InterState allows any object 
to serve as a dynamic template by setting an optional “copies” field, as explained 
below. 

4.6.1 Inheritance 
Other toolkits have achieved behavior inheritance by requiring that programmers 
create separate interactor objects that describe specific built-in behaviors and can be 
attached to graphical objects [99,106]. Rather than requiring such specialized 
mechanisms, InterState’s inheritance model extends traditional prototype-instance 
inheritance [99] by adding several features to support behavior inheritance. 

                                                        
8 In this context, an “instance” of the state machine means a new state machine that has the 

same structure but may have a different active state.  
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Figure 4.13 InterState uses a prototype-instance inheritance model with multiple inheritance. Prototypes 
are simply specified in the prototypes property. Here, my_square inherits from square. 
Because my_square does not define a value for height, it inherits the definition of 
square.height, as indicated by the greyed out text in the columns on the right. Note that 
my_square inherits the definition of height, not the value. Thus, the width property of 
my_square evaluates to a different value (20) than the width of square (15). 

First, when one InterState object inherits from another, it also inherits an instance of 
that object’s state machine. For example, in Figure 4.14, my_selectable_drag-
gable gets an instance of the state machines for both selectable and drag-
gable. The fact that an instance of the state machine is inherited, rather than the 
state machine itself, is important; we usually do not want all of the objects that 
inherit from a particular object to be in the same state. For example, we do not want 
every object that inherits from draggable to enter the dragging state when any 
one of them does. When the structure (not current state) of a prototype’s state 
machine is changed, that change is instantly reflected in the structure of all objects 
that inherit from it. This allows programmers to quickly modify the behavior of 
objects in their interface to explore behavior variations. For example, in an interface 
with a number of draggable elements, drag-lock could be implemented for every 
element by modifying the definition of the “draggable” prototype. 

Second, rather than inheriting a property’s value, InterState inherits the property’s 
constraint. Further, the values of the references in the constraint expression are 
computed based on the context of the instance, not the prototype. By inheriting the 
constraint’s definition and redetermining referents, InterState allows prototypes to 
define behaviors that reference the state and property values of the objects that 
inherit from them. This is illustrated in Figure 4.13, where my_square inherits the 
definition of height, rather than its value, and the value computed for 
my_square.height depends on my_square.width, not square.width. 
Amulet and Garnet included a similar mechanism [99,106], but using a more 
verbose syntax. 

Third, unlike most prototype-instance inheritance models, InterState allows multiple 
inheritance. A handful of other prototype-instance frameworks have included 
multiple inheritance, but only for fields [106,156]. In InterState, multiple inheritance 
is crucial because interface components often combine multiple inherited behaviors. 
InterState objects may inherit from any number of other objects. InterState then 
combines inherited values across states. If an object’s property is not defined for a state 
but it is in one of the object’s prototypes, then that prototype’s definition is used for 
the state. This allows multiple behaviors to control the same property 
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simultaneously. For example, in Figure 4.14, selectable and draggable define 
color. my_selectable_draggable combines the definitions of both of these 
prototypes. In the selected state, it will be 'blue'; otherwise, it will be 'black' 
or 'red', depending on the dragging state. For conflicting values, the left-most 
value is used; a convention that is easy to control and understand in concert with the 
visual notation, as discussed above in section 4.2. When a developer instead wants to 
combine conflicting values, they can instead write a constraint that references the 
object’s state (either directly or indirectly through another field). 

Previous multiple inheritance frameworks have been hampered by the “diamond 
problem”, which occurs when objects B and C both inherit from A and then object D 
inherits from both B and C, leading previous systems to inherit A twice [91]. 
InterState addresses the diamond problem by detecting duplicate prototypes and 
only inheriting them once. If there are conflicts among prototypes (i.e. two 
prototypes set the same field for the same state), InterState gives precedence to the 
first (leftmost) prototype. 

 

Figure 4.14 An object that inherits from both draggable and selectable behaviors. Note that the 
definitions for the color property are inherited from draggable ('red') and selectable 
('blue'). 

Finally, prototypes, like every other property, can have different values in 
different states, and can even be computed by constraints, allowing the prototypes of 
any given object to depend on its current state. This dynamic inheritance provides a 
declarative way for interface elements to modify their behavior based on the 
interface state [156]. For instance, programmers can declaratively change an SVG 
object from a rectangle to a circle by changing its prototype, rather than 
imperatively removing and creating objects. Section 4.10.5 below contains a deeper 
discussion of how InterState prevents inheritance conflicts for dynamic prototypes. 

4.6.2 Copies & Templating 
Often, developers need a list of similar items to display and do not want to declare a 
display for every object in that list, either because it is too tedious or because that list 
of items will be computed at runtime. InterState handles this by adding an optional 
copies field to ordinary objects. When copies is set to either an array or a 
number, its parent object then creates a set of items rather than a single item. When 
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the value of copies changes (either dynamically or through user edits), the list is 
updated with respect to added, moved, and removed items instead of recreating the 
entire list. For every item, InterState sets two variables: my_copy, which carries the 
value for a particular item (e.g. 'Jane', 'Sue') and copy_num, which carries the 
index for a particular item (e.g. 0, 1). 

 

Figure 4.15 An object with multiple copies; copies is set to ['Jane', 'Sue']. Every copy has two 
properties: my_copy, which is set to that copy's item (here, either 'Jane' or 'Sue') and 
copy_num, which is set to that copy's index. Here, we are looking at the first copy (index 0). 

This mechanism can also be used to create dynamically updating lists of views. For 
example, suppose there is a color palette that shows a tiny swatch for a set of colors 
that a user has set as favorites. The list of favorite colors is stored in the favorites 
variable as hex values (e.g. ['0x900', '0x333']). When users click “add 
favorite”, a new element is pushed onto that list and when they click “remove 
favorite”, an element is removed. The developer wants to specify only once how to 
display every swatch, by using the color_disp prototype, and by expressing that a 
copy of it should be created for every element in the favorites list.  
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Figure 4.16 Two InterState objects (favs_panel and color_disp) that create a dynamically changing 
display for a dynamic list of favorite colors. Annotations are in gold boxes. This code stores a 
list of favorites under favs_panel.favorites. When a user clicks on any color  
(represented favs_panel’s transition diagram as mouse.click(color), that color is added 
to the list of favorites (by setting favorites to favorites.push(color) in the color click 
transition). Because color_disp’s copies field is set to favorites, new copies of 
color_disp are added and removed as favorites changes, automatically adding and 
removing visual elements from the screen. 

They can set copies (displayed under color_disp[0] in Figure 4.16) as a 
constraint to favorites and the InterState runtime environment creates an 
instance of color_disp for every element in the favorites array (updated 
automatically). color_disp can then constrain its fill property to be my_copy, 
so that every instance has the appropriate color. This functionality is analogous to 
list views9 in data-binding libraries and maps in Amulet [99] that allow programmers 
to specify a template display and to specify the number of instances they want. This 
example is illustrated in Figure 4.16. 

Note that the copies’ prototypes fields can be computed by a constraint that can 
depend on each one’s my_copy field. For instance, in a directory viewer application, 
copies could be set to the contents of the directory. Then, every item could have a 
constraint that computes the prototype field to inherit from folder_view if 
my_copy is a folder and from file_view if my_copy is a file. 

                                                        
9  http://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.listview.aspx 
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4.7 InterState Editor 

Because the primary goal of most user interfaces is to be usable, it is also important 
that developers can immediately use and evaluate their application as they create it, 
which has been called reflection in action [143]. To enable reflection-in-action, I 
implemented a live visual editor. This means that changes in the editor are 
immediately reflected in the running application and that user events in the running 
application are shown in the editor [152]. To better help developers understand the 
current state of their running application, InterState’s live editor also shows the 
current state and field values. 

4.7.1 Live Development 
Previous research has shown how live programming can improve the experience of 
both novice and professional programmers [43,92]. I decided that it was important 
to have a live development environment for three reasons, described below. 

First, by making the result of changes immediately visible, live development 
environments help bridge the gulf of evaluation [119]—a significant barrier for new 
developers [79]. Another important aspect of most live development environments is 
that the developer always has a running program10. One great aspect of spreadsheet 
programming, for instance, is that when the user makes a mistake in a particular 
cell’s formula, the entire spreadsheet does not stop working [20,98]. Similarly, 
InterState allows errors to be “localized”: cells with errors only prevent the parts of 
the program from running that depend on those cells. 

Second, liveness can enable the user to quickly evaluate the design. Although 
syntactic errors can sometimes be made immediately visible in edit-compile-run 
environments, live programming allows both syntactic and semantic errors to become 
immediately apparent by enabling developers to immediately test their code. This is 
particularly important because reflection-in-action – stepping back and evaluating 
their design as developers are in the process of creating it – is a crucial part of the 
design process [143]. Previous research [101] has shown that designers are more 
satisfied with their tools for designing an application’s look than with those for 
designing an application’s behavior. While sketches and drawing applications allow 
designers to quickly evaluate the look of their application during the design process, 
InterState is designed to be one of the first tools to allow them to quickly evaluate the 
feel of their application as well. 

Finally, liveness makes quick experimentation possible. Experimentation is a crucial 
part of the design process and one that is not well supported by today’s development 
environments [40]. Again, it is relatively easy to experiment with different 
application looks with sketches, drawing programs, etc. However, it is more difficult 

                                                        
10  This is not necessarily inherent to live development environments but because of the 

implementation requirements of live development environments, it is common.  
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to change or experiment with the feel of the application. For example, imagine that 
the designer wants to tweak the scrolling “friction” to find a suitable value. With 
InterState’s live development, this parameter can be iteratively modified to see the 
result, versus in a conventional environment where the user would have to re-run the 
entire program and re-enter the program state where this parameter is relevant. 

4.7.2 Design Challenges of a Live Environment 
There are many human-centric questions about what developers would want the 
system to do in certain situations. For example, what if the program enters a state 
and the entire source specifying how the program should behave in that state is then 
deleted? For instance, suppose I create an icon with a “selected” state that highlights 
the icon after it has been clicked. What if I then delete our specification of what 
should happen in that “selected” state? How should our running application 
respond? Some viable possibilities are: 

• To put the icon back in the last valid state it had before the selected state. 

• To keep the icon “as-is” until the developer resets the state machine (which 
can be done by right-clicking the state machine and selecting the 
appropriate context menu item) or refreshes the page. 

• To detect that an in-use state has been deleted and automatically reset either 
the whole application or reset the state of that particular icon. 

All of these possibilities can be considered “valid” in some sense. InterState uses the 
second option because it is conceptually the simplest and most predictable for users. 

I also want to insure that there is no difference between a program executing live 
and a program that executes later. There are some questions about timing and when 
certain cells should be executed. For instance, suppose a cell has the value 
random(), which returns a random number. When should that random number be 
generated? Only when the user first enters the cell’s value? Only when that value is 
used? Current spreadsheets reevaluate the random() formula unpredictably 
whenever the sheet is reevaluated. My implementation evaluates the call to 
random() only when the user first enters the cell’s value, so a program executing 
live in the development environment behaves the same way as it would if it went 
through compile-edit-run loop, where the cell would be evaluated exactly once when 
the cell’s value is first evaluated.  

Finally, the fact that the finite state machines used by InterState are imperative 
presents another design challenge. Sometimes, it is important to be able to keep track 
of how an object got into a certain state. This is so that the live environment 
evaluates constraint values as if the developer re-compiled and re-ran their program.  
For example, if a developer edits a property’s value for a given transition after that 
transition has executed, the property’s value would ideally backtrack to evaluate as if 
that value were set before the transition was executed. To balance this need with 



Chapter 4: InterState / Laboratory User Evaluations  

 

89 

performance and memory concerns (tracking past states can be computationally 
expensive), InterState only backtracks property values when that property’s value is 
undefined and the user defines a value on its start transition, as I anecdotally found 
that this covers most of the issues of this type. All other edits on transitions require 
the user to reset or otherwise arrange for the transition to fire again.  

4.7.3 Error Reporting & Debugging 
One of the barriers to the adoption of constraint systems has been the difficulty of 
understanding and fixing bugs in constraint specifications [98]. When there is a bug 
in a constraint method, many constraint systems will halt program execution and 
present a cryptic error message [99,106]. InterState’s runtime was designed to 
enable programmers to always have a running application, like in spreadsheet 
programming, where constraint errors do not halt updates of other constraints 
[20,98]. InterState achieves this by “localizing” errors: constraints with errors only 
prevent the parts of the program from running that depend on those constraints. A 
constraint that fails has the value undefined and any constraint that depends on 
that field will also have the value undefined. In the editor, errors are displayed 
next to the problematic constraint expression (see Figure 4.17). 

 

Figure 4.17 Syntax and runtime errors are highlighted in the editor but do not prevent the program from 
running. Fields with errors and other fields that depend on them are given the value 
undefined. 

Constraints are also challenging to debug in imperative languages because of their 
declarative nature [98]. Breakpoints in imperative languages are of limited use 
because they can freeze the program while the constraint solver is in an inconsistent 
state (i.e. in the middle of code maintaining a dependency). InterState’s editor makes 
constraint debugging easier by allowing programmers to always see the current 
values calculated by constraints, and to set breakpoints that halt its constraint solver 
in a consistent state just before a constraint is reevaluated. Breakpoints can also be 
set on transitions or states so programmers can see what relationships are being 
maintained at any point in their program in the InterState editor. Developers can 
add or remove breakpoints by right-clicking a transition or state and selecting the 
appropriate action in the context menu. 

4.8 Laboratory User Evaluations 

Given the design goals of InterState, I hypothesized that programmers could more 
easily understand and modify user interface code with InterState compared to event-
callback code. 
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4.8.1 Method 
To evaluate this hypothesis, I conducted a comparative laboratory study with 20 
programmers (ages 19-41) with at least one semester of programming experience (in 
any language). None of the participants had prior exposure to InterState. 
Participants were sequentially given two interactive behaviors; one implemented in 
JavaScript using the RaphaelJS drawing and event-handler library (called JS) and 
another implemented with InterState (called IST). 

For one behavior (called B1), participants were given code for a standard drag and 
drop behavior and were asked to implement the drag-lock behavior described in 
section 4.3. For the other behavior (called B2), participants were given code for an 
image carousel that displayed a large “featured” image and a series of thumbnails. 
The featured image changes when a thumbnail is clicked or auto-advanced after a 
timeout. I asked participants to change display features of the thumbnails, the auto-
advance interval, and to add a progress bar below the featured thumbnail to indicate 
the auto-advance interval. To control for learning effects and differences in task 
difficulty, every task was counterbalanced, creating a total of four participant groups 
(B1JS/B2IST; B1IST/B2JS; B2JS/B1IST; and B2IST/B1JS). Participants were given the 
same task description regardless of implementation language. 

 B1: Drag Lock B2: Img. Carousel 

JS Lines of Code 35  (+ 12) 60 (+ 17) 
# Callbacks 3  (+ 1) 2 (+ 0) 

IST 

# Cells 11  (+ 2) 33 (+ 4) 
# Objects 1 (+ 0) 2 (+ 1) 
# Properties 7  (+ 0) 22 (+ 4) 
# States 2  (+ 1) 3 (+ 0) 
# Transitions 2  (+ 2) 6 (+ 0) 

Table 4.1 The relative sizes of the user study’s two behaviors and the minimum size of modifications 
required for the tasks. (Note that these numbers represent the minimum number of changes, 
rather than the number of changes made by participants.) 

To make our comparison as fair as possible, I started with third-party code for the 
JavaScript implementations and simplified them by reducing boilerplate and adding 
descriptive variable names that were consistent with those used in the InterState 
implementations. I also used a “live” JavaScript editor (JSBin) that immediately re-
evaluates JavaScript snippets when the source changes. Finally, participants were 
given tutorials and reference sheets for JavaScript and InterState. 

4.8.2 Results 
Participants were able to implement the drag lock task significantly faster with 
InterState—taking less than half the time (JavaScript: 19.5±13.6 min, InterState: 
8.0±6.8 min, two-tailed heteroscedastic Student’s t-test p < 0.05). Although 
relatively few lines of code were required, reasoning about callbacks’ timing in the 
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JavaScript task proved challenging for many users, and many participants used 
console logs to help them understand their interface’s state. 

 

Figure 4.18 The relative times (in minutes) across 20 participants to complete tasks in JavaScript (JS) 
and InterState (IST). Every participant performed one task in InterState and one task in 
JavaScript, meaning that for every one of the four bars in this chart, N=10 (overall N=20). The 
error bars represent the standard deviation from the mean. Smaller values are better. 

Participants also completed the image carousel task significantly faster with 
InterState, again in about half the time (JavaScript: 28.3±7.6 min, InterState: 
14.7±5.5 min, p < 0.01). For this task, participants added an indicator for the timer. 
Participants in both implementations used one of two strategies for this: either 
creating an indicator for each thumbnail or creating one indicator that follows the 
featured thumbnail. Both implementations already had a property that tracked the 
number of milliseconds before the featured image auto-advanced, which the 
programmers could utilize. Most JavaScript participants missed this variable while 
most InterState participants found it, apparently by observing how its value changed 
over time using the visual editor. 

4.8.3 Discussion 
Most participants felt comfortable with InterState’s visual notation, calling it 
“intuitive” and “clean”. Nearly every user cited InterState’s ability to display the 
current application state and live property values as one of the most useful aspects of 
the editor. This helped many users quickly debug and deduce the meaning and roles 
of properties. 

Our evaluation also pointed to several ways to improve InterState, some of which 
are already reflected in the current design as described above. For example, I added 
the ability to jump from an on-screen object in the runtime to its representation in 
the editor as a result of observing the difficulty several participants had finding 
objects. Additionally, the ability to “pin” objects in the editor was suggested by a 
participant. Both of these features were added after this study. 

The most common conceptual errors participants made in InterState were due to 
InterState’s representation of copies. For example, some participants were not sure 
whether edits to an object with multiple copies changed every copy or just one, a 
distinction that the editor could make clearer. Some participants also had difficulty 
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reasoning about the interaction between state machines in different copies. In the 
image carousel example, when a user clicks a thumbnail, that thumbnail should 
become selected and the previously selected thumbnail should become deselected. 
The problems participants faced when working with multiple copies may indicate a 
potential breakdown of the visibility principle—by only showing one copy at a time, 
InterState’s representation of state machines does not make it clear how user events 
can affect multiple state machines. 

4.9 Scalability and Evaluation 

I designed InterState to be “scalable” in three senses of the word. Application 
scalability refers to InterState’s ability to scale to implement even complex GUIS. 
Performance scalability refers to InterState’s ability to deal with large numbers of 
components. Editor scalability concerns the ability of the InterState editor to keep 
source code readable, understandable, and navigable even as applications become 
more complex. 

4.9.1 Application Complexity 
To scale in terms of application complexity, InterState starts by incorporating the 
inheritance and templating mechanisms described in section 4.6 above. These 
mechanisms make writing complex applications more practical, by enabling code re-
use. Many applications also require complexity in back-end code. For instance, a 
mailbox application might need to communicate with a server over IMAP to retrieve 
e-mail messages. Thus, InterState includes mechanisms for communicating with 
back-end code written in other languages, allowing programmers to connect a front-
end written in InterState with a back-end written in another language. The 
mechanisms for communicating with back-end code are discussed in section 4.10.4 
below. 

To illustrate InterState’s ability to scale to complex applications, I also implemented 
a number of example applications, including: 

• A music player and playlist manager that allows users to create and edit 
playlists. This example takes advantage of InterState’s ability to call 
JavaScript functions to play music with the HTML5 audio API. This example 
is representative of behaviors that include many interconnected components; 
for example, the state of the playlist view depends on which playlist is 
selected, whether the user is currently playing a song, the current selected 
song, and the current playing song. 

• A version of the classic game “breakout” includes bonuses and power-ups. 
This example also interfaces with Box2D, a third-party physics engine, for 
collision detection and reactions. This example is representative of behaviors 
that have many events but few states; for example, the ball in the breakout 
game only has two states but different events for when it hits any of the three 
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walls, the paddle, a block, or goes out of bounds. Figure 4.10 shows the state 
machine for the behavior of the ball. 

• A touchscreen map that allows users to pan and zoom a map image using 
touch and accelerometer events on touchscreen devices. This example 
illustrates InterState’s ability to express behaviors using multiple input 
modalities. 

These examples are representative of behaviors with large numbers of 
interconnected components (music player), large event spaces (breakout), and large 
state spaces (touchscreen map). 

4.9.2 Performance 
We conducted a series of performance tests to evaluate InterState’s ability to scale 
for behaviors involving large numbers of objects. These tests were performed in 
Safari 7.0 on a 2.3 GHz Intel i7 Macintosh with 16 GB of RAM. I ran three tests and 
measured the delay between changing an attribute value in InterState’s runtime 
model and when that change was reflected in the runtime output. 

 

Figure 4.19 Benchmark results. In the first test, N is the length of the prototypes chain. In the second, N 
is the number of children. In the third, N is the number of prototypes. 

In the first test, I created an object named obj whose prototype chain is N objects 
long, as in: 

obj.prototypes = proto1 
proto1.prototypes = proto2 
… 
proto(N-1).prototypes = protoN 

We then measured the latency between changing protoN and the runtime updating 
its DOM output for obj. In the second test, I measured the same latency for an 
object with N prototypes, as in: obj.prototypes = [proto1, …, protoN]. In 
the third test, I created an object with N copies and measured the time it took for a 
change to affect the runtime’s DOM output for every copy. 
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For each test, I measured the highest value of N for which a change was perceived to 
be instantaneous (100 milliseconds). I found that performance scaled linearly in all 
tests. The first test indicated that a prototype chain of 58 objects could be handled 
instantaneously. By contrast, the longest prototype chain I have ever found useful is 
four classes long, and in the implementation of the Eclipse IDE in Java the longest 
inheritance chain is only nine classes long. The second test indicated that an object 
could have about 2,400 prototypes before changes have any visible delay. This is far 
more than necessary in real-world interfaces, since the longest I have found useful is 
five. The third test indicated that 1,200 simultaneous changes to DOM attributes 
would appear instantaneous. By contrast, InterState’s constraint solver, ConstraintJS 
[126], could handle about 2,000 simultaneous changes in the same testing 
environment, which indicates that the InterState runtime only adds a 40% overhead. 
Much of this overhead comes from parsing and interpreting constraints, which is 
done in the runtime (rather than natively) to enable InterState’s dynamic scoping. As 
our results indicate, InterState can scale up to real-world interfaces with respect to 
performance. It is also important to note that a developer can implement any 
performance-critical operations natively and reference them in InterState. 

4.9.3 Editor Scalability 
InterState’s editor includes a number of features to allow programmers to navigate 
and understand complex behaviors. I described some of these techniques—such as 
pinning, and links to navigate between InterState objects—in section 4.5 above.  

Additionally, InterState’s visual notation for state machines is able to convey 
behaviors using less space than textual code. For instance, the image carousel from 
the user study required about 60 lines of JavaScript. In InterState, the same behavior 
required two objects (with three states and six transitions total) and 33 constraints 
across 22 properties. With the same font size, the InterState implementation 
required 30% less display space despite conveying more information (e.g. inherited 
properties and current property values). This is primarily because InterState’s visual 
notation reduces the verbosity needed to express states and establish constraints. 

4.10 Implementation 

InterState is built using HTML and JavaScript along with the ConstraintJS 
constraint solver (see chapter 3). InterState also uses the esprima.org ECMAScript 
parser to generate constraints from expressions written in cells. 

4.10.1 A Fully Dynamic System 
One challenge in implementing InterState was to create a fully dynamic prototype 
system. In InterState objects, any number of things might affect a particular object’s 
property value, errors, etc. For instance, suppose I create a cell whose value is A.x. 
Among the things that might change the value of this cell would be: 
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• The developer edits the cell’s expression 
• An A closer in scope appears 
• A is a dynamic property (whose value is constrained to some other object) 

and the value of that property changes 
• Object A changes its value for x, because either 

o A changed state and x’s value changed 
o A.x was inherited but it changes to now be a normal (non-

inherited) field 
o A.x was a normal (non-inherited) field but is now inherited 
o The definition for A.x changes 
o The value of A.x changes (with no change in definition) 

Very early prototypes of InterState (before I built ConstraintJS) used event-listeners 
to try to propagate updates. However, I found that in an event-based 
implementation, it was prohibitively difficult to correctly update field values and 
remain efficient, in part due to the myriad ways that field values could change. 

4.10.2 Pulled and Pushed Constraints 
The fact that ConstraintJS uses pulled constraints (which evaluate only when the 
constraint’s value is requested) instead of pushed constraints (which evaluate as soon 
as a constraint’s value may have changed) has important performance implications11. 
For instance, when a cell that is not currently being used changes its value, no 
resources are dedicated to re-evaluating the constraint (also known as lazy 
evaluation). This can be helpful in situations where large or computationally 
expensive portions are disabled. 

However, there are some instances where InterState needs constraint variables to 
behave like push constraints. Event listeners, for instance, must be updated as soon 
as variable references and values change. Suppose one finite state machine has a 
transition whose event is mouse.dblclick(selected_item), meaning the 
transition will fire when selected_item is double clicked. The event listener needs 
to be updated as soon as selected_item changes (listening to every item and 
determining later on if it was selected_item would be prohibitively inefficient). 
To enable this, I added an extension to ConstraintJS that allows some constraints to 
behave like pushed constraints, as described in section 3.6.2. 

4.10.3 Contextual and Basic Objects 

Definitions and Values 

InterState’s inheritance mechanism focuses on inheriting definitions, rather than values. 
For example, in Figure 4.13, the definition of square.width is inherited (width <= 
height) by my_square. Conceptually, this is because any square should have equal 
width and height, regardless of its dimensions. 

                                                        
11  Previous literature often refers to pushed constraints as eager constraints and pulled 

constraints as demand constraints. 
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When the definition of square.width changes, the definition for the width field of 
any object that inherits from square should also automatically change. One way of 
conceptualizing InterState’s inheritance mechanism is that definitions might appear in 
multiple contexts. In InterState, this is implemented by creating one definition for 
height and a context-specific constraint for every place in the containment hierarchy 
in which the definition is used. In Figure 4.13, the definition of square.width 
appears in two contexts: in square and in my_square. Definitions might also involve 
multiple levels of containers. For instance, a scroll bar widget might include separate 
containers for its handle, trough, and arrows; each of which might contain several 
layers of graphics. 

The definition/value split is reflected in InterState’s implementation. Internally (not 
visible to users), InterState maintains two separate hierarchies: “basic” objects, which 
correspond to definitions, and “contextual” objects, which correspond to values. 
Basic objects are the internal representations that define content and structure. 
Contextual objects are the editor-visible representations in which the values for every 
field are computed based on the content of a basic object and a context in which it 
exists. Whereas the basic object hierarchy can be modified by developer edits, the 
contextual object hierarchy is automatically generated by the InterState runtime, 
based on the basic object hierarchy. Table 4.2 provides an overview of the 
differences between contextual and basic objects. 

 Basic Object Contextual Object 

Tracks Fields’ definitions Fields’ values 
Modified by Developer edits Automatically generated by the 

InterState runtime 
Referenced by The runtime, when generating 

the contextual object tree 
The runtime, when generating the 
DOM tree and the editor when 
displaying current values 

Table 4.2 A comparison of the features of basic objects and contextual objects. Basic objects are 
responsible for tracking the definitions that are declared by developers. Contextual objects 
are responsible for tracking the values that are used in the runtime. The contextual object 
hierarchy is automatically generated based on the basic object hierarchy. 

Table 4.3 provides more concrete detail on how contextual and basic objects store 
the definitions and values for various object types. Note that all of the fields for basic 
objects are oriented towards tracking the definitions of various fields while the fields 
for contextual objects are oriented towards tracking the current values of fields. 
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 Basic Object Fields Contextual Object Fields 

Cell • String 
• Syntax errors 

• Current Value 
• Runtime errors 

Object • Sub-fields (non-inherited only) 
• Prototypes (definition) 
• Copies (definition) 
• Attachment types (see 4.10.4) 
• State machine (basic) 

• Sub-fields (direct and inherited) 
• Prototypes (computed value) 
• Copies (computed) 
• Attachment instances (see 4.10.4) 
• State machine (contextual) 

State • Sub-states (basic) 
• Outgoing transitions (basic) 

• Active sub-states (contextual) 
• Outgoing transitions (contextual) 

Transition • Event (definition) 
• From state (basic) 
• To state (basic) 

• Event (computed) 
• From state (computed) 
• To state (computed) 

Table 4.3 A non-exhaustive list comparing the fields of basic and contextual objects. The fields of 
basic objects are oriented towards tracking definitions, whereas the fields of contextual 
objects are oriented towards tracking values. 

Context Pointers 

Every contextual object contains a list of every parent in its containment hierarchy, 
starting with the root (sketch). When an object field is referenced, the InterState 
runtime will iterate through that list (up the contextual object’s lineage) until it finds 
a match for a field name. In the example shown in Figure 4.13, square’s definition 
for height (equal to width) appears in two separate contexts: square and 
my_square (because it inherits from square). As a result of the different contexts 
for square.height and my_square.height, each field’s lookup for the value of 
width returns a different object (square.width in square and 
my_square.width in my_square), resulting different values for both fields (15 for 
square.height and 20 for my_square.height). 

Contextual pointers are also used to implement the “copies” mechanism. When 
working with a specific copy of an object, that copy is specified within the contextual 
object pointer. However, the example below will omit copies for simplicity. 

Example Basic and Contextual Hierarchies 

To illustrate how basic and contextual objects work, consider the example shown in 
Figure 4.13. In this example, the definition of the meaning of width, (a cell whose 
definition is height) should vary by context. A representation of the basic object 
structure is shown in Figure 4.20. Note that there is no field for 
my_square.height, a field that will be created in the contextual object tree after 
the InterState runtime determines that my_square inherits from square, which 
includes a field for height. 
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Figure 4.20 A representation of the basic object structure for the objects shown in Figure 4.13. The basic 
object tree is a mutable tree that gets modified when the developer performs an edit on their 
program. This model contains three objects (sketch, square, and my_square) and five cells 
(sq_protos, sq_width, sq_height, mysq_protos, and mysq_width). Note there is no field 
for my_square.height, the inherited field that only exists in the contextual object tree shown 
in Figure 4.21. There is also no slot for values, which are computed in the contextual object 
tree because the value of a given variable depends on its computation context. This model 
makes two simplifying assumptions. First, it omits the state machines of square and 
my_square (which would each have one start state). Second, it gives human-readable names 
to objects (sq_protos, sq_width, etc.) whereas in the InterState runtime, objects’ names 
only exist in their container object’s field name. 

The contextual object tree that the InterState runtime creates from this basic object 
tree is shown in Figure 4.21. 

 

Figure 4.21 The contextual object tree for the basic object tree shown in Figure 4.20. Unlike the basic 
object tree, the contextual object tree is computed by the InterState runtime from the basic 
object tree. As the basic object tree is updated, the InterState runtime automatically updates 
its contextual object tree. This tree bears some resemblance to the tree in Figure 4.20, but 
with a few notable differences. First, every contextual cell contains a computed value, which 
is not present in the basic object tree. Second, every contextual dict and contextual cell 
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contains a context that defines how values are evaluated. For example, although both 
c_sq_height and c_mysq_height are cells whose expression is width, their computed 
values (15 and 20 respectively) are different because they are evaluated in different contexts. 

For simplicity, Figure 4.20 and Figure 4.21 omit the basic and contextual objects for 
the state machines of square and my_square. In reality, both objects would have 
basic and contextual states. The basic state machines for square and my_square 
would contain one (start) state. The contextual state machine for c_my_square 
would contain two state machines (its own state machine and one from square), each 
with one state. The contextual and basic object hierarchies would include one more 
object between every dict and cell to define the cell for every state in the dict’s state 
machine (as defined in Figure 4.13, this state machine would only have a start state). 

Lazy vs. Active Creation of the Contextual Object Hierarchy 

Early versions of InterState created the contextual object hierarchy in an 
opportunistic (“lazy”) fashion. When the runtime requested a field, it would first 
determine if that field should exist in the hierarchy (if there is any field with the 
specified name in the appropriate scope). If it should exist in the hierarchy, the 
InterState runtime would create the correct contextual object and cache it for future 
references. For example, in Figure 4.14, the contextual object for 
my_square.width would not be created until it was referenced. 

However, the lazy evaluation model breaks down for state machine transition events. 
This is because transition events need to add the proper event listeners in advance of 
user events. If contextual transition events were created lazily, user events that might 
determine the current state of a state machine would not be fired (the same problem 
as described in 4.10.2 above). Thus, InterState contextual objects automatically 
generate and update their full contextual object tree. Internally, InterState uses 
ConstraintJS’s eager evaluation features (introduced in 3.6.2 above) to perform these 
updates (as opposed to the pulled constraints used in most of InterState’s 
implementation). 

The specification of when contextual objects are added and removed from the 
contextual object hierarchy can have practical implications for developers. For 
example, consider an object that has two copies where the second copy is in state X, 
which is not the start state. If the copies constraint changes so that the object has one 
copy and at a later time switches back to specify that there are two copies, it is 
unclear if the second copy should then be in the start state (as if it were just created) 
or state X (as if it were the copy that was temporarily removed when there was one 
copy). Currently, InterState uses the former convention, initiating new copies of an 
object in the starting state (and analogously for inherited state machines throughout 
prototype changes). However, this is primarily due to concerns about memory usage 
when storing information about arbitrary numbers of removed copies. 
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4.10.4 Object Attachments 
Although InterState objects can refer to JavaScript variables, enabling developers to 
create new input and output mechanisms for InterState requires allowing JavaScript 
objects to work with the contextual object hierarchy. For example, adding output 
mechanisms to create DOM and SVG objects for every object in the contextual 
object hierarchy which inherits from dom.node or a shape in the svg parent object 
required creating an internal “attachment” system for InterState. 

InterState attachments are JavaScript objects that work with InterState’s inheritance 
mechanism, so that a new attachment instance is created for every object that inherits 
from an object with an attachment. Attachments can reference InterState objects’ 
fields as inputs (for example, to allow InterState fields to control the display 
properties of an SVG node) and outputs as fields in the InterState object (for 
example, to allow a physics engine to communicate its output back to InterState 
elements). For example, the DOM attachment, which is used by dom.node and any 
objects that inherit from the dom.node object (every DOM element in an InterState 
application), references inputs like the tag name or style attributes to create and 
update a DOM element. Table 4.4 provides a more detailed overview of all of the 
built-in attachment types in InterState. 

Attachment 
Type: 

Outputs Inputs 

DOM DOM element 
(automatically added to 
DOM tree in the 
runtime) 

• Tag name 
• Style attributes 
• DOM attributes 
• Children 

SVG SVG element 
(automatically added to 
DOM tree in the 
runtime) 

• Tag name 
• Style attributes (fill, stroke, etc.) 
 

DOM Event (none; referenced by 
transition) 

• Event type (mousedown, mouseup, 
keydown, etc.) 

• Event targets (references DOM and SVG 
attachments) 

• preventDefault (whether to call 
event.preventDefault when the 
transition runs) 

Timer Event (none; referenced by 
transition) 

• delay (milliseconds) 

Touch (see 
Chapter 6) 

• (x, y) 
• (startX, startY), 
• (endx, endY) 
• radius 
• startRadius 
• endRadius 
• rotation 
• endRotation 

• downInside 
• downOutside 
• numFingers 
• maxRadius 
• maxTouchInterval 
• greedy 
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• scale 
• endScale 
 

Table 4.4 The inputs and outputs of several attachment types in InterState. Attachments create 
JavaScript objects that can be inherited within the context of InterState’s standard 
inheritance mechanism. 

Many new output and input mechanisms can be added to InterState by 
implementing them in InterState’s attachment mechanism. 

4.10.5 Avoiding Inheritance Conflicts 
An InterState object’s prototypes can vary by state. Although this enables greater 
expressiveness for InterState developers by allowing them to specify dynamic 
prototypes, it has the potential to introduce ambiguities. Preventing conflicts 
required several changes to how the InterState runtime evaluates the prototypes 
field, relative to any other field. First, prototype values cannot be set on inherited 
states (note how in Figure 4.13, mySquare.prototypes does not have a value for 
its inherited state). This is because enabling this would lead to circular evaluations 
where the inherited state machines that are created would depend on the prototypes 
but the prototype’s value would depend on which inherited state machines were 
created. 

Another way in which the prototypes field is different from other fields is that 
prototypes are multi-level, meaning that if C.prototypes <= B and 
B.prototypes <= A then C will inherit from both B and A (B is given precedence 
in case of conflicts in inherited fields). Prototypes, however, are additive: an object 
should inherit from not only its immediate prototypes, but also the objects that its 
prototype inherits from, etc. This is in contrast to the “horizontal” way that 
InterState combines other property values, like the object in Figure 4.14. This 
difference in evaluation is to match the way that inheritance normally works (if 
mySquare inherits from square and square inherits from rectangle, most 
programmers would likely expect mySquare to also inherit from rectangle). 

Third, when evaluating multi-level prototypes (for example, C.prototypes <= B 
and B.prototypes <= A), all prototype cells are evaluated in the context of the 
inheritee (C’s prototypes field evaluates B and then A using C’s contextual pointer). 
To see why this is advantageous, suppose I had a treeView object that determines 
that it should inherit from fileView if this.object is a file and folderView if 
this.object is a folder. Thus, in treeView.prototypes is a constraint that 
depends on this.object. When an object, which we’ll call myObjectView, 
inherits from treeView, it would want its display to depend on its own object field, 
rather than the object field of its prototype (treeView). Thus, when prototype 
values are evaluated, they are evaluated in the context of the inheriting object 
(myObjectView in this case). 
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4.10.6 InterState Editor 
The InterState editor uses ConstraintJS templates to implement its display and 
interactions internally. Communication between the InterState editor and runtime 
windows is done through a wrapper layer using the HTML channel messaging API. 
The InterState editor uses asynchronous constraints to track the variable states and 
values in the runtime window. The editor sends edit commands to the runtime 
window through the same wrapper layer. InterState objects can also be serialized 
and use the HTML local storage API to save and load InterState programs across 
sessions. 

4.11 Conclusion 

InterState shows how innovations in the execution model, combined with a visual 
notation and live editor, can work together to enable programmers to express 
interactive behaviors concisely and naturally. InterState also addresses many of the 
previously identified issues of programming with state machines and constraints and 
shows the value of putting these ideas together into a single cohesive programming 
framework. A laboratory evaluation of the InterState editor and primitives also 
showed that it is effective in helping developers understand and write user interface 
behaviors. 
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5 Defining Custom Event Types  

When writing custom user interface behaviors, developers often need to create, 
abstract, and re-use custom event types. Re-usable widgets often expose higher-level 
events than the built-in mouse and keyboard events—a scrollbar widget will produce 
scroll events rather than mouse press events. Developers might also define custom 
event types independent of widgets—Chapter 6 will describe examples of custom 
multi-touch gestures that developers might want to define and re-use. Unlike the 
previous two chapters, which have focused on fully featured development tools, this 
chapter will focus on a particular aspect of InterState: its event system, which allows 
developers to define, abstract, re-use, and manage conflicts amongst custom event 
types. InterState’s event system helps manage event conflicts by including a state 
machine for events that differentiates between event requests and confirmations, as 
section 5.1 will discuss. Further, it allows developers to define and abstract custom 
event types in a way that leverages InterState’s inheritance mechanism described in 
section 4.6. 

5.1 Managing Event Conflicts 

In large applications with multiple event types, a single user input might cause 
multiple events to fire. Event conflicts occur when these events should be mutually 
exclusive, meaning that one or more events must override the others. Many of the 
challenges of managing conflicts between event types arrive in touchscreen 
development, where conflicts between gestures are more common. Although many 
of the challenges of handling touchscreen gestures will be described in further detail 
in the next chapter, this chapter will focus on some of the challenges of dealing with 
conflicting events. 
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InterState’s event architecture manages event conflicts by generalizing a common 
mechanism that is used for touchscreen development: introducing optional delays 
and groupings for events [77,89]. For example, if a menu item performs one action if 
it is single clicked and a different action if it is double clicked, developers would need 
to introduce a timer delay before verifying the single click (on touchscreens, this 
behavior is often seen to differentiate between presses and press-hold gestures). 
Typically, when a user performs a double click, the event recognizer will fire two 
single click events before firing a double click event. If a developer needs to 
differentiate between single and double click events, they must manually add a timer 
to wait to see if there will be a double click event, before recognizing either single 
click event. 

A number of gesture recognizers use similar delays for a limited set of pre-built 
gestures. For example, most touchscreen gesture recognizers will delay before firing a 
single tap event if the application is also interested in a multi-tap event. However, as 
this chapter will describe, including a general mechanism for allowing events to be 
overridden and delayed (to check for conflicts) can help developers write custom 
gestures. Particularly, providing a general mechanism can be helpful when an 
interactive behavior needs to provide a user with immediate visual feedback before 
an event is confirmed.  

InterState’s event mechanism’s contribution is to allow developers to handle many 
types of conflicts by differentiating between event firing requests and confirmations 
and by allowing developers to define event groupings and delays. This event 
mechanism requires no extra work on the part of developers in the simple case 
(where there are no conflicts) but ramps up to handle conflicts by including the 
notions of event requests, confirmations, blocking, and cancellation. In this chapter, I will 
show how these features allow developers to better manage potential conflicts 
between gestures. 

5.2 Improving Custom Events 

In most event-callback frameworks, developers can create custom events through an 
emit method. For example, JavaScript allows developers to create new Event objects, 
set arbitrary fields, and fire these custom events so that any event listeners that are 
interested in that event (as determined by the Event.type field) will fire. However, 
this mechanism requires developers to carefully modularize their event type in order 
to enable re-use. Early versions of InterState used a similar mechanism, allowing 
objects to emit custom events through an emit method, but it was subject to the 
same problems as JavaScript’s custom event emission methods: it was difficult to 
properly abstract away and re-use common events. In this chapter, I will introduce 
an event mechanism that allows developers to create custom events. When 
combined with InterState’s mechanisms for behavior inheritance, this event model 
allows developers to easily create customizable and re-usable custom events. 



Chapter 5: Defining Custom Event Types / Event Infrastructure  

 

105 

One thing to note, however, is that developers can only create InterState event types 
that are combinations of built-in event types, as opposed to event types that use 
custom sensors or other input devices that the InterState runtime does not currently 
support. As section 4.10.4 (Object Attachments) describes, developers can write 
JavaScript to enable any input event type that is exposed by the browser to be used 
in InterState. 

5.3 Event Infrastructure 

One of the design goals of InterState’s event infrastructure was to allow developers to 
define custom events that can be used in the same way as built-in events. I started by 
defining an event InterState object that every built-in event in InterState inherits 
from. Developers can then create new event types by inheriting from the event 
object (using InterState’s inheritance mechanism described in section 4.6.1 above). 
This event InterState object has a built-in state machine (illustrated in Figure 5.1) 
that helps developers manage conflicts between event types by differentiating 
between requested and fired events. Developers can then re-use and parameterize 
their custom event types by inheriting from the objects defining those events, using 
InterState’s standard inheritance mechanism. 

5.3.1 Managing Event Conflicts 
One of the most common ways to resolve ambiguities in two potentially conflicting 
events is by adding a short delay before firing an event. If this delay is long enough to 
be noticeable, the interface should also give intermediate feedback for a single tap 
during the delay period. Implementing this method of conflict resolution, 
particularly while giving users intermediate feedback, is a challenging 
implementation task because of all the interactions between timeouts, event listeners, 
and any intermediate feedback mechanisms. 

InterState builds a mechanism for conflict resolution into its core event model, which 
allows developers to use these conflict resolution tools for built-in and custom events. 
This mechanism abstracts away many of the challenges of dealing with conflicting 
behaviors. InterState’s event conflict mechanism works by generalizing a common 
mechanism for resolving gesture conflicts: introducing optional firing delays and 
priorities. 

InterState’s event conflict resolution mechanism works by differentiating between 
requested and confirmed event firings. Every object that inherits from the InterState 
event prototype (using InterState’s normal inheritance mechanism) has four atomic 
sub-events: requested, confirmed, cancelled, and blocked. These sub-events 
start by differentiating between event firing requests and confirmations (the first two 
sub-events). When event fire requests are not confirmed, it is because they were 
either cancelled (for example, if the interface changes state mid-gesture) or blocked 
by an event with a higher priority. The four atomic sub-events thus cover every 
outcome a user event might have. As soon as an event requests to be fired (by calling 



Chapter 5: Defining Custom Event Types / Event Infrastructure  

 

106 

the event prototype’s built-in fire() method), a requested sub-event fires. 
Thus, developers can specify intermediate feedback after the event is requested but 
before it is confirmed by depending upon the requested sub-event. The 
confirmed sub-event fires when InterState determines there were no event 
conflicts, as determined by event priorities. By default, if a transition does not specify 
a sub-event (like all of the transition events in Chapter 4), the transition fires when 
the confirmed sub-event fires.  

In order to ensure that developers do not have to do extra work when there are no 
event conflicts, by default every event has no firing delay and a default priority level, 
so that they behave normally; meaning that the event is confirmed immediately after 
the event requests to fire (so there is no distinction between event fire requests and 
confirmations). Event priorities represent a simple way to deal with many types of 
conflicts between InterState events: if an event with a higher priority fires, then any 
lower-priority requested events are blocked. When event priorities are not 
sufficient— for example, if a gesture should be cancelled if the interface changes 
state—developers can also use their own conflict resolution mechanisms. In 
InterState’s event system, developers can specify that an event should be cancelled 
any time after it has been requested (but before it has been confirmed). In a larger 
interface, event priorities might alsof be grouped by event type or target widget. 
Thus, InterState events can also specify that they belong to a given event group 
where priorities only apply within that group. 

The full state diagram for requested events in InterState is shown in Figure 5.1. 
Every InterState event (objects that inherit from the event prototype) have the sub-
states in Figure 5.1. All of the states (idle, pending fire, and pending block) and 
transitions for InterState events are visible, so that developers can reference sub-
events (such as when an event is cancelled or blocked) in transitions. 
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Figure 5.1  A state machine showing the various states of an event with priority p. Every event can be in 
three states: idle, pending fire, and pending block. By default, every event is in the idle state. 
When the event requests to fire (a), through the fire method, it enters the pending fire state. 
After enough time (specified by the timeout parameter) or if the event has no timeout 
parameter, then the event’s firing is confirmed (b). If the event firing is cancelled (through the 
cancel method) before the timeout interval passes, then the event is cancelled (c). If another 
event in the same group with higher priority is requested before the timeout interval passes, 
then the event moves to the pending block stage (g). If all of the events with a higher priority 
are cancelled, then the event will return to the pending fire state (f). If any other event with a 
higher priority fires, then the event is blocked (d). If another event is still pending fire when 
the event’s timeout interval passes, then the event is also blocked (e). 

5.3.2 Event Parameterization 
InterState’s event model also works well with its re-use mechanism to allow 
developers to create re-usable events in a consistent way. To illustrate how this 
works, consider a mousedown event (mouse.down in InterState). The mouse down 
event contains customizable arguments, such as the mousedown target and all of the 
event parameters described above (delay, priority, etc.). When a developer 
creates a mouse.down(domObj) transition, they are simply creating an instance of 
the mouse.down event that overrides the target field (to domObj). 

One of the benefits of this mechanism is that developers can define parameterizable 
events in the same fashion as the built-in events. For example, a developer might 
define an InterState object myGesture that inherits from event and is 
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parameterizable by numFingers. If myGesture’s state machine or any other field 
depends on the numFingers property, then inherited instances of myGesture can 
override its behavior by overriding the numFingers property, just as in the 
mouse.down example. Further, the developer can use instances of myGesture as 
transition events, just as they can for built-in events. 

5.4 Conclusion 

InterState’s event system aims to allow developers to define custom event types, 
manage conflicts between events, and use these events in a manner that is consistent 
with InterState’s built-in event types. InterState’s event architecture was also 
intended to fit in with the rest of the InterState primitives defined in Chapter 4 by 
using a state-based representation of every event and by allowing developers to 
parameterize events in a way that is consistent with InterState’s inheritance 
mechanism. Taken as a whole, the goal of InterState’s event architecture is to make 
it easier for developers to abstract and re-use custom events. 
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6 Multi-Touch Primitives 

This chapter focuses on a particular GUI application area: multi-touch and touch 
gesture interfaces. Multi-touch-enabled touchscreens are quickly overtaking mouse 
and keyboard interfaces to become the most common type of GUI application. A 
number of applications that were originally intended for the “desktop” (mouse and 
keyboard) are being re-designed and re-architected to work better in a touchscreen 
environment. The primary contributions of this chapter are “touch clusters” and 
“crossing events”: two primitives that abstract away several challenging aspects of 
writing multi-touch behaviors. These two primitives will be introduced in section 6.3 
below. Throughout this chapter, I will refer to mouse-keyboard behaviors as desktop 
behaviors. Although the primitives described in this chapter were implemented in 
the context of the InterState development environment, they are generalizable 
beyond InterState. 

6.1 Multi-Touch Challenges 

As the previous chapters described, ConstraintJS and InterState can both build 
multi-touch applications. Both tools expose the event types that are provided by the 
browser runtime and most browsers expose low-level touch events. More specifically, 
a typical browser runtime will expose three different touch events: touchStart, 
touchMove, and touchEnd. These events are analogous to mouseDown, 
mouseMove, and mouseUp in mouse-based interfaces. However, multi-touch 
behaviors are often significantly more difficult to program compared to mouse-
keyboard interactive behaviors for a number of reasons, described next. 
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6.1.1 Larger State Space 
One of the primary reasons that programming multi-touch interactions is difficult is 
because the state-space for typical multi-touch interactions is larger than for mouse-
keyboard interactions. Multi-touch gestures, by definition, typically involve multiple 
fingers. Although most multi-touch gestures involve two fingers, a number of widely 
adopted multi-touch gestures use up to four fingers. As a result, multi-touch code 
often needs to track the state of GUI widgets and the state of the gestures. 

Although mouse-keyboard (desktop) interactive behaviors sometimes need to track 
gesture state to some extent [48], no widely used desktop gesture involves multiple 
mouse buttons. This means that developers typically only have to account for a few 
mouse states and a limited number of possible states for their interactive behavior. In 
fact, Amulet and Garnet’s interactor model defined a three-state state machine for 
every interactor, which was sufficient for most interactive behaviors on the desktop 
[106]. 

Further, because many touchscreen devices are smaller than the fully featured 
displays and keyboards that some desktop environments are designed for, space is 
more often at a premium. Multi-touch applications designed for mobile phone 
screens often need to invent ways to deal with the lack of screen real estate and the 
problem of potential occlusion by fingers over the application interface. This often 
means hiding and showing interface components depending on the interface’s state. 

6.1.2 Determining Touch Targets 
Another factor that increases the number of states that a particular multi-touch 
gesture needs is that event targets in multi-touch applications are typically harder to 
determine than in desktop applications. Typically baked into the event-callback 
development style is that events have a single intended target element, which can be 
determined immediately. 

However, in touchscreen applications this is not true for two reasons. The first is 
known as the “fat finger” problem. Unlike desktop applications, where the mouse 
pointer has specific x and y coordinates, on a touchscreen, the finger typically covers 
an area. When the user presses their finger, that area might cover multiple possible 
targets. Still, most touchscreen frameworks will reduce finger presses to a single x, y 
coordinate at the center of a finger’s area. Currently, the most common way of 
dealing with the fat finger problem seems to be to increase the size of typical 
touchscreen target elements. 

Developers face another difficulty in determining a finger’s target: multi-touch 
gestures often must wait for other events or a timeout before determining the 
intended target of a touch gesture, as the previous chapter discusses. This difficulty is 
more subtle, but potentially more difficult to deal with than the fat finger problem. 
In a typical desktop application, when the user presses their mouse curser on a 
particular element, their subsequent interactions (until they release the mouse 
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button) typically only involve that element. If the mouse leaves that element before 
the user releases the mouse (or the user presses ESC), then that operation can be 
cancelled. Thus, this interaction can be handled entirely within the context of that 
widget’s code, which, after the mouse presses down inside of its borders, will typically 
switch states when the mouse enters and leaves its borders. 

Imagine the same widget in a touchscreen application, however. Suppose a button 
exists in the context of a larger pane. If a user begins to perform a pinch-and-zoom 
gesture (whose target is the larger pane), they might begin by putting one finger 
down on the button. After some small delay (most applications will handle the case 
where all of the fingers involved in a pinch-and-zoom gesture do not necessarily 
touch exactly simultaneously), a second finger is pressed. In other words, the first 
button cannot determine that it was the desired target of the first finger until either 
that finger is released while over the button (which should result in a button press) or 
a second finger press occurs (which would result in a pinch-to-zoom). Analogous 
difficulties occur with swipe gestures and multi-finger gestures. 

6.1.3 Richer Gesture Features 
Although not necessarily inherent to touchscreen gestures, multi-touch gestures 
typically involve a richer set of features for than most mouse-keyboard gestures. 
Whereas the trajectory and velocity of a pointer rarely matters in desktop 
environments, the trajectory and velocity of the finger on a touchscreen often 
determines which gesture is being performed. Currently, most 2D scrollable 
interfaces determine which direction the user is scrolling (horizontally, vertically, or 
both) by the initial path that the finger takes after being pressed. 

Another dimension that seems to matter more in multi-touch applications than in 
desktop applications is timing. Desktop applications rarely perform different actions 
based on how long the user is holding down a particular mouse button (with the 
exceptions of multi-click and tooltips that appear when the mouse is idle after a 
timeout). However, this is common in multi-touch applications. Press-and-hold, for 
example, is a common gesture for bringing up context menus in touchscreen 
applications. For swipe gestures, the speed of the swipe is important for determining 
how fast the contents start scrolling. 

6.2 Motivating Example 

Currently, most touchscreen development frameworks require developers to define 
custom multi-touch gestures event listeners for low-level events: when a touch starts, 
moves, or ends. However, in a rich multi-finger gesture, it can be difficult for 
developers to translate these low-level events into higher-level features. To illustrate, 
suppose a developer is defining a simple two-finger press event. They start out with 
code to listen for two or more fingers down and call a function 
onTwoFingersDown, which will then be referenced in a larger gesture: 
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var numFingersDown = 0; 
     
window.addEventListener("touchstart",  onTouchStart); 
window.addEventListener("touchend",    onTouchEnd); 
window.addEventListener("touchcancel", onTouchEnd); 
 
function onTouchStart(event) { 
    var changedTouches = event.changedTouches, 
        oldNumFingersDown = numFingersDown; 
         
    numFingersDown += changedTouches.length; 
 
    if(numFingersDown >= 2 && oldNumFingersDown < 2) { 
        onTwoFingersDown(); 
    } 
} 
function onTouchEnd(event) { 
    var changedTouches = event.changedTouches; 
    numFingersDown -= changedTouches.length; 
} 

However, the developer quickly realizes that although this function does call 
onTwoFingersDown, it also fires when the user places two fingers down in slow 
succession. The developer decides that both fingers should be placed down within 
one second of each other in order to count as a two-finger press. From here, the code 
to classify a two finger press gets significantly more complex, requiring that the 
developer tracks the time that every finger goes down to determine whether their 
event should fire: 

var numFingersDown = 0, 
    fingerDownTimes = {}, 
    maxTouchInterval = 1000; 
     
window.addEventListener("touchstart",  onTouchStart); 
window.addEventListener("touchend",    onTouchEnd); 
window.addEventListener("touchcancel", onTouchEnd); 
 
function onTouchStart(event) { 
    var changedTouches = event.changedTouches, 
        oldNumFingersDown = numFingersDown; 
         
    numFingersDown += changedTouches.length; 
     
    for(var i = 0; i<changedTouches.length; i++) { 
        var touch = changedTouches[i]; 
        fingerDownTimes[touch.identifier] = getCurrentTime(); 
    } 
    if(numFingersDown >= 2 && oldNumFingersDown < 2) { 
        var everyTouchWasInTime = true; 
         
        for(var touch_id in fingerDownTimes) { 
            var time_down = fingerDownTimes[touch_id]; 
            if(getCurrentTime() - time_down > 
maxTouchInterval){ 
                everyTouchWasInTime = false; 
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                break; 
            } 
        } 
         
        if(everyTouchWasInTime) { 
            onTwoFingersDown(); 
        } 
    } 
 
} 
function onTouchEnd(event) { 
    var changedTouches = event.changedTouches; 
    numFingersDown -= changedTouches.length; 
    for(var i = 0; i<changedTouches.length; i++) { 
        var touch = changedTouches[i]; 
        delete fingerDownTimes[touch.identifier]; 
    } 
} 

Further code would be needed to allow users to perform multiple two-finger gestures 
(right now, if the user presses four fingers, only one two-finger press registers), to 
specify any distance constraints between the two fingers (right now, the two fingers 
could be on opposite edges of the screen). Further, if the two finger push is part of a 
larger gesture, then the developer might also need to write code to track the 
movement of the two fingers, which involves writing code to aggregate touchMove 
events while ensuring that neither of the fingers is released. 

6.3 Integrating Multi-Touch with InterState 

The primary design goal of InterState’s multi-touch extensions was to allow 
developers to quickly specify feature-rich touch events and abstract away as many of 
the low-level details as practical. I started with pilot studies where I asked four 
developers to define (on paper) the state machines for various multi-touch gestures 
and define any high-level events they found helpful in order to do so. Through these 
pilot studies, I found two areas where multi-touch development tools can help 
developers by exposing higher-level touch-events. First, when a multi-touch gesture 
involves multiple fingers moving in synchrony (such as in a two-finger tap where 
both fingers will be pressed and released around the same time and in the same 
area), participants in my pilot studies naturally grouped these two fingers into a 
single touch event that summarized the information of both fingers. This is not 
possible in current multi-touch development frameworks, so to explore ways to allow 
developers to declare multi-finger touch events in InterState, I designed and 
implemented touch clusters. Touch clusters are InterState objects that summarize 
information about a given set of fingers. Section 6.3.1 will detail touch clusters. 
Second, as I will further describe in section 6.3.2, multi-touch gestures often 
reference the path or direction that a finger (or set of fingers) take. However, it can 
be difficult to extract a higher-level path from the series of “touch move” events that 
nearly every multi-touch framework uses. Thus, InterState introduces crossing events as 
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a way to help developers define multi-touch gestures that reference the path or 
direction that fingers move. 

6.3.1 Touch Clusters 
InterState’s touch clusters allow developers to abstract away many of the 
implementation details that are challenging to handle in other systems when 
programming touchscreen gestures. Touch clusters are richer summaries of multi-
finger gestures than the standard touchstart, touchmove, and touchend events 
currently enable. Touch clusters let developers work with touch events that involve 
any number of fingers (including one) moving in synchrony. 

The two-finger touch example in the previous section showed how difficult even 
simple multi-finger touch classification can be. Touch clusters allow developers to 
specify that they want events to fire when a given number of fingers are pressed in a 
given area. The developer can then treat this set of touches as a single cluster, which 
has a position (at the center of all the touches), rotation (if the touch cluster involves 
more than one touch), and scale (again, if the touch cluster involves more than one 
touch). Touch clusters aim to abstract away the most common parameters of multi-
touch gestures, including the number of fingers, how close (in position and in time) 
the fingers must be, and where they can be. 

Although the details that touch clusters abstract away are intended to be features 
that developers rarely care about, there are still situations in which these minutiae 
can be important. For example, a developer might be interested in the position of 
one specific finger involved in a multi-finger touch event. Developers can do this by 
specifying a separate non-greedy one-finger cluster for the particular touch they are 
interested in. 

Greedy and Non-Greedy Touch Clusters 

Although touch clusters can be effective in summarizing touch events that involve 
multiple fingers moving in synchrony, they also introduce potential ambiguities. For 
example, suppose a developer defines one three-finger touch cluster (anywhere on 
the screen), and three one-finger touch clusters (for different places on the screen). By 
default, when the user presses three fingers down in the target areas for the three 
one-finger clusters, all four event clusters will fire, as shown in Figure 6.1.  
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Figure 6.1 The default, “non-greedy” behavior for touch clusters is that every touch cluster can claim 
the same fingers. For instance, suppose a developer defines one three-finger touch cluster 
and three one-finger touch clusters across different elements in an interface. With non-
greedy behavior, when the user presses three fingers down, all four touch cluster activation 
events would fire. 

In Figure 6.1, all four touch clusters would fire. However, this is not always the 
desired interaction between touch clusters. Thus, another design consideration for 
touch clusters was how they should interact with each other. Touch clusters allow 
developers to customize this behavior with a “greedy” field that specifies whether a 
given touch cluster should allow other touch clusters to use the same fingers it uses. 
An example of this greedy behavior is illustrated in Figure 6.2. 

 

Figure 6.2 Like in Figure 6.1, here the developer has defined one three-finger touch cluster and three 
one-finger touch clusters. However, the developer has specified that the three-finger touch 
cluster should be “greedy”, so that other touch clusters should not fire with any of the 
touches used. In this case, when the user presses three fingers down, only the three-finger 
touch cluster will fire. 

The “greedy” property can be used in conjunction with the event delay feature to 
resolve many of the common conflicts between multi-finger gestures. The delay 
feature allows touch clusters to delay before confirming the event and wait for 
another touch cluster to register. In InterState’s current implementation, these touch 
clusters are greedy relative to all other touch clusters (without respect to the groups 
described in the previous chapter). 
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Settable Parameters 

The full set of parameters that a developer can use to customize a touch cluster is 
listed below: 

• downInside: elements or arbitrary drawn shapes that every finger of the 
touch cluster must be down inside of, which can be thought of as the event 
target (even if it is not a visible interface element). The default value for this 
is false, meaning the touch event will fire regardless of where on the screen 
the user presses. 

• downOutside: elements or arbitrary drawn shapes that every finger of the 
touch cluster must be down outside of. The default value for this is false, 
meaning the touch event will fire regardless of where on the screen the user 
presses. 

• numFingers: the number of fingers that must be pressed in order to 
activate this touch cluster. This field allows developers to define one-finger 
and multi-finger touch clusters. The default value for this is 1. 

• maxRadius: the maximum distance between individual  fingers (note that 
this is independent of downInside). This field allows developers to declare 
that touch events that are far apart distance-wise should be considered 
distinct. The default value for this is false, meaning that if numFingers is 
greater than 1, those fingers can be any distance apart and the event will 
fire. 

• maxTouchInterval: The maximum time between the first and last 
element of this touch cluster. This field allows developers to declare that 
touch events that are far apart time-wise should be considered distinct. The 
default value for this is false, meaning that if numFingers is greater than 
1, there is no limit to how spread out (time-wise) the user’s touches can be. 

• greedy: whether or not to “claim” a touch, as described above. 
• cross: a path crossing event (explained in the next section of this chapter). 

 
The numFingers parameter for touch events define the minimum number of 
simultaneous touches a user must press for that touch event to register. When the 
user presses more than that specified number, the touch cluster only uses the first 
N=numFingers touches. Touch clusters can also be combined with the priorities and 
delays described in Chapter 5 to allow a developer to define a touch cluster that only 
fires when the user has exactly N fingers down, for example so that a 4-finger tap does 
not trigger a 3-finger cluster. The brushes panel example described in section 6.4.2 
below illustrates how to resolve potential conflicts like this.  

Outputs 

Touch clusters summarize multiple fingers in the context of one object, allowing 
developers to write simple constraints and events that depend on many of the most 
relevant properties of the group of fingers. A touch cluster’s position is defined as the 
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average of every finger involved in the touch cluster. Every touch cluster also 
includes other outputs, listed below: 

• startX, startY: where the touch cluster started on the screen (the location 
of the first finger to go down). 

• x, y: when a touch cluster is active, the location of the cluster’s centroid 
(average location of all of the fingers in that touch cluster). 

• endX, endY: after the user releases any of the fingers involved in a touch 
cluster, these parameters are set. 

• scale, endScale: the scale is measured as the average distance (in 
percentage) from every finger to the cluster centroid, relative to where they 
started. 

• rotation, endRotation: the rotation (in radians) is measured as the 
change in the average angular offset (around the centroid) of every touch. 

6.3.2 Path Crossing Events 
As discussed earlier in this chapter, many multi-touch gestures depend upon the path 
that touches take (see [69,77,147] and the examples described in section 6.4 below). 
For example, many touchscreen scrolling interfaces determine if a user’s finger is 
moving vertically, horizontally, or diagonally to determine which direction to scroll 
in. Implementing these behaviors using only touch move events can be difficult, 
particularly if the behavior involves multiple fingers. In fact, many multi-touch 
classifiers use machine learning to abstract away these details [89,90,164]. 

InterState instead allows developers to define crossing events that fire when a touch 
cluster (describe above) moves across a path that the developer specifies. Similar 
ideas have been explored in the context of end-user interfaces [1] and a less general 
version for prototyping interactions [76]. However, InterState’s crossing gestures are 
more expressive. 

First, InterState’s crossing events allow developers to use custom, dynamic paths. 
Enabling these paths to be dynamic allows developers to define events relative to 
other interface elements or touch event locations. For example, in determining if a 
user is swiping left or right with two fingers, the developer can define a two-finger 
touch cluster and define (hidden) lines immediately to the left and right of where that 
finger starts. If the touch cluster crosses either of those lines, a state machine can 
change state depending on the swipe direction. A developer can also specify that a 
press and hold gesture should be aborted if the user moves their finger too far. They 
can define “too far” by drawing a circle around where a touch cluster starts and 
transitioning the gesture back to the default state if the user’s finger crosses that 
circle. 

InterState’s path crossing events also allow developers to specify the minimum and 
maximum speeds that a user’s finger must have for that crossing event to fire. For 
example, a crossing event defining swipe gesture might require that a user’s finger is 
travelling with sufficient velocity to register. By default, both the minimum and 
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maximum speed parameters are false, meaning that the crossing event will register 
at any speed. 

Finally, by integrating these crossing events into InterState’s state machines, 
InterState allows them to be used in the context of a larger multi-touch gesture. This 
leverages state machines’ ability to track an interface’s state to allow crossing gestures 
to be enabled and disabled by state. 

6.4 Touch Gesture Examples 

In order to better illustrate how the touch primitives presented by InterState can be 
used to create custom touch gestures, this section describes the implementation of 
three example gestures. For each of these gestures, I will begin with a diagram of the 
gesture’s behavior and describe its implementation graphically and with InterState 
objects. 

6.4.1 Nudgeable Numerical Selectors 
“Nudgable” numerical selectors augment standard numerical text entry on 
touchscreen phones and tablets by allowing a user to nudge a numerical input to the 
left or right to increment or decrement the value. As usual, users can still tap the 
numerical input to invoke the numerical keyboard. An illustration of the mechanics 
of this widget is shown in Figure 6.3. 
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Figure 6.3 In most multi-touch devices, when a user taps a numeric input field, a numeric keypad is 
invoked. In this example, I augment that interaction to allow a user’s finger to also “nudge” 
the numeric slider left or right to select a number slightly lower or higher than the current 
value. Implemented with InterState’s touch extensions, this example uses path crossing 
events to determine if the user’s finger is moving horizontally or tapping the widget. 

Using InterState’s touch primitives, a developer can implement this example by 
defining two lines immediately to the left and right of a touch cluster inside of the 
numerical input (and optionally defining them as hidden so they are not visible in the 
user interface). If the user’s finger crosses either of these lines, the widget enters 
“nudging” mode and sets a constraint so that the incrementing value depends on 
how far the finger has moved from its original location. My implementation of this 
widget uses three states, as shown below:  
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Here, the touchEvent object represents a touch cluster inside of the numerical 
selector. The crossEvent fires when the touchEvent moves horizontally (and 
enters sliding mode). When the numerical selector enters sliding mode, every 100 
milliseconds (the timeout(100) self-transition), the value increments based on how 
far the touch is from the slider’s original x position. 

6.4.2 Determining Panel Behavior by the Number of Fingers 
I also implemented the multi-touch gesture illustrated in Figure 6.4. This example, 
based on a drawing application, allows users to drag multiple panels from the bottom 
of the screen. Users can use different numbers of fingers to select which panel they 
invoke. For example, a one finger swipe from the bottom might invoke panel of 
different brush sizes whereas a two finger swipe from the bottom might invoke a 
color selection panel.  

 

a one-finger swipe 
from the bottom brings 

up the brush menu

a two-finger swipe 
from the bottom brings 

up the color menu
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Figure 6.4 In this example, the user can swipe one finger up from the bottom of a touchscreen to invoke 
a brushes menu or they can swipe two fingers from the bottom of the screen to invoke a 
colors menu. If the user swipes up, the menu is docked (stays in place after the user 
releases). If the user swipes down, the menu hides. While the user is swiping, the menu 
follows the finger. InterState uses the event conflict management system described in the 
previous chapter to differentiate between one-finger and two-finger swipes. 

One challenge of implementing this example in most touch toolkits is differentiating 
between one and two finger swipes. If the developer does not account for conflicts 
when the user performs a two-finger swipe from the bottom of the screen, both 
panels would appear. When implemented with InterState’s touch primitives, 
however, this conflict is easily resolved. The one-finger touch event has a delay of 
100 milliseconds to wait to see if a second finger goes down before firing, and the 
two-finger touch event is greedy to prevent both events from firing at once: 

  

After either of these touch events fires, the selected panel enters “dragging” mode 
where it follows the activated touch cluster. A crossing event determines whether the 
panel will be docked or visible after the user lifts their finger. The state machine for 
the brushes panel is shown below (the colors panel’s state machine is analogous): 

 

6.4.3 A Multi-Finger Gesture for Undo and Redo 
This example implements a three-finger gesture to allow users to easily undo or redo 
on a tablet (or more generally, navigate backwards or forwards through some 
dimension). Currently, the most common interaction technique for undo/redo in 
multi-touch devices is through standard buttons or by shaking the whole device. 
Some applications also allow a user to shake the device or swipe from the left edge to 
undo an edit. 

As a useful global shortcut to undo or redo changes, I implemented the gesture 
illustrated in Figure 6.5 using InterState’s touch primitives. In this gesture, the user 
presses two fingers down (assumed to be the middle and ring finger) and can then 
press to the left of those two fingers to undo. Pressing on the right side of those 
fingers will instead redo the last change. 
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Figure 6.5 This example represents an undo/redo (or more generally, back/forward) mechanism for 
tablet applications. The user first presses down two fingers (in the diagram shown, the index 
and ring fingers) and presses a third to the left to undo or a third finger to the right to redo. 
To prevent conflicts with panning and scrolling gestures, this undo/redo gesture also cancels 
if the two finger centroid moves or scales past a low threshold. 

This example can be implemented by first creating a greedy two-finger touch cluster 
to detect the first touch event. The undo and redo pressable areas can then constrain 
their position to the left and right of that two-finger touch cluster: 

 

I then define an undo event that fires when the user presses a third finger inside the 
left rectangle and an analogous redo event for the right rectangle. 

6.5 Conclusion 

Although these multi-touch primitives are implemented in InterState, they could also 
be implemented in the context of imperative multi-touch development frameworks. 
Touch clusters and path crossing events can be represented as parameterizable 

the user presses 
two fingers down

the user taps on the 
right side to redo

the user taps on the 
left side to undo
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objects in any general-purpose language. Although many of the features of touch 
clusters and path crossing events benefitted from being implemented in the context 
of a constraint-enabled language, they could be translated into event-callback 
systems by firing events when computed attributes of the touch cluster change or 
when the path crossing event fires.  

Taken as a whole, InterState’s multi-touch development primitives abstract away 
many of the details that developers rarely care about when writing multi-touch 
gestures to enable higher-level events than most multi-touch development 
frameworks. For example, when a gesture involves two fingers moving in synchrony, 
the developer does not need to specify the minutia of determining which finger came 
down first or every location they moved before determining which direction they are 
swiping. InterState’s touch primitives also aim to help developers manage many of 
the common types of conflicts that occur in multi-touch development. 
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7 Limitations and Future Work 

ConstraintJS and InterState both focus on a specific domains and specific intended 
audiences. This chapter discusses a number of related research areas and feature 
improvements we have considered for ConstraintJS, InterState, and related tools. 

7.1 Scope 

This section further describes the scope of both tools and considerations for how the 
ideas behind both tools might apply in other domains and across audiences. 

7.1.1 Application Areas 
The combination of states and constraints that ConstraintJS and InterState use as 
their computational model was designed for defining user interface code, rather than 
general-purpose code. I believe that standard imperative languages are often more 
understandable for computational-oriented code (code where the primary goal is to 
compute a value). For example, a developer might not want to implement a sorting 
algorithm in InterState’s state-constraint primitives, but they might want to reference 
it to sort a list in the context of a sorted UI list. It is important to be able to connect 
this computational-oriented code with user interface code correctly, which is why 
both ConstraintJS and InterState include mechanisms for communicating with code 
written in computational-oriented languages. 

Similarly, ConstraintJS and InterState work best with stateful applications, where an 
application’s appearance and behavior depends upon its state. I believe the event-
callback paradigm can be more effective when 1) an interface is not stateful and 2) 
the effect of most user actions is to update property values rather than change state. 
In effect most of the problems with event-callback code described in this dissertation 
apply when callbacks have to track and maintain a consistent state.  Although this is 
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the case in most graphical user interfaces, there is one particular class of non-state 
oriented interfaces that I have encountered: video games. In video games, the effect 
of user input (such as button presses or joystick movement) is often to increment the 
position of a sprite or perform some other action rather than changing the state of 
the game. As the InterState implementation of Breakout (described in section 4.9.1 
above) shows, InterState can implement such behaviors. However, Breakout 
involved a number of self-transitions that updated variable states (for example, when 
the user presses the left arrow, move the paddle to the left). Although InterState’s 
visual notation is capable of handling large numbers of self-transitions like this (as 
Figure 4.10 shows), it is not yet optimized for doing so. 

7.1.2 Touchscreen Drawing Gestures 
Chapter 6 describes InterState features to help developers create custom multi-touch 
gestures. However, most of the aspects those features are intended to help developers 
deal with the timings of multi-touch gestures. They do not, however, deal with 
“drawing” gestures where users draw a letter or shape in order to perform an action. 
Such gestures are usually created and classified using machine learning algorithms 
from examples rather than requiring that developers program gesture classifiers by 
hand [90,164]. Although drawing gestures have become less prevalent in 
touchscreen applications, they are becoming increasingly popular in 3D motion 
sensing devices. Future versions of InterState could investigate ways to support such 
drawing gestures. One way to incorporate these types of gestures would be to create 
an attachment (see section 4.10.4 above) that allows developers to create these 
gestures by demonstration and incorporate a gesture recognizer.  

7.1.3 Input and Output Mechanisms 
ConstraintJS works with any of the event types that are exposed by the browser 
runtime in which it is executing. If that runtime exposes stylus events, for instance, 
developers can write transitions that reference stylus events. However, event 
conventions or library APIs that are designed for imperative contexts do not always 
translate well to declarative environments. For example, Chapter 6 described 
primitives for expressing touchscreen gestures in InterState. Without these 
primitives, developers could express touchscreen gestures with touchStart, 
touchMove, and touchEnd events but the state machines for expressing multi-
touch gesture would quickly grow unwieldy and difficult to understand. Avoiding 
this required creating primitives to concisely express higher-level touchscreen events 
using fewer transitions and states. Another benefit of building such primitives was 
that the editor and runtime environment could also display information to help 
developers debug their multi-touch gestures. The same principles might apply in 
many other input and event domains, including body or around-device gestures. 

Conversely, InterState’s features can also be adapted for different output mediums. 
Although we have only fully implemented mechanisms for creating SVG and DOM 
objects with InterState primitives, I have conducted preliminary experiments to 
explore creating 3D renderings (using a WebGL-enabled canvas) and HTML canvas 
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drawings. As is the case with alternate event types, designing for different output 
mediums requires carefully exploiting API mechanisms that were intended for 
imperative environments into a declarative APIs. 

7.2 Tools for Non-Developers 

The laboratory studies I have conducted with InterState have focused on users with 
some development experience. Specifically, I recruited participants who had taken at 
least one collegiate-level programming course. Although this bar is low relative to 
other tools for writing custom GUI behaviors, it still excludes many end-users who 
might benefit from GUI development tools, including many interaction designers 
and graphic designers. However, some of the ideas behind InterState might 
eventually allow users with no programming experience, or with some spreadsheet 
familiarity to create custom interactive behaviors. In order to further lower the bar 
and allow more non-developers to write GUI code with InterState, there are several 
immediate difficulties to address. 

7.2.1 Constraint Syntax 
One of the first areas to address is the syntax for expressing constraints, which 
InterState uses for cells, transition events, and objects’ copies field. First, I found 
that in pilot studies, participants often omitted quotation marks when expressing a 
string literal constraint. This was common when specifying colors (mistakenly 
entering yellow instead of "yellow"; the former expression represents a constraint 
to the value of a field named “yellow.” It was also common when specifying the 
values for text fields (for example, the text content of a DOM node). For the studies 
described in section 4.8 above, the InterState learning materials included this 
distinction and participants were able to quickly correct their constraint expressions 
due to instantaneous error reporting (see 4.7.3 above).  

Still, it would be best to address this error in the editor’s paradigm itself rather than 
in documentation materials. One potential way to address it would be to add 
features to the editor that would infer a developer’s intent (either based on constraint 
values or on the semantics of the field). Another would be to treat constraints that 
reference non-existent fields (yellow in the previous example) as string literals. 
Alternatively, this issue could be mitigated by incorporating direct manipulation 
features (see section 7.8 below) to allow users to express these constraints by directly 
modifying objects’ colors and text in the runtime window. 

Second, although the current syntax for expressing constraints in InterState is 
natural for mathematical expressions, such as width*2 or mouse.x - offset_x, 
it could be improved for many kinds of complex expressions. In particular, 
constraint expressions that reference other fields can be unintuitive for non-
developers. For example, consider the constraint expression: other_obj[this.
prop_name], which evaluates to the value of the field in other_obj whose name is 
the value of this.prop_name. Writing this expression requires understanding the 
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idea of dynamically specified fields (how other_obj[this.prop_name] is entirely 
different than other_obj.this.prop_name) and a careful consideration of 
scoping rules. It also requires knowing the correct syntactic conventions (periods and 
square brackets) and knowing when to properly close square brackets (how 
other_obj[this.prop_name] is also entirely different than other_obj.this[
prop_name]). Analogous issues exist with function call expressions. It is possible 
that the commonalities in how non-programmers describe such expressions could 
help guide the design of a more beginner-friendly syntax [132]. The InterState 
editor could also help developers write and understand constraint expressions 
through auto-complete features (see section 7.7.1 below), by highlighting referenced 
fields as developers enter constraint values, and by allowing developers to point to 
the fields they want to reference. 

7.2.2 Expressing States and Transitions 
In pilot studies, participants who were not familiar with state machines also faced a 
significant learning barrier: first in understanding the nature of states, transitions, 
and events; then in correctly specifying objects’ state machines. Again, there is 
potential for the InterState editor to help non-developers specify state machines and 
understand the flow of events through an application. In particular, one way 
InterState’s editor might help non-developers author and understand state machines 
is by allowing them to author state machines by demonstrating the events and 
transitions to which their interactive applications should react. Such an approach 
might help non-developers correctly structure their state machines and correctly 
author transition event constraints, which are subject to the challenges described in 
the previous sub-section. 

7.3 Pre-Supplied Widgets 

As Chapter 1 describes, one way to address the problem of simplifying the 
development of interactive behaviors is to simply provide pre-built widgets. 
However, InterState and ConstraintJS are intended to explore ways to simplify the 
behaviors when such pre-built widgets are not available. For this reason, the focus of 
this dissertation work has been to provide primitives for writing interactive behaviors 
from scratch, rather than exploring the space of pre-built widgets. 

In practice, providing such a widget library would be a crucial factor in how quickly 
new developers can write InterState code. Ideally, developers would be able to easily 
incorporate pre-built widgets, such as scroll bars and buttons, into their code and 
modify the implementation of these widgets to customize their behavior. Such 
widgets could be called clear box widgets. In contrast with the black box widgets 
provided by most interface builders, which can be re-used but not easily modified. 
As a starting point, I have implemented re-usable widgets for buttons, radio buttons, 
checkboxes, lists, and text inputs.  
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7.4 Debugging Tools 

Although this dissertation places more emphasis on the development primitives than 
the tools for debugging these primitives, this emphasis does not reflect the relative 
importance of the two. Debugging is a crucial part of any development process and 
the debugging tools available to a developer can greatly influence the quality of their 
resulting code. The designs for debugging tools for ConstraintJS and InterState 
would likely look quite different, to reflect the particular challenges of debugging 
interpreted imperative code and live declarative code. 

7.4.1 Debugging ConstraintJS Code 
Perhaps the most difficult aspect of ConstraintJS to debug is the dependency graph. 
ConstraintJS relies upon the dependency graph, which indicates dependencies 
between constraints, to determine the minimal set of constraints whose values must 
be invalidated. This, in turn, determines whether values need to be recomputed, if 
change listeners should be called, and when to update a template’s output. However, 
because it is automatically generated and maintained, it can be difficult for 
developers to understand the dependency graph, how it changes over time, and how 
it affects their running program. For example, in the code segment described “A 
Note on Non-Constraint Variables” section above, a developer might need to debug 
and understand why changing should_compute does not update 
my_constraint. A snapshot of the constraint network might help them understand 
why (in this case, because should_compute was not a constrainable variable). 

As the ConstraintJS chapter discusses, however, library size is an important 
consideration for JavaScript libraries. Thus, tools to help developers understand and 
debug the dependency graph would ideally be created outside of the core 
ConstraintJS library. In writing applications on top of ConstraintJS, the most 
common types of difficulties I encountered dealt with determining why paths 
between constraint nodes in the dependency graph existed or did not exist. Thus, it 
might not be necessary for debugging tools to give users a complete overview of the 
complete dependency graph, but only the most relevant parts. 

7.4.2 Debugging InterState Code 
The InterState editor includes some features for debugging: displaying field values, 
highlighting state changes, and breakpoints on transitions. However, there are still 
several aspects of InterState that have proven difficult for users to understand or 
debug. First, field references can be difficult to understand and debug; understanding 
the way field expressions in constraint expressions can navigate up the constraint 
hierarchy. Also, future versions of InterState could also help developers better 
understand its internal event mechanism (described in Chapter 5 above), for 
example, by providing an overview of events that are fired, overridden, and blocked. 
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7.5 Animations 

Animation is an important part of many user interfaces. Many of the designers who 
participated in the workshops and studies that motivated ConstraintJS and Interstate 
expressed a desire for highly nuanced, carefully timed animations [129]. Although 
ConstraintJS and InterState both include mechanisms for animating visual changes 
in objects, they still do not provide mechanisms that make it easy to carefully control 
animation paths and timings. Previous work has shown that constraints provide an 
easy and natural way to express animations [29,100]. 

Additionally, the visual layout of InterState might eventually provide a natural way 
to express animations. Because InterState represents visual properties as rows, future 
versions could enable a “timeline view”, as found in Adobe Flash Builder and related 
tools. Such a timeline view would represent animations as horizontal bars that can 
be delayed, shortened or extended by manipulating those bars. 

7.6 Annotations 

Annotations are important for developers and designers alike. Designers often 
annotate prototypes to communicate design rationales or important aspects of their 
designs [40]. Developers also annotate (or comment) their code in order to facilitate 
understanding and re-use. InterState, however, does not currently include a 
mechanism for annotating objects in its visual notation. In fact, few visual 
development environments have considered how annotations or comments could be 
integrated into visual languages. Among those that do are LabView [114], which 
displays comments as 2D boxes in their visual editor and a number of spreadsheet 
tools, which allow comments to be placed on individual cells. However, adding 
support for annotation could facilitate learning and help developers re-use and 
customize other developers’ widgets and interactive behaviors. 

One interesting possibility for visual editors is the possibility for interactive annotations. I 
have explored interactive annotations in previous work [125]. The idea is that in 
addition to simply providing a widget, an example creator might be able to provide 
interactive documentation to help other developers customize their example widget. 
For example, interactive documentation for a touchscreen gesture widget might 
visually illustrate specific features of that widget and allow developers to customize 
the touchscreen widget in the context of that interactive documentation. 

7.7 InterState Editor Feature Extensions 

I have also considered a number of features that might improve the InterState 
editor. Some of these features (such as auto-complete) are relatively straightforward 
engineering challenges while others propose more fundamental changes to the way 
that the editor displays InterState code. 
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7.7.1 Auto-complete 
One of the features participants in the InterState laboratory study requested in post-
study surveys was autocomplete. Autocomplete may help reduce some of the 
syntactic challenges non-developers face when using InterState, as described in 
section 7.2 above. It also helps developers quickly determine which field names are 
valid without needing to fully navigate to other InterState objects. 

7.7.2 Integration with Imperative and Textual Code 
InterState allows developers to write imperative code by writing custom functions as 
cell values (as discussed in section 4.4.3 above). These methods are primarily 
intended to enable constraint expressions that involve more computation than can 
be expressed in a single expression. Still, there might be better ways to incorporate 
standard imperative JavaScript with InterState’s execution model. When the timing 
of the method call matters (such as when the method includes side-effects), future 
versions of InterState could make it easier for developers to specify and understand 
when these methods are called by the InterState runtime. 

The InterState editor could also make it easier to incorporate InterState objects in 
the context of a larger imperative codebases when an interface involves significant 
amounts of imperative code. This might also be useful in helping developers create 
applications that involve input and output devices that InterState does not yet 
support. As mentioned in section 4.10.4, when creating new input and output 
models, a developer would need to use “attachments” as part of the InterState 
runtime. Future versions of InterState might allow developers to add new output and 
input types in the context of the InterState editor. 

7.7.3 Supporting the “Push” Model 
In InterState’s programming model, the only way for developers to set a field’s value 
is by entering a constraint for that field for a particular state or transition (so values 
are always “pulled” to the current cell). In contrast, event-callback code allows 
developers to set any field’s value in any callback (which contributes to the spaghetti-
code problem). For instance, suppose clicking on a button called button should set 
the field my_obj.is_pressed to true. Doing this in InterState would require that 
either my_obj’s state machine includes a transition for when button is pushed or 
that the field my_obj.is_pressed references another object whose value changes 
to true when button is pressed. Event-callback code would allow developers to set 
my_obj.is_pressed in an event listener for button. 

In InterState’s initial pilot studies, some participants had trouble understanding how 
to use InterState’s convention. One way to rectify this without losing the benefits of 
InterState’s model (that every possible value for a field is visible in a row) is by 
adding editor features that allow developers to set fields in other objects. This could be 
done by enabling the editor to show the rows for objects under the transition 
diagram of a different object. In the previous paragraph’s example, this would mean 
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allowing a developer to edit the row that defines the value of my_obj.is_pressed 
while looking at the state machine for the button object in the editor. Although this 
convention would not increase the expressiveness of InterState’s state constraint 
paradigm (because state machine transitions can refer to other objects, which is 
functionally equivalent) it might make it easier to express events that affect different 
objects. This convention can be implemented as a “convenience view” in the editor 
that does not change InterState’s internal program model while still allowing 
developers to work in a style where they can set values anywhere. 

7.7.4 State Machine Sharing 
Another feature that I have found in writing applications using InterState that might 
be useful would be the ability to more easily reference other objects’ state machines. 
For example, for behaviors that involve multiple parts in a hierarchy, child objects 
might be able to share state machines with their parent objects (the actual state 
machine rather than a copy, as is used in inherited state machines). Although sharing 
state machines amongst InterState objects is currently supported by the InterState 
runtime, the editor currently does not have any technique for allowing developers to 
make use of it. This is because sharing state machines between objects might be a 
source of confusion. Just like the techniques described in the previous sub-section for 
supporting the “push” model for setting field values, this feature might be made 
visible in the editor while preserving InterState’s current runtime model. 

7.8 Direct Manipulation 

InterState is situated somewhere between traditional development tools (IDEs) and 
design tools (sketching applications). One reason that design tools are considered 
more learnable and accessible for non-developers is that they enable direct 
manipulation. Designers can create elements by drawing them, move elements by 
dragging them, change their dimensions by resizing them visually, etc.  By contrast, 
in InterState, as in most coding tools, developers move objects by changing the 
expressions in the fields that control their positions, resize them by changing the 
expressions in their dimension fields, etc. Development tools like Self [145] have 
touted directness as a way to lower the barriers to allow non-developers to write 
code. 

I have conducted preliminary investigations into better supporting direct 
manipulation in InterState. CMU undergraduate student Sukhada Kulkarni helped 
write an experimental version of the InterState editor that allows developers to enter 
a “design mode” in the runtime and edit the constraints that control graphical 
objects’ displays directly. Future versions of InterState could also allow designers to 
write constraints through demonstration [107] by inferring constraints. 

Another way to better enable non-programmers to create interfaces with InterState 
would be to integrate InterState with creative tools like Photoshop. This way, 
designers could specify an interface’s appearance with Photoshop and its behavior with 
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InterState. I have conducted preliminary investigations into this idea, with an early-
stage mockup tool that integrates with Photoshop [124]. 

7.9 Better Support for Exploration 

Exploration is a crucial part of the design process. Generally speaking, one way to 
better support exploration is by making changes easier to undo than the standard 
undo/redo mechanism that InterState’s editor currently uses. This way, developers 
can try an experimental feature and revert their changes if the experimental feature 
does not work. It is even possible that knowing that they will have a way to recover 
from errors will make developers more likely to try experimental features and 
perhaps even increase their creativity. Previous research has explored how to better 
support exploration in the context of textual code [46,167]. 

7.10 Referencing Web Services in InterState 

Although ConstraintJS contains several mechanisms that make it easy to 
communicate with Web services, such features are mostly missing in InterState. 
Currently, the only way to communicate with a third-party Web service in InterState 
is to create a ConstraintJS object in JavaScript and then reference it in an InterState 
field. However, other research [25] has shown how spreadsheet models can 
reference Web services. These ideas could be incorporated into a future version of 
InterState to allow developers to easily read Web streams in the graphical 
applications. 

7.11 Conclusion 

There are many promising areas for future work in ConstraintJS and InterState. 
Both tools are promising initial explorations for how development tools can 
incorporate states and constraints to improve user interface programming. There is 
still potential future work to make these primitives more understandable, to better 
integrate with existing paradigms, and to extend it for new application areas. 
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8 Conclusion 

In all, this dissertation contributes a framework for defining interactive behaviors by 
combining constraints and states; evidence that this framework can help developers 
define interactive behaviors in imperative code; a JavaScript library (ConstraintJS), 
visual notation, and live editor (InterState) for this framework; evidence that the live 
editor’s representation of interactive behaviors is more understandable than event-
callback code; and extensions to the state constraint framework for defining multi 
touch gestures and custom events. 

This dissertation illustrated how combining states and constraints can lower the 
barriers to creating custom interactive applications by addressing many of the 
difficulties developers have while creating interactive software. In particular, the state 
constraint framework can help developers maintain nuanced and complex 
relationships in user interface code by increasing the expressiveness of the types of 
constraints developers can declare. 

ConstraintJS, the first tool to enable this state constraint framework, can be included 
in any JavaScript application without browser modifications and it can interoperate 
with other JavaScript libraries. By integrating constraints and FSMs, ConstraintJS 
can help simplify the development of interactive behaviors. In fact, many interactive 
behaviors can be built entirely as a combination of FSMs and constraints, which can 
both be specified declaratively, without extra JavaScript code. ConstraintJS 
information is available at http://cjs.from.so/. 

InterState builds on the state constraint framework by introducing a visual notation, 
live editor, and mechanisms for behavior reuse: behavior inheritance and 
templating. The comparative laboratory study described in section 4.8 also showed 
that InterState and its visual notation are effective in helping developers write and 
understand interactive behaviors relative to traditional event-callback code. 
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InterState shows how innovations in the execution model, combined with a visual 
notation and live editor, can work together to express many custom interactive 
behaviors without writing imperative code. InterState also introduces an event 
architecture that allows developers to create and re-use events and define custom 
multi-touch gestures. InterState also shows the value of putting these ideas together 
into a single cohesive programming framework. InterState information is available at 
http://interstate.from.so/. Finally, the example applications and scalability analysis 
described in section 4.9 and the example applications built with InterState’s multi-
touch gesture extensions (describe in section 6.4) show how InterState and its 
implementation of the state constraint framework can scale to implement nuanced 
and complex interactive behaviors. 

Taken as a whole, this dissertation represents an effort to improve the fundamental 
development primitives for writing custom interactive behaviors. As I discussed in 
the Introduction, many tools have addressed the challenge of making interactive 
behaviors easier to create by providing widgets—pre-built customizable behaviors. 
Pre-built widgets are an important part of the solution to making developing 
interactive behaviors more accessible. However, pre-built widgets do not represent 
the whole solution because inevitably, widget creators will never be able to anticipate 
all of the behaviors or dimensions of customization that developers might want. 
Thus, it is important to also make their underlying representations understandable 
and customizable. I hope that the state constraint framework introduced in this 
dissertation represents a step towards a more understandable representation. 
Although I incorporated the state constraint framework into two tools (ConstraintJS 
and InterState), the development framework is more general than the specific tools 
that use it. Ultimately, I hope that ConstraintJS, InterState, and other tools that use 
the state constraint framework represent a step towards enabling more users to 
create and customize user interfaces. 
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Appendix A ConstraintJS Tutorial 

This appendix contains the current official ConstraintJS Tutorial (as of Spring 2015). 

A.1 Introduction 

ConstraintJS is a JavaScript library for creating constraints — relationships between 
variables that are declared once and automatically maintained. An example of a simple 
constraint is: y is always x + 1. Setting var y = x + 1 in standard JavaScript 
won't work because as soon as x changes, y would be invalid: 

var x = 2, 
    y = x + 1; 
 
// ... 
 
x = 20; 
// y is no longer === x + 1  

With ConstraintJS, this relationship would be expressed by declaring x as a constraint 
variable and declaring var y = x.add(1): 

var x = cjs(2), 
    y = x.add(1); // y <= x+1 
 
// ... 
 
x.set(20); 
// y.get() === 21  

Now, whenever x changes, y's value automatically updates with it. ConstraintJS 
allows constraints to be declared between variables, DOM attributes, CSS 
properties, and more. 
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A.2 Using ConstraintJS 

ConstraintJS works in both client-side browser JavaScript (e.g. Chrome, IE, & 
Firefox) and server-side JavaScript (e.g. Node.JS). It can be integrated into any 
codebase; your code could use 99% standard JavaScript and a single ConstraintJS 
constraint. 

The easiest way to get started using ConstraintJS is to download and unzip the latest 
package. 

Client-Side (Browser): 

<script src="/PATH/TO/cjs.min.js" 
type="text/javascript"></script> 

Server-Side (Node.JS): Use NPM to install the 'constraintjs' package: 

npm install constraintjs; 
 

Then, in your code: 

var cjs = require('constraintjs');  

A.2.1 The cjs Object 
All of ConstraintJS's functionality is accessed through the global cjs object. 
cjs.noConflict() restores the previous value of cjs and returns the ConstraintJS 
object. This can be useful if there is a naming conflict. 

var ConstraintJS = cjs.noConflict();  

Places all of the ConstraintJS functionality into ConstraintJS variable and 
resets cjs to its previous value. 

A.3 Constraint Variables 

ConstraintJS relies on constraint variables—small wrappers around regular JavaScript 
objects that allow constraints to be added to them. Any JavaScript object or widget 
can be turned into a constraint variable using the cjs.constraint function. For 
example: 

var x = cjs.constraint(1); // x <= 1  

Creates x, a constraint variable whose value is 1. .get() fetches the value of a 
constrainable variable and .set(value) sets its value: 

x.get();  // = 1 
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x.set(2); // x <= 2 
x.get();  // = 2  

Dynamically computed variables can be created by passing a function as the 
parameter: 

var y = cjs.constraint(function() { 
     return x.get() + 1;   // y <= x + 1 
}); 
x.get();  // = 2 
y.get();  // = 3 
x.set(9); // x <= 9 
y.get();  // = 10  

A.3.1 Variable Modifiers 
Constrainable variables also have several built-in utility methods to create new 
dependent variables. For instance, the declaration of y above may seem cumbersome 
but the same thing can be achieved with: 

y = x.add(1);  // y <= x + 1  

In this case, .add() is a built-in function that creates a new constraint variable. 
Other built-in functions include: 

• .add(...) — take the sum 
• .sub(...) — take the difference 
• .mul(...) — take the product 
• .div(...) — take the quotient 
• .or(...args) — Returns the first truthy value in the 

array [this].concat(args) or `false 
• .and(...args) — Returns the last value in the 

array [this].concat(args) if every value is truthy. Otherwise, 
returns false. 

• .eq(...) — returns if the constraint variable == x 
• .eqStrict(x) — returns if the constraint variable === x 
• .gt(x) — returns if the constraint variable > x 
• .ge(x) — returns if the constraint variable >= x 
• .lt(x) — returns if the constraint variable < x 
• .le(x) — returns if the constraint variable <= x 
• .round() — rounds the constraint variable to the nearest integer 
• .sin() — returns Math.sin(this) 

For a full list of modifier functions, see the cjs.Constraint API docs. 
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A.4 ConstraintJS Internals 

ConstraintJS automatically detects and manages dependencies between constraint 
variables. 

For instance, if y is declared as: 

y = x.add(1);  // y <= x + 1  

Then a dependency from x to y is established, which is illustrated conceptually with an 
arrow from x to y: 

 

Figure  A.1 y depends on x (think of x's value as flowing to y) 

This dependency lets ConstraintJS know that whenever x changes, y should also 
change. When we call: 

x.set(9)  

y and any other variables that depend on x are marked as invalid, which means that 
their values needs to be recomputed: 

 

Figure  A.2 y is invalidated after x changes 

The .invalidate() function can be used to manually invalidate a variable 
(.set()automatically invalidates its value). 

ConstraintJS uses a "pull model" for constraints, meaning that y is only recomputed 
when its value is requested; not as soon as it is invalidated. When y's value is valid, 
ConstraintJS caches its value so that it is not recomputed unnecessarily. To illustrate, 
consider the following snippet of code, where although x's value changes three 
times,y's value is only recomputed twice: 

var y = cjs.constraint(function() { 
     console.log("recomputing y"); 
     return x.get() + 1;   // y <= x + 1 
}); 

xy

xy
(invalid)
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x.get();   // = 2 
y.get();   // = 3, "recomputing y" printed 
y.get();   // = 3, nothing printed 
x.set(9);  // x <= 9 
x.set(10); // x <= 10 
x.set(11); // x <= 11 
y.get();   // = 12, "recomputing y" printed  

A.5 DOM Bindings 

Constraint variables alone aren't useful until they are connected with some form of 
output. Usually, this will be in the form of a DOM binding to keep DOM properties in 
sync with variable values. There are several ways to create DOM bindings: 

• .bindAttr(attr_name,value) — set any attribute of the DOM obj. 

• .bindChildren(value) — set the child nodes of a DOM obj. value may 
be an array. 

• .bindClass(value) — set the class name of a DOM object 

• .bindCSS(attr_name,value) — set a CSS attribute of the DOM obj. 

• .bindText(value) — set the text value of a DOM obj. 

• .bindValue(text) — set the value of a text input obj. 

For example, suppose we have a DOM element named my_elem (my_elem can be 
a DOM element, a NodeList, a JavaScript array, a ConstraintJS array, or a jQuery 
object): 

var bg_color = cjs.constraint("red"); 
var binding = cjs.bindCSS(my_elem, bg_color); 
// my_elem has a red background 
 
bg_color.set("blue"); 
// my_elem now has a blue background  

Here, binding is a binding object. This binding object has several operations to 
modify how it works: 

• .pause() — pauses the binding, can be resumed with: 

• .resume() — resume a paused binding 

• .destroy() — remove the binding 

• .throttle(ms) — require at least ms milliseconds between updates to the 
DOM attribute 
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A.5.1 Input Value Constraints 
Related to bindings are input value constraints. Input value constraints are constraints 
whose values are bound to the value of an <input> 
element. cjs.inputValue(elem) creates an input value constraint. For instance, 
suppose my_input_elem is an <input> element. 

var input_val = cjs.inputValue(my_input_elem);  

The above code creates a constraint called input_val whose value is constrained 
to the value of my_input_elem. 

A.6 Detecting Variable Changes 

A.6.1 onChange 
When constraints affect some non-DOM property (e.g. RaphaelJS objects or SVG 
objects), a more general mechanism can be used. .onChange(callback), for 
instance, specifies to call callback whenever a constraint's value is invalidated (see 
the ConstraintJS Internals section for a discussion on invalidation). callback can 
then perform any necessary updates. 

var c = cjs.constraint(1); 
c.onChange(function(new_val, old_val) { 
     console.log("was :" + old_val +", now: " + new_val); 
}); 
// (console) was: null, now: 1 
c.set(2); 
// (console) was: 1, now: 2 
 

.onChange(callback) hooks can be removed with 
the .offChange(callback) function. 

A.6.2 liven 
cjs.liven(func) automatically calls func whenever any constraints 
that func fetches are invalidated. For instance: 

var x = cjs.constraint(0), 
    y = cjs.constraint(0); 
var live_fn = cjs.liven(function() { 
     var x_val = x.get(), 
         y_val = y.get(); 
 
     some_other_library.setPosition(x_val, y_val); 
});  

The above snippet will automatically call 
some_other_library.setPosition whenever x or y changes. 
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A.7 Array and Map Constraints 

So far, all of the constraint variables we have discussed have been simple objects 
(constructed using cjs.constraint(). However, constraint variables can also be 
arrays or objects (maps). 

A.7.1 Arrays 
cjs.array(arr) creates an Array constraint, which adds a constraint wrapper to 
all of the standard Array.prototype methods, including .pop(), .push(), etc. 

It also includes the special methods: 

• .length() to get the array's length 

• .item(index) to get the item at index 

• .item(index, val) to set the item at index to val 

• .itemConstraint(index) to create a constraint whose value is always 
the array's value at index 

• .toArray() converts this array to a JavaScript array 

Example: 

var arr = cjs.array({ 
               value: [1,2,3] 
           }); 
arr.push(4); 
arr.length(); // 4 
arr.toArray(); // [1,2,3,4]  

A.7.2 Maps 
cjs.map(obj) creates a map constraint, which adds a constraint wrapper to a 
standard object with key/value pairs. It contains a number of methods, including: 

• .clear() to clear every key/value pair 

• .keys() to fetch an array of keys 

• .values() to fetch an array of values 

• .forEach(callback) to loop through every key/value pair 

• .has(key) to check if key is a key in the object 
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• .item(key) to get the value associated with key key 

• .item(key, val) to set the value associated with key key to value 

• .remove(key) to unset the value for key key 

• .size() to get the number of entries 

• .toObject() to convert the map to a JavaScript object 

Example: 

var m = cjs.map({ 
             value: {x: 1, y: 2} 
         }); 
m.item('x'); // 1 
m.item('z', 3); 
m.keys(); // ['x','y','z'] 

A.8 States and FSMs 

Many applications are state-oriented — appearing and behaving differently in 
different states. ConstraintJS includes a syntax for creating finite-state machines 
(FSMs) to make creating these applications 
easier. cjs.fsm(...state_names) creates a new FSM: 

var my_fsm = cjs.fsm();  

A.8.1 Adding States 
.addState(state_name) adds a state to the FSM: 

my_fsm.addState("idle");  

.addState returns the original FSM (my_fsm in the above 
example.).startsAt(state_name) specifies the initial state of the FSM. 

my_fsm.startsAt("idle");  

A.8.2 Transition Events 
Transition events—or events on which transitions occur—are created with the 
cjs.on(event_name, dom_element) function. event_name is a standard 
JavaScript DOM event and dom_element is the DOM element to which that event 
is occurring. For example: 

cjs.on("mousedown", my_div) 
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A.8.3 Guards 
.guard(condition_func) specifies the conditions on which the transition event 
may occur. For example: cjs.on("mousedown", 
my_div).guard(function(event) { return false;}) would never fire 
because the guard always returns false. 

Transition events are functions that accept a parameter to perform the transition, 
allowing custom transition events to be created. For example: 

cjs.on("mousedown", my_div) 

is equivalent to: 

function(do_transition) { 
     my_div.addEventListener("mousedown", do_transition); 
}  

A.8.4 Switching States & Adding Transitions 
Although states may be set manually with .setState(state_name), the 
encouraged way of transitioning between states is with transitions — pre-defined 
state changes that take place after some event. fsm.addTransition(event, 
to_state) adds a transition from the last state added to to_state (string) when 
the event transition event (described above) occurs: 

var my_fsm = cjs.fsm() 
                 .add_state("idle"); 
 
my_fsm.addTransition(cjs.on("mouseover", block_a));  

.addTransition returns the original FSM (my_fsm in the above example.) 

A.8.5 Chaining 
ConstraintJS's FSM syntax is designed to support "chaining," a convention in 
JavaScript where an object property performs an operation on that object and 
returns the object back. For instance: 

var my_fsm = cjs.fsm() 
                 .addState("idle") 
                 .addTransition(cjs.on("mouseover", block_a), 
"myhover") 
                 .addState("myhover") 
                 .addTransition(cjs.on("mouseout", block_a), 
"idle") 
                 .startsAt("idle");  
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A.8.6 FSM Constraints 
Constraint variables may depend on FSMs. To create an FSM-dependent 
constraint, pass the FSM as the first parameter to cjs.inFSM(fsm, values) and 
an object with states and their values as the second parameter: 

var color = cjs.inFSM(my_fsm, { 
            idle:    "black", 
            myhover: "yellow" 
         });  

A.9 Templates 

ConstraintJS also allows HTML templates to be declared in the syntax of 
Handlebars.JS with values that update with the constraint variables. Templates are 
created with cjs.createTemplate(templ, context). It has two 
parameters: templ is the template code as either a String or a DOM element 
(<script type="template/cjs"></script>); context is the set of variables 
to use as the environment. If no context is passed in, 
cjs.createTemplate() returns a function that may be called to generate a 
template. cjs.createTemplate() otherwise returns a DOM element that may be 
added anywhere in the page. 

<script id="greeting" type="template/cjs"> 
     <div>Hello {{firstname}} {{lastname}}</div> 
</script> 
//... 
var fn = cjs("Mary"), 
    ln = cjs("Parker"); 
cjs.createTemplate("#greeting", {firstname: fn, lastname: 
ln});  

Templates can be destroyed with cjs.destroyTemplate(elem), paused with 
cjs.pauseTemplate(elem), and resumed with cjs.resumeTemplate(elem) 

A.10 Template Syntax 

ConstraintJS templates use Handlebars. 

A.10.1 Basics 
ConstraintJS templates take standard HTML and add some features 

A.10.2 Constraints 
Unary handlebars can contain expressions. 

<h1>{{title}}</h1> 
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<p> {{subtext.toUpperCase()+"!"}}</p> 

called with { title: cjs('hello'), subtext: 'world'}: 

<h1>hello</h1> 
<p> WORLD!</p>  

A.10.3 Literals 
If the tags in a node should be treated as HTML, use triple braces: {{{ 
literal_val }}}. 

<h1>{{title}}</h1> 
<p>{{{subtext}}}</p>  

called with { title: cjs('hello'), subtext: 

'<strong>steel</strong city'}: 

<h1>hello</h1> 
<p><strong>steel</strong> city</p>  

A.10.4 Comments 

{{! comments will be ignored in the output}}  

A.10.5 Constraint output 
To call my_func on event (event-name), give any targets the attribute: 

data-cjs-on-(event-name)=my_func  

For example: 

<div data-cjs-on-click=update_obj />  

Will call update_obj (a property of the template's context when this div is clicked. 

To add the value of an input element to the template's context, use the 
property data-cjs-out: 

<input data-cjs-out=user_name /> <h1>Hello, {{user_name}}</h1>  

A.10.6 Loops 
To create an object for every item in an array or object, you can use 
the {{#each}} block helper. {{this}} refers to the current item 
and @key and @index refer to the keys for arrays and objects respectively. 

{{#each obj_name}} 
     {{@key}}: {{this}} 
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{{/each}} 
 
{{#each arr_name}} 
     {{@index}}: {{this}} 
{{/each}}  

If the length of the array is zero (or the object has no keys) then 
an {{#else}} block can be used: 

{{#each arr_name}} 
     {{@index}}: {{this} 
     {{#else}} 
         <strong>No items!</strong> 
{{/each}}  

A.10.7 Conditions 
The {{#if}} block helper can vary the content of a template depending on some 
condition. This block helper can have any number of sub-conditions with the related 
{{#elif}} and {{#else}} tags. 

{{#if cond1}} 
     Cond content 
{{#elif other_cond}} 
     other_cond content 
{{#else}} 
     else content 
{{/if}}  

The opposite of an {{#if}} block is {{#unless}}: 

{{#unless logged_in}} Not logged in! {{/unless} 

A.10.8 State 
The {{#fsm}} block helper can vary the content of a template depending on an 
FSM state 

{{#fsm my_fsm}} 
     {{#state1}} 
         State1 content 
     {{#state2}} 
         State2 content 
     {{#state3}} 
         State3 content 
{{/fsm}}  

A.10.9 With helper 
The {{#with}} block helper changes the context in which constraints are 
evaluated.

{{#with obj}} 
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     Value: {{x}} 
{{/with}}  

when called with { obj: {x: 1} } results in Value: 1 

A.10.10 Partials 
Partials allow templates to be nested. 

var my_temp = cjs.createTemplate(...); 
3cjs.registerPartial('my_template', my_temp);  

Then, in any other template, 

{{>my_template context}}  

Nests a copy of my_template in context. 
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Appendix B ConstraintJS API 

cjs(...) 

cjs is ConstraintJS's only visible object; every other method an property is a property of cjs. 
The cjs object itself can also be called to create a constraint object. 

cjs(value, options) 

value object A map of initial values 

options object A set of options to control how the array 
constraint is evaluated 

Returns cjs.ArrayConstraint A new array constraint 

cjs(node) 

node dom The DOM node whose value to follow 

Returns cjs.Binding A constraint whose value is the current 
value of the input 

cjs(value, options) 

value object A map of initial values 

options object A set of options to control how the map 
constraint is evaluated 

Returns cjs.MapConstraint A new map constraint 
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cjs(value, options) 

value object The constraint's value 

options object A set of options to control how the 
constraint is evaluated 

Returns cjs.Constraint A new constraint 

Example: 

Creating an array constraint 

var cjs_arr = cjs([1,2,3]); 
    cjs_arr.item(0); // 1 

Creating an input value constraint 

var inp_elem = document.getElementById('myTextInput'), 
    cjs_val = cjs(inp_elem); 

Creating a map constraint 

var cobj_obj = cjs({ foo: 1 }); 
cobj.get('foo'); // 1 
cobj.put('bar', 2); 
cobj.get('bar') // 2 

Creating an empty constraint 

var x = cjs(), 
    y = cjs(1), 
    z = cjs(function() { 
            return y.get() + 1; 
        }); 
x.get(); // undefined 
y.get(); // 1 
z.get(); // 2 

With options 

var yes_lit = cjs(function() { return 1; }, 
                     { literal: true }), 
  not_lit = cjs(function() { return 1; }, 
                     { literal: false }); 
yes_lit.get(); // (function) 
not_lit.get(); // 1 
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cjs.array([options]) 

Create an array constraint 

.array([options]) 

[options] Object A set of options to control how the array constraint is 
evaluated 

Returns cjs.ArrayConstraint A new array constraint object 

Example: 

var arr = cjs.array({ value: [1,2,3] }); 

cjs.arrayDiff(from_val, to_val, 
[equality_check]) 

arrayDiff returns an object with attributes: removed, added, and moved. Every item in removed has 
the format: {item, index} Every item in added has the format: {item, index} Every item 
in moved has the format: {from_index, to_index} Every item in index_changed has the 
format: {from_index, to_index} 

When oldArray removes every item in removed, adds every item in added, and moves every item 
in moved (in that order), it will result in an array that is equivalent to newArray. Note: this function is used 
internally to determine how to keep DOM nodes in sync with an underlying model with the smallest 
number of modifications to the DOM tree. 

.arrayDiff(from_val, to_val, [equality_check]) 

from_val array[*] The 'former' array 

to_val array[*] The 'new' array 

[equality_check] function A function that checks for equality between items 

Returns Object added, removed, and moved items 

Example: 

Taking the diff between old_array and new_array with the default equality check 

var old_array = ['a','b','c'],  
    new_array = ['c','b','d'],  
    diff = cjs.arrayDiff(old_array, new_array);  
// diff === { 
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//   added: [ { item: 'd', to: 2, to_item: 'd' } ], 
//   removed: [ { from: 0, from_item: 'a' } ], 
//   moved: [ { item: 'c',from: 2,insert_at: 0, move_from: 1,to: 0 } ], 
//   index_changed: [ { 
//      from: 2, from_item: 'c', item: 'c', to: 0, to_item: 'c' } ] 
// } 

cjs.bindAttr(...) 

Constrain a DOM node's attribute values 

.bindAttr(element, values) 

element dom The DOM element 

values object An object whose key-value pairs are the attribute 
names and values respectively 

Returns Binding A binding object representing the link from constraints to 
elements 

.bindAttr(key, value) 

key string The name of the attribute to constraint 

value cjs.Constraint,string The value of this attribute 

Returns Binding A binding object representing the link from constraints to 
elements 

Example: 

If my_elem is an input element 

var default_txt = cjs('enter name'); 
cjs.bindAttr(my_elem, 'placeholder', default_txt); 

If my_elem is an input element 

var default_txt = cjs('enter name'), 
    name = cjs('my_name'); 
 
cjs.bindAttr(my_elem, { 
     placeholder: default_txt, 
     name: name 
}); 



Appendix B: ConstraintJS API 
 

 

165 

cjs.bindCSS(...) 

Constrain a DOM node's CSS style 

.bindCSS(element, values) 

element dom The DOM element 

values object An object whose key-value pairs are the CSS property 
names and values respectively 

Returns Binding A binding object representing the link from constraints to 
CSS styles 

.bindCSS(key, value) 

key string The name of the CSS attribute to constraint 

value cjs.Constraint,string The value of this CSS attribute 

Returns Binding A binding object representing the link from constraints to 
elements 

Example: 

If my_elem is a dom element 

var color = cjs('red'), left = cjs(0); 
cjs.bindCSS(my_elem, { 
     "background-color": color, 
     left: left.add('px') 
}); 

If my_elem is a dom element 

var color = cjs('red'); 
cjs.bindCSS(my_elem, 'background-color', color); 

cjs.bindChildren(element, ...elements) 

Constrain a DOM node's children 

.bindChildren(element, ...elements) 

element dom The DOM element 

...elements * The elements to use as the constraint. The binding 
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automatically flattens them. 

Returns Binding A binding object 

Example: 

If my_elem, child1, and child2 are dom elements 

var nodes = cjs(child1, child2); 
cjs.bindChildren(my_elem, nodes); 

cjs.bindClass(element, ...values) 

Constrain a DOM node's class names 

.bindClass(element, ...values) 

element dom The DOM element 

...values * The list of classes the element should have. The binding 
automatically flattens them. 

Returns Binding A binding object 

Example: 

If my_elem is a dom element 

var classes = cjs('class1 class2'); 
cjs.bindClass(my_elem, classes); 

cjs.bindHTML(element, ...values) 

Constrain a DOM node's HTML content 

.bindHTML(element, ...values) 

element dom The DOM element 

...values * The desired html content 

Returns Binding A binding object 

Example: 

If my_elem is a dom element 
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var message = cjs('<b>hello</b>'); 
cjs.bindHTML(my_elem, message); 

cjs.bindText(element, ...values) 

Constrain a DOM node's text content 

.bindText(element, ...values) 

element dom The DOM element 

...values * The desired text value 

Returns Binding A binding object 

Example: 

If my_elem is a dom element 

var message = cjs('hello'); 
cjs.bindText(my_elem, message); 

cjs.bindValue(element, ...values) 

Constrain a DOM node's value 

.bindValue(element, ...values) 

element dom The DOM element 

...values * The value the element should have 

Returns Binding A binding object 

Example: 

If my_elem is a text input element 

var value = cjs('hello'); 
cjs.bindValue(my_elem, message); 

cjs.constraint(value, [options]) 

Constraint constructor 

.constraint(value, [options]) 
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value * The initial value of the constraint or a function to compute 
its value 

[options] Object A set of options to control how and when the constraint's 
value is evaluated 

Returns cjs.Constraint A new constraint object 

cjs.createParsedConstraint(str, 
context) 

Parses a string and returns a constraint whose value represents the result of evaling that string 

.createParsedConstraint(str, context) 

str string The string to parse 

context object The context in which to look for variables 

Returns cjs.Cosntraint Whether the template was successfully resumed 

Example: 

Creating a parsed constraint x 

var a = cjs(1); 
var x = cjs.createParsedConstraint("a+b", { a: a, b: cjs(2) }); 
x.get(); // 3 
a.set(2); 
x.get(); // 4 

cjs.createTemplate(template, [context], 
[parent]) 

Create a new template. If context is specified, then this function returns a DOM node with the specified 
template. Otherwise, it returns a function that can be called with context and [parent] to create a new 
template. 

ConstraintJS templates use a (Handlebars)[http://handlebarsjs.com/]. A template can be created 
with cjs.createTemplate. The format is described below. 

Basics 

ConstraintJS templates take standard HTML and add some features 



Appendix B: ConstraintJS API 
 

 

169 

Constraints 

Unary handlebars can contain expressions. 

<h1>{{title}}</h1> 
<p>{{subtext.toUpperCase()+"!"}}</p> 

called with { title: cjs('hello'), subtext: 'world'}: 

<h1>hello</h1> 
<p>WORLD!</p> 

Literals 

If the tags in a node should be treated as HTML, use triple braces: {{{ literal_val }}}. These literals 
(triple braces) should be created immediately under a DOM node. 

<h1>{{title}}</h1> 
<p>{{{subtext}}}</p> 

called with { title: cjs('hello'), subtext: '<strong>steel</strong city'}: 

<h1>hello</h1> 
<p><strong>steel</strong> city</p> 

Comments 

{{! comments will be ignored in the output}} 

Constraint Output 

To call my_func on event (event-name), give any targets the attribute: 

data-cjs-on-(event-name)=my_func 

For example: 

<div data-cjs-on-click=update_obj /> 

Will call update_obj (a property of the template's context when this div is clicked. 

To add the value of an input element to the template's context, use the property data-cjs-out: 

<input data-cjs-out=user_name /> <h1>Hello, {{user_name}}</h1> 

Block Helpers 
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Loops 

To create an object for every item in an array or object, you can use the {{#each}} block 
helper. {{this}} refers to the current item and @key and @index refer to the keys for arrays and objects 
respectively. 

{{#each obj_name}} 
    {{@key}}: {{this}} 
{{/each}} 
 
{{#each arr_name}} 
    {{@index}}: {{this}} 
{{/each}} 

If the length of the array is zero (or the object has no keys) then an {{#else}} block can be used: 

{{#each arr_name}} 
    {{@index}}: {{this} 
    {{#else}} 
        <strong>No items!</strong> 
{{/each}} 

Conditions 

The {{#if}} block helper can vary the content of a template depending on some condition. This block 
helper can have any number of sub-conditions with the related {{#elif}} and {{#else}} tags. 

{{#if cond1}} 
     cond1 content 
{{#elif other_cond}} 
    other_cond content 
{{#else}} 
    else content 
{{/if}} 

The opposite of an {{#if}} block is {{#unless}}: {{#unless logged_in}} Not logged in! {{/unless} 

State 

The {{#fsm}} block helper can vary the content of a template depending on an FSM state 

{{#fsm my_fsm}} 
    {{#state1}} 
        state1 content 
    {{#state2}} 
        state2 content 
    {{#state3}} 
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        state3 content 
{{/fsm}} 

With Helper 

The {{#with}} block helper changes the context in which constraints are evaluated. 

{{#with obj}} 
    value: {{x}} 
{{/with}} 

when called with { obj: {x: 1} } results in Value: 1 

Partials 

Partials allow templates to be nested. 

var my_temp = cjs.createTemplate(...); 
cjs.registerPartial('my_template', my_temp); 

Then, in any other template, 

{{>my_template context}} 

Nests a copy of my_template in context 

.createTemplate(template, [context], [parent]) 

template string,dom the template as either a string or a script tag whose 
contents are the template 

[context] object Any number of target objects to listen to 

[parent] dom The parent DOM node for the template 

Returns function,dom An event that can be attached to 

Example: 

<script id='my_template' type='cjs/template'> 
     {{x}} 
</script> 
var template_elem = document.getElementById('my_template'); 
var template = cjs.createTemplate(template_elem); 
var element1 = template({x: 1}); 
var element2 = template({x: 2}); 
var element = cjs.createTemplate("{{x}}", {x: 1}); 
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cjs.destroyTemplate(node) 

Destroy a template instance 

.destroyTemplate(node) 

node dom The dom node created by createTemplate 

Returns boolean Whether the template was successfully removed 

cjs.fsm(...state_names) 

Create an FSM 

.fsm(...state_names) 

...state_names string An initial set of state names to add to the FSM 

Returns FSM A new FSM 

Example: 

Creating a state machine with two states 

var my_state = cjs.fsm("state1", "state2"); 

cjs.get(obj, [autoAddOutgoing=true]) 

Gets the value of an object regardless of if it's a constraint (standard, array, or map) or not. 

.get(obj, [autoAddOutgoing=true]) 

obj * The object whose value to return 

[autoAddOutgoing=true] boolean Whether to automatically add a dependency 
from this constraint to ones that depend on it. 

Returns * The value 

Example: 

var w = 1, 
    x = cjs(2), 
    y = cjs(['a','b']), 
    z = cjs({c: 2}); 
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cjs.get(w); // 1 
cjs.get(x); // 2 
cjs.get(y); // ['a','b'] 
cjs.get(z); // {c: 2} 

cjs.inFSM(fsm, values) 

Create a new constraint whose value changes by state 

.inFSM(fsm, values) 

fsm cjs.FSM The finite-state machine to depend on 

values Object Keys are the state specifications for the FSM, values are the 
value for those specific states 

Returns cjs.Constraint A new constraint object 

Example: 

var fsm = cjs.fsm("state1", "state2") 
             .addTransition("state1", "state2", cjs.on("click")); 
var x = cjs.inFSM(fsm, { 
     state1: 'val1', 
     state2: function() { return 'val2'; } 
}); 

cjs.inputValue(inp) 

Take an input element and create a constraint whose value is constrained to the value of that input element 

.inputValue(inp) 

inp dom The input element 

Returns cjs.Constraint A constraint whose value is the input's value 

Example: 

If name_input is an input element 

var name = cjs.inputValue(name_input), 

cjs.isArrayConstraint(obj) 
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Determine whether an object is an array constraint 

.isArrayConstraint(obj) 

obj * An object to check 

Returns boolean true if obj is a cjs.ArrayConstraint, false otherwise 

cjs.isConstraint(obj) 

Determine whether an object is a constraint 

.isConstraint(obj) 

obj * An object to check 

Returns boolean obj instanceof cjs.Constraint 

cjs.isFSM(obj) 

Determine whether an object is an FSM 

.isFSM(obj) 

obj * An object to check 

Returns boolean true if obj is an FSM, false otherwise 

cjs.isMapConstraint(obj) 

Determine whether an object is a map constraint 

.isMapConstraint(obj) 

obj * An object to check 

Returns boolean true if obj is a cjs.MapConstraint, false otherwise 

cjs.liven(func, [options]) 

Memoize a function to avoid unnecessary re-evaluation. Its options are: 

• context: The context in which func should be evaluated 
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• run_on_create: Whether to run func immediately after creating the live function. 
(default: true) 

• pause_while_running: Whether to explicitly prevent this live function from being called 
recursively (default: false) 

• on_destroy: A function to call when destroy is called (default: false) 

The return value of this method also has two functions: 

• pause: Pause evaluation of the live function 

• resume: Resume evaluation of the live function 

• run: Run func if it's invalid 

.liven(func, [options]) 

func function The function to make live 

[options] object A set of options to control how liven works 

Returns object An object with properties destroy, pause, resume, and run 

Example: 

var x_val = cjs(0); 
var api_update = cjs.liven(function() { 
    console.log('updating other x'); 
    other_api.setX(x_val); 
}); // 'updating other x' 
x_val.set(2); // 'updating other x' 

cjs.map([options]) 

Create a map constraint 

.map([options]) 

[options] Object A set of options to control how the map constraint is 
evaluated 

Returns cjs.MapConstraint A new map constraint object 

Example: 

Creating a map constraint 

var map_obj = cjs.map({ 
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     value: { foo: 1 } 
}); 
cobj.get('foo'); // 1  
cobj.put('bar', 2); 
cobj.get('bar') // 2 

cjs.memoize(getter_fn, [options]) 

Memoize a function to avoid unnecessary re-evaluation. Its options are: 

• hash: Create a unique value for each set of arguments (call with an argument array) 

• equals: check if two sets of arguments are equal (call with two argument arrays) 

• context: The context in which getter_fn should be evaluated 

• literal_values: Whether values should be literal if they are functions 

The return value of this method also has two functions: 

• each: Iterate through every set of arguments and value that is memoized 

• destroy: Clear the memoized values to clean up memory 

.memoize(getter_fn, [options]) 

getter_fn function The function to memoize 

[options] object A set of options to control how memoization works 

Returns function The memoized function 

Example: 

var arr = cjs([3,2,1,4,5,10]), 
  get_nth_largest = cjs.memoize(function(n) { 
              console.log('recomputing'); 
              var sorted_arr = arr memoized fn.sort(); 
              return sorted_arr[ny]; 
 }); 
get_nth_largest(0); // logged: recomputing 
get_nth_largest(0); // ulli (nothing logged because answer memoized) 
arr.splice(0, 1);   // N 
get_nth_largest(0); // logged: recomputing 

cjs.noConflict() 

Restore the previous value of cjs 
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.noConflict() 

Returns object cjs 

Example: 

Renaming cjs to ninjaCJS 

var ninjaCJS = cjs.noConflict(); 
var x = ninjaCJS(1); 

cjs.on(event_type, ...targets=window) 

Create a new event for use in a finite state machine transition 

.on(event_type, ...targets=window) 

event_type string the type of event to listen for (e.g. mousedown, 
timeout) 

...targets=window element,number Any number of target objects to listen to 

Returns CJSEvent An event that can be attached to 

Example: 

When the window resizes 

cjs.on("resize") 

When the user clicks elem1 or elem2 

cjs.on("click", elem1, elem2) 

After 3 seconds 

cjs.on("timeout", 3000) 

cjs.pauseTemplate(node) 

Pause dynamic updates to a template 

.pauseTemplate(node) 

node dom The dom node created by createTemplate 
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Returns boolean Whether the template was successfully paused 

cjs.registerCustomPartial(name, 
options) 

Register a custom partial that can be used in other templates 

Options are (only createNode is mandatory): 

• createNode(...): A function that returns a new dom node any time this partial is invoked 
(called with the arguments passed into the partial) 

• onAdd(dom_node): A function that is called when dom_node is added to the DOM tree 

• onRemove(dom_node): A function that is called when dom_node is removed from the DOM tree 

• pause(dom_node): A function that is called when the template has been paused (usually 
with pauseTemplate) 

• resume(dom_node): A function that is called when the template has been resumed (usually 
with resumeTemplate) 

• destroyNode(dom_node): A function that is called when the template has been destroyed 
(usually withdestroyTemplate) 

.registerCustomPartial(name, options) 

name string The name that this partial can be referred to as 

options Object The set of options (described in the description) 

Returns cjs cjs 

Example: 

Registering a custom partial named my_custom_partial 

cjs.registerCustomPartial('my_custom_partial', { 
        createNode: function(context) { 
            return document.createElement('span'); 
        }, 
        destroyNode: function(dom_node) { 
            // something like: completely_destroy(dom_node); 
        } 
        onAdd: function(dom_node) { 
            // something like: do_init(dom_node); 
        }, 
        onRemove: function(dom_node) { 



Appendix B: ConstraintJS API 
 

 

179 

            // something like: cleanup(dom_node); 
        }, 
        pause: function(dom_node) { 
            // something like: pause_bindings(dom_node); 
        }, 
        resume: function(dom_node) { 
            // something like: resume_bindings(dom_node); 
        }, 
}); 

Then, in any other template, 

{{>my_template context}} 

Nests a copy of my_template in context 

cjs.registerPartial(name, value) 

Register a partial that can be used in other templates 

.registerPartial(name, value) 

name string The name that this partial can be referred to as 

value Template The template 

Returns cjs cjs 

Example: 

Registering a partial named my_temp 

var my_temp = cjs.createTemplate(...); 
cjs.registerPartial('my_template', my_temp); 

Then, in any other template, 

{{>my_template context}} 

Nests a copy of my_template in context 

cjs.removeDependency(...) 

Remove the edge going from fromNode to toNode 

cjs.resumeTemplate(node) 
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Resume dynamic updates to a template 

.resumeTemplate(node) 

node dom The dom node created by createTemplate 

Returns boolean Whether the template was successfully resumed 

cjs.signal(...) 

Tells the constraint solver it is ready to run any onChange listeners. Note that signal needs to be called 
the same number of times as wait before the onChange listeners will run. 

Example: 

var x = cjs(1); 
x.onChange(function() { 
     console.log('x changed'); 
}); 
cjs.wait(); 
cjs.wait(); 
x.set(2); 
x.set(3); 
cjs.signal(); 
cjs.signal(); // output: x changed 

cjs.toString() 

Print out the name and version of ConstraintJS 

.toString() 

Returns string ConstraintJS v(version#) 

cjs.unregisterPartial(name) 

Unregister a partial for other templates 

.unregisterPartial(name) 

name string The name of the partial 

Returns cjs cjs 
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cjs.version 

The version number of ConstraintJS 

cjs.wait(...) 

Tells the constraint solver to delay before running any onChange listeners 

Note that signal needs to be called the same number of times as wait before the onChange listeners will 
run. 

Example: 

var x = cjs(1); 
x.onChange(function() { 
     console.log('x changed'); 
}); 
cjs.wait(); 
x.set(2); 
x.set(3); 
cjs.signal(); // output: x changed 

new cjs.ArrayConstraint([options]) 

Note: The preferred constructor for arrays is cjs.array 

This class is meant to emulate standard arrays, but with constraints It contains many of the standard array 
functions (push, pop, slice, etc) and makes them constraint-enabled. 

x[1] = y[2] + z[3] 

Is equivalent to: 

x.item(1, y.item(2) + z.item(3)) 

Options: 

• equals: the function to check if two values are equal, default: === 

• value: an array for the initial value of this constraint 

.ArrayConstraint([options]) 

[options] Object A set of options to control how the array constraint is evaluated 
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cjs.ArrayConstraint.BREAK 

Any iterator in forEach can return this object to break out of its loop. 

cjs.ArrayConstraint.prototype.concat(..
.values) 

The concat() method returns a new array comprised of this array joined with other array(s) and/or value(s). 

.concat(...values) 

...values * Arrays and/or values to concatenate to the resulting array. 

Returns array The concatenated array 

Example: 

var arr1 = cjs(['a','b','c']), 
  arr2 = cjs(['x']); 
arr1.concat(arr2); // ['a','b','c','x'] 

cjs.ArrayConstraint.prototype.destroy([
silent=false]) 

Clear this array and try to clean up any memory. 

.destroy([silent=false]) 

[silent=false] boolean If set to true, avoids invalidating any dependent 
constraints. 

cjs.ArrayConstraint.prototype.every(fil
ter, thisArg) 

Return true if filter against every item in my array is truthy 

.every(filter, thisArg) 

filter function The function to check against 

thisArg * Object to use as this when executing filter. 
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Returns boolean true if some item matches filter. false otherwise 

Example: 

var arr = cjs([2,4,6]); 
arr.some(function(x) { return x%2===0; }); // true 

cjs.ArrayConstraint.prototype.filter(ca
llback, [thisObject]) 

The filter() method creates a new array with all elements that pass the test implemented by the provided 
function. 

.filter(callback, [thisObject]) 

callback function Function to test each element of the array. 

[thisObject] * Object to use as this when executing callback. 

Returns array A filtered JavaScript array 

cjs.ArrayConstraint.prototype.forEach(c
allback, thisArg) 

The forEach() method executes a provided function once per array element. 

.forEach(callback, thisArg) 

callback function Function to execute for each element. 

thisArg * Object to use as this when executing callback. 

Returns cjs.ArrayConstraint this 

Example: 

var arr = cjs(['a','b','c']); 
arr.forEach(function(val, i) { 
     console.log(val); 
     if(i === 1) { 
         return cjs.ArrayConstraint.BREAK; 
     } 
}); // 'a' ... 'b' 
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cjs.ArrayConstraint.prototype.indexOf(i
tem, [equality_check]) 

Returns the first index of item 

.indexOf(item, [equality_check]) 

item * The item we are searching for 

[equality_check] function How to check whether two objects are equal, defaults 
to the option that was passed in) 

Returns number The item's index or -1 

Example: 

var arr = cjs(['a','b','a']); 
arr.indexOf('a'); // 0 

cjs.ArrayConstraint.prototype.indexWher
e(filter, thisArg) 

Returns the first item where calling filter is truthy 

.indexWhere(filter, thisArg) 

filter function The function to call on every item 

thisArg * Object to use as this when executing callback. 

Returns number The first index where calling filter is truthy or -1 

Example: 

var arr = cjs(['a','b','b']); 
arr.indexWhere(function(val, i) { 
    return val ==='b'; 
}); // 1 

cjs.ArrayConstraint.prototype.item(...) 

Convert my value to a standard JavaScript array 

.item() 
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Returns array A standard JavaScript array 

.item(key) 

key number The array index 

Returns * The value at index key 

.item(key, value) 

key number The array index 

value * The new value 

Returns * value 

Examples: 

var arr = cjs([1,2,3]); 
arr.item(); //[1,2,3] 
 
 
var arr = cjs(['a','b']); 
arr.item(0); //['a'] 
 
 
var arr = cjs(['a','b']); 
arr.item(0,'x'); 
arr.toArray(); // ['x','b'] 

cjs.ArrayConstraint.prototype.itemConst
raint(key) 

Return a constraint whose value is bound to my value for key 

.itemConstraint(key) 

key number,Constraint The array index 

Returns Constraint A constraint whose value is this[key] 

Example: 

var arr = cjs(['a','b','c']); 
var first_item = arr.itemConstraint(0); 
first_item.get(); // 'a' 
arr.item(0,'x'); 
first_item.get(); // 'x' 
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cjs.ArrayConstraint.prototype.join([sep
arator=',']) 

The join() method joins all elements of an array into a string. 

.join([separator=',']) 

[separator=','] string Specifies a string to separate each element of the array. 
The separator is converted to a string if necessary. If 
omitted, the array elements are separated with a comma. 

Returns string The joined string 

cjs.ArrayConstraint.prototype.lastIndex
Of(item, [equality_check]) 

Returns the last index of item 

.lastIndexOf(item, [equality_check]) 

item * The item we are searching for 

[equality_check] function How to check whether two objects are equal, defaults 
to the option that was passed in) 

Returns number The item's index or -1 

Example: 

var arr = cjs(['a','b','a']); 
arr.indexOf('a'); // 2 

cjs.ArrayConstraint.prototype.lastIndex
Where(filter, thisArg) 

Returns the last item where calling filter is truthy 

.lastIndexWhere(filter, thisArg) 

filter function The function to call on every item 

thisArg * Object to use as this when executing callback. 
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Returns number The last index where calling filter is truthy or -1 

Example: 

var arr = cjs(['a','b','a']); 
arr.lastIndexWhere(function(val, i) { 
    return val ==='a'; 
}); // 2 

cjs.ArrayConstraint.prototype.length() 

Get the length of the array. 

.length() 

Returns number The length of the array 

Example: 

var arr = cjs(['a','b']); 
arr.length(); // 2 

cjs.ArrayConstraint.prototype.map(callb
ack, thisArg) 

The map() method creates a new array (not array constraint) with the results of calling a provided function 
on every element in this array. 

.map(callback, thisArg) 

callback function Function that produces an element of the new Array from an 
element of the current one. 

thisArg * Object to use as this when executing callback. 

Returns array The result of calling callback on every element 

Example: 

var arr = cjs([1,2,3]); 
arr.map(function(x) { 
    return x+1; 
}); // [2,3,4] 
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cjs.ArrayConstraint.prototype.pop() 

The pop() method removes the last element from an array and returns that element. 

.pop() 

Returns * The value that was popped off or undefined 

Example: 

var arr = cjs(['a','b']); 
arr.pop(); // 'b' 
arr.toArray(); // ['a'] 

cjs.ArrayConstraint.prototype.push(...e
lements) 

The push() method mutates an array by appending the given elements and returning the new length of the 
array. 

.push(...elements) 

...elements * The set of elements to append to the end of the array 

Returns number The new length of the array 

Example: 

var arr = cjs(['a','b']); 
arr.push('c','d'); // 4 
arr.toArray(); // ['a','b','c','d'] 

cjs.ArrayConstraint.prototype.reverse() 

The reverse() method reverses an array in place. The first array element becomes the last and the last 
becomes the first. 

.reverse() 

Returns array A JavaScript array whose value is the reverse of mine 
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cjs.ArrayConstraint.prototype.setEquali
tyCheck(equality_check) 

Change the equality check; useful for indexOf 

.setEqualityCheck(equality_check) 

equality_check function A new function to check for equality between two 
items in this array 

Returns cjs.ArrayConstraint this 

cjs.ArrayConstraint.prototype.setValue(
arr) 

Replaces the whole array 

.setValue(arr) 

arr array The new value 

Returns cjs.ArrayConstraint this 

Example: 

var arr = cjs([1,2,3]); 
arr.toArray(); //[1,2,3] 
arr.setValue(['a','b','c']); 
arr.toArray(); //['a','b','c'] 

cjs.ArrayConstraint.prototype.shift() 

The shift() method removes the first element from an array and returns that element. This method changes 
the length of the array. 

.shift() 

Returns * The element that was removed 

Example: 

var arr = cjs(['a','b','c']); 
arr.shift(); // 'a' 
arr.toArray(); //['b','c'] 
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cjs.ArrayConstraint.prototype.slice([be
gin=0], [end=this.length]) 

The slice() method returns a portion of an array. 

.slice([begin=0], [end=this.length]) 

[begin=0] number Zero-based index at which to begin extraction. 

[end=this.length] number Zero-based index at which to end extraction. slice 
extracts up to but not including end. 

Returns array A JavaScript array 

Example: 

var arr = cjs(['a','b','c']); 
arr.slice(1); // ['b','c'] 

cjs.ArrayConstraint.prototype.some(filt
er, thisArg) 

Return true if filter against any item in my array is truthy 

.some(filter, thisArg) 

filter function The function to check against 

thisArg * Object to use as this when executing filter. 

Returns boolean true if some item matches filter. false otherwise 

Example: 

var arr = cjs([1,3,5]); 
arr.some(function(x) { 
    return x % 2 === 0; 
}); // false 

cjs.ArrayConstraint.prototype.sort([com
pareFunction]) 

The sort() method sorts the elements of an array in place and returns the array. The default sort order is 
lexicographic (not numeric). 
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.sort([compareFunction]) 

[compareFunction] function Specifies a function that defines the sort order. If 
omitted, the array is sorted lexicographically (in 
dictionary order) according to the string conversion 
of each element. 

Returns array A sorted JavaScript array 

cjs.ArrayConstraint.prototype.splice(in
dex, howMany, ...elements) 

The splice() method changes the content of an array, adding new elements while removing old elements. 

.splice(index, howMany, ...elements) 

index number Index at which to start changing the array. If greater than 
the length of the array, no elements will be removed. 

howMany number An integer indicating the number of old array elements to 
remove. If howMany is 0, no elements are removed. In this 
case, you should specify at least one new element. If 
howMany is greater than the number of elements left in the 
array starting at index, then all of the elements through the 
end of the array will be deleted. 

...elements * The elements to add to the array. If you don't specify any 
elements, splice simply removes elements from the array. 

Returns array.* An array containing the removed elements. If only one element 
is removed, an array of one element is returned. If no elements 
are removed, an empty array is returned. 

Example: 

var arr = cjs(['a', 'b', 'c']); 
arr.splice(0, 2, 'x', 'y'); //['a','b'] 
arr.toArray(); // ['x','y','c'] 

cjs.ArrayConstraint.prototype.toArray() 

Converts this array to a JavaScript array 

.toArray() 
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Returns array This object as a JavaScript array 

Example: 

var arr = cjs(['a','b']); 
arr.toArray(); // ['a', 'b'] 

cjs.ArrayConstraint.prototype.toString(
) 

The toString() method returns a string representing the specified array and its elements. 

.toString() 

Returns string A string representation of this array. 

cjs.ArrayConstraint.prototype.unshift(.
..elements) 

The unshift() method adds one or more elements to the beginning of an array and returns the new length of 
the array. 

.unshift(...elements) 

...elements * The elements to be added 

Returns number The new array length 

Example: 

var arr = cjs(['a','b','c']); 
arr.unshift('x','y'); // 5 
arr.toArray(); //['x','y','a','b','c'] 

new cjs.Binding(options) 

A binding calls some arbitrary functions passed into options. It is responsible for keeping some aspect of a 
DOM node in line with a constraint value. For example, it might keep an element's class name in sync with 
a class_name constraint 

.Binding(options) 
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options object  

cjs.Binding.prototype.destroy() 

Stop updating the binding and try to clean up any memory 

.destroy() 

Returns undefined  

cjs.Binding.prototype.pause() 

Pause binding (no updates to the attribute until resume is called) 

.pause() 

Returns Binding this 

cjs.Binding.prototype.resume() 

Resume binding (after pause) 

.resume() 

Returns Binding this 

cjs.Binding.prototype.throttle(min_dela
y) 

Require at least min_delay milliseconds between setting the attribute 

.throttle(min_delay) 

min_delay number The minimum number of milliseconds between updates 

Returns Binding this 

new cjs.CJSEvent(...) 
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Note: the preferred way to create this object is with the cjs.on function Creates an event that can be used 
in a finite-state machine transition 

cjs.CJSEvent.prototype._addTransition(t
ransition) 

Add a transition to my list of transitions that this event is attached to 

._addTransition(transition) 

transition Transition The transition this event is attached to 

cjs.CJSEvent.prototype._fire(...events) 

When I fire, go through every transition I'm attached to and fire it then let any interested listeners know as 
well 

._fire(...events) 

...events * Any number of events that will be passed to the transition 

cjs.CJSEvent.prototype._removeTransitio
n(transition) 

Remove a transition from my list of transitions 

._removeTransition(transition) 

transition Transition The transition this event is attached to 

cjs.CJSEvent.prototype.guard([filter]) 

Create a transition that calls filter whenever it fires to ensure that it should fire 

.guard([filter]) 

[filter] function Returns true if the event should fire and false otherwise 

Returns CJSEvent A new event that only fires when filter returns a truthy value 
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Example: 

If the user clicks and ready is true 

cjs.on("click").guard(function() { 
    return ready === true; 
}); 

new cjs.Constraint(value, [options]) 

Note: The preferred way to create a constraint is with the cjs.constraint function (lower-case 
'c') cjs.Constraint is the constructor for the base constraint. Valid properties for options are: 

• auto_add_outgoing_dependencies: allow the constraint solver to determine when things 
depend on me. default: true 

• auto_add_incoming_dependencies: allow the constraint solver to determine when things I 
depend on things. default:true 

• cache_value: whether or not to keep track of the current value. default: true 

• check_on_nullify: when nullified, check if my value has actually changed (requires 
immediately re-evaluating me).default: false 

• context: if value is a function, the value of this, when that function is called. default: window 

• equals: the function to check if two values are equal, default: === 

• literal: if value is a function, the value of the constraint should be the function itself (not its 
return value). default:false 

• run_on_add_listener: when onChange is called, whether or not immediately validate the 
value. default: true 

.Constraint(value, [options]) 

value * The initial value of the constraint or a function to compute its 
value 

[options] Object A set of options to control how and when the constraint's value 
is evaluated: 

cjs.Constraint.prototype.abs() 

Absolute value constraint modifier 

.abs() 
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Returns number A constraint whose value is Math.abs(this.get()) 

Example: 

x = c1.abs(); // x <- abs(c1) 

cjs.Constraint.prototype.acos() 

Arccosine 

.acos() 

Returns number A constraint whose value is Math.acos(this.get()) 

Example: 

angle = r.div(x).acos(); 

cjs.Constraint.prototype.add(...args) 

Addition constraint modifier 

.add(...args) 

...args number Any number of constraints or numbers 

Returns number A constraint whose value is this.get() + args[0].get() + 
args[1].get() + ... 

Example: 

x = y.add(1,2,z); // x <- y + 1 + 2 + z 

The same method can also be used to add units to values 

x = y.add("px"); // x <- ypx 

cjs.Constraint.prototype.and(...args) 

Returns the last value in the array [this].concat(args) if every value is truthy. Otherwise, 
returns false. Every argument won't necessarily be evaluated. For instance: 

x = cjs(false); cjs.get(x.and(a)) does not evaluate a 

.and(...args) 
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...args * Any number of constraints or values to pass the "and" 
test 

Returns cjs.Constraitnboolean,* A constraint whose value is false if this or any passed in 
value is falsy. Otherwise, the last value passed in. 

Example: 

var x = c1.and(c2, c3, true); 

cjs.Constraint.prototype.asin() 

Arcsin 

.asin() 

Returns number A constraint whose value is Math.asin(this.get()) 

Example: 

angle = r.div(y).asin(); 

cjs.Constraint.prototype.atan() 

Arctan 

.atan() 

Returns number A constraint whose value is Math.atan(this.get()) 

Example: 

angle = y.div(x).atan(); 

cjs.Constraint.prototype.atan2(x) 

Arctan2 

.atan2(x) 

x number,cjs.Constraint  

Returns number A constraint whose value 
is Math.atan2(this.get()/x.get()) 
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Example: 

angle = y.atan2(x); 

cjs.Constraint.prototype.bitwiseNot() 

Bitwise not operator 

.bitwiseNot() 

Returns number A constraint whose value is ~(this.get()) 

Example: 

inverseBits = val.bitwiseNot(); 

cjs.Constraint.prototype.ceil() 

Ceil 

.ceil() 

Returns number A constraint whose value is Math.ceil(this.get()) 

Example: 

x = c1.ceil(); // x <- ceil(c1) 

cjs.Constraint.prototype.cos() 

Cosine 

.cos() 

Returns number A constraint whose value is Math.cos(this.get()) 

Example: 

dx = r.mul(angle.cos()); 

cjs.Constraint.prototype.destroy([silen
t=false]) 
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Removes any dependent constraint, clears this constraints options, and removes every change listener. This 
is useful for making sure no memory is deallocated 

.destroy([silent=false]) 

[silent=false] boolean If set to true, avoids invalidating any dependent 
constraints. 

Returns cjs.Constraint this 

Example: 

var x = cjs(1); 
x.destroy(); // ...x is no longer needed 

cjs.Constraint.prototype.div(...args) 

Division constraint modifier 

.div(...args) 

...args number Any number of constraints or numbers 

Returns number A constraint whose value is this.get() / args[0].get() / 
args[1].get() / ... 

Example: 

x = y.div(1, 2, z); // x <- y / 1 / 2 / z 

cjs.Constraint.prototype.eq(other) 

Equals unary operator 

.eq(other) 

other * A constraint or value to compare against 

Returns boolean A constraint whose value is this.get() == other.get() 

Example: 

isNull = val.eq(null); 
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cjs.Constraint.prototype.eqStrict(other
) 

Strict equals operator 

.eqStrict(other) 

other * A constraint or value to compare against 

Returns boolean A constraint whose value is this.get() === other.get() 

Example: 

isOne = val.eqStrict(1); 

cjs.Constraint.prototype.exp() 

Exp (E^x) 

.exp() 

Returns number A constraint whose value is Math.exp(this.get()) 

Example: 

neg_1 = cjs(i*pi).exp(); 

cjs.Constraint.prototype.floor() 

Floor 

.floor() 

Returns number A constraint whose value is Math.floor(this.get()) 

Example: 

x = c1.floor(); // x <- floor(c1) 

cjs.Constraint.prototype.get([autoAddOu
tgoing=true]) 
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Get the current value of this constraint. For computed constraints, if the constraint is invalid, its value will 
be re-computed. 

.get([autoAddOutgoing=true]) 

[autoAddOutgoing=true] boolean Whether to automatically add a dependency 
from this constraint to ones that depend on it. 

Returns * The current constraint value 

Example: 

var x = cjs(1); 
x.get(); // 1 

cjs.Constraint.prototype.iif(true_val, 
other_val) 

Inline if function: similar to the javascript a ? b : c expression 

.iif(true_val, other_val) 

true_val * The value to return if this is truthy 

other_val * The value to return if this is falsy 

Returns cjs.Constraint A constraint whose value is false if this or any passed in value 
is falsy. Otherwise, the last value passed in. 

Example: 

var x = is_selected.iif(selected_val, nonselected_val); 

cjs.Constraint.prototype.inFSM(fsm, 
values) 

Change this constraint's value in different states 

.inFSM(fsm, values) 

fsm cjs.FSM The finite-state machine to depend on 

values Object Keys are the state specifications for the FSM, values are the 
value for those specific states 
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Returns cjs.Constraint this 

Example: 

var fsm = cjs.fsm("state1", "state2") 
             .addTransition("state1", "state2",                
                              cjs.on("click")); 
 
var x = cjs().inFSM(fsm, { 
    state1: 'val1', 
    state2: function() { return 'val2'; } 
}); 

cjs.Constraint.prototype.instanceOf(oth
er) 

Object instance check modifier 

.instanceOf(other) 

other * a constraint or value to compare against 

Returns boolean a constraint whose value is this.get() instanceof other.get() 

Example: 

var valIsArray = val.instanceof(Array); 

cjs.Constraint.prototype.invalidate() 

Mark this constraint's value as invalid. This signals that the next time its value is fetched, it should be 
recomputed, rather than returning the cached value. 

An invalid constraint's value is only updated when it is next requested (for example, via .get()). 

.invalidate() 

Returns cjs.Constraint this 

Example: 

Tracking the window height var height = cjs(window.innerHeight); window.addEventListener("resize", 
function() { height.invalidate(); }); 

cjs.Constraint.prototype.isValid() 



Appendix B: ConstraintJS API 
 

 

203 

Find out if this constraint's value needs to be recomputed (i.e. whether it's invalid). 

An invalid constraint's value is only updated when it is next requested (for example, via .get()). 

.isValid() 

Returns boolean true if this constraint's current value is valid. false otherwise. 

Example: 

var x = cjs(1), 
    y = x.add(2); 
y.get();     // 3 
y.isValid(); // true 
x.set(2); 
y.isValid(); // false 
y.get();     // 4 
y.isValid(); //true 

cjs.Constraint.prototype.log() 

Natural Log (base e) 

.log() 

Returns number A constraint whose value is Math.log(this.get()) 

Example: 

num_digits = num.max(2).log().div(Math.log(10)).ceil() 

cjs.Constraint.prototype.max(...args) 

Max 

.max(...args) 

...args number Any number of constraints or numbers 

Returns number A constraint whose value is 
the highest of this.get(), args[0].get(), args[1].get()... 

Example: 

val = val1.max(val2, val3); 
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cjs.Constraint.prototype.min(...args) 

Min 

.min(...args) 

...args number Any number of constraints or numbers 

Returns number A constraint whose value is 
the lowest of this.get(), args[0].get(), args[1].get()... 

Example: 

val = val1.min(val2, val3); 

cjs.Constraint.prototype.mul(...args) 

Multiplication constraint modifier 

.mul(...args) 

...args number Any number of constraints or numbers 

Returns number A constraint whose value is this.get() * args[0].get() * 
args[1].get() * ... 

Example: 

x = y.mul(1, 2, z); //x <- y * 1 * 2 * z 

cjs.Constraint.prototype.neg() 

Negative operator 

.neg() 

Returns number A constraint whose value is -(this.get()) 

Example: 

neg_val = x.neg() 

cjs.Constraint.prototype.neq(other) 

Not equals operator 
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.neq(other) 

other * A constraint or value to compare against 

Returns boolean A constraint whose value is this.get() != other.get() 

Example: 

notNull = val.neq(null) 

cjs.Constraint.prototype.neqStrict(othe
r) 

Not strict equals binary operator 

.neqStrict(other) 

other * A constraint or value to compare against 

Returns boolean A constraint whose value is this.get() !== other.get() 

Example: 

notOne = val.neqStrict(1) 

cjs.Constraint.prototype.not() 

Not operator 

.not() 

Returns boolean A constraint whose value is !(this.get()) 

Example: 

opposite = x.not(); 

cjs.Constraint.prototype.offChange(call
back, [thisArg]) 

Removes the first listener to callback that was created by onChange. thisArg is optional and if 
specified, it only removes listeners within the same context. If thisArg is not specified, the first callback is 
removed. 
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.offChange(callback, [thisArg]) 

callback function  

[thisArg] * If specified, only remove listeners that were added with this 
context 

Returns cjs.Constraint this 

var x = cjs(1), 
    callback = function (){}; 
x.onChange(callback); 
// ... 
x.offChange(callback); 

cjs.Constraint.prototype.onChange(callb
ack, [thisArg=window], ...args) 

Call callback as soon as this constraint's value is invalidated. Note that if the constraint's value is 
invalidated multiple times,callback is only called once. 

.onChange(callback, [thisArg=window], ...args) 

callback function  

[thisArg=window] * The context to use for callback 

...args * The first args.length arguments to callback 

Returns cjs.Constraint this 

Example: 

var x = cjs(1); 
x.onChange(function() { 
    console.log("x is " + x.get()); 
}); 
x.set(2); // x is 2 

cjs.Constraint.prototype.or(...args) 

Returns the first truthy value in the array [this].concat(args). If no value is truthy, returns false. 
Every argument won't necessarily be evaluated. For instance: 

y = cjs(true); cjs.get(y.or(b)) does not evaluate b 
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.or(...args) 

...args * Any number of constraints or values to pass the "or" test 

Returns cjs.Constraint A constraitn whose value is the first truthy value or false if there 
aren't any 

Example: 

var x = c1.or(c2, c3, false); 

cjs.Constraint.prototype.pauseGetter(te
mporaryValue) 

Signal that this constraint's value will be computed later. For instance, for asyncronous values. 

.pauseGetter(temporaryValue) 

temporaryValue * The temporary value to use for this node until it is 
resumed 

Returns cjs.Constraint this 

cjs.Constraint.prototype.pos() 

Coerce an object to a number 

.pos() 

Returns number A constraint whose value is +(this.get()) 

Example: 

numeric_val = val.pos(); 

cjs.Constraint.prototype.pow(x) 

Power 

.pow(x) 

x number The exponent 

Returns number A constraint whose value is Math.pow(this.get(), x.get()) 
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Example: 

d = dx.pow(2).add(dy.pow(2)).sqrt(); 

cjs.Constraint.prototype.prop(...args) 

Property constraint modifier. 

.prop(...args) 

...args strings Any number of properties to fetch 

Returns * A constraint whose value is this[args[0]][args[1]]... 

Example: 

w = x.prop("y", "z"); // means w <- x.y.z 

cjs.Constraint.prototype.remove([silent
=false]) 

Removes every dependency to this node 

.remove([silent=false]) 

[silent=false] boolean If set to true, avoids invalidating any dependent 
constraints. 

Returns cjs.Constraint this 

cjs.Constraint.prototype.resumeGetter(v
alue) 

Signal that this Constraint, which has been paused with pauseGetter now has a value. 

.resumeGetter(value) 

value * This node's value 

Returns cjs.Constraint this 

cjs.Constraint.prototype.round() 
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Round 

.round() 

Returns number A constraint whose value is Math.round(this.get()) 

Example: 

x = c1.round(); // x <- round(c1) 

cjs.Constraint.prototype.set(value, 
[options]) 

Change the current value of the constraint. Other constraints that depend on its value will be invalidated. 

.set(value, [options]) 

value * The initial value of the constraint or a function to compute 
its value 

[options] Object A set of options to control how and when the constraint's 
value is evaluated: 

Returns cjs.Constraint this 

Example: 

var x = cjs(1); 
x.get(); // 1 
x.set(function () { 
    return 2; 
}); 
x.get(); // 2 
x.set("c"); 
x.get(); // 'c' 

cjs.Constraint.prototype.setOption(opti
ons) 

Change how this constraint is computed (see Constraint options) 

.setOption(options) 

options Object An object with the options to change 
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Returns cjs.Constraint this 

Example: 

var x = cjs(function() { return 1; }); 
x.get(); // 1 
x.setOption({ 
    literal: true, 
    auto_add_outgoing_dependencies: false 
}); 
x.get(); // (function) 

cjs.Constraint.prototype.sin() 

Sine 

.sin() 

Returns number A constraint whose value is Math.sin(this.get()) 

Example: 

dy = r.mul(angle.sin()) 

cjs.Constraint.prototype.sqrt() 

Square root 

.sqrt() 

Returns number A constraint whose value is Math.sqrt(this.get()) 

Example: 

x = c1.sqrt(); // x <- sqrt(c1) 

cjs.Constraint.prototype.sub(...args) 

Subtraction constraint modifier 

.sub(...args) 

...args number Any number of constraints or numbers 

Returns number A constraint whose value is this.get() - args[0].get() - 
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args[1].get() - ... 

Example: 

x = y.sub(1,2,z); // x <- y - 1 - 2 - z 

cjs.Constraint.prototype.tan() 

Tangent 

.tan() 

Returns number A constraint whose value is Math.tan(this.get()) 

Example: 

dy = r.mul(angle.sin()) 

cjs.Constraint.prototype.toFloat() 

Float conversion constraint modifier. 

.toFloat() 

Returns * A constraint whose value is parseFloat(this) 

Example: 

Given <input /> element inp_elem 

var inp_val = cjs(inp_elem).toFloat(); 

cjs.Constraint.prototype.toInt() 

Integer conversion constraint modifier. 

.toInt() 

Returns * A constrant whose value is parseInt(this) 

Example: 

Given <input /> element inp_elem 

var inp_val = cjs(inp_elem).toInt(); 
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cjs.Constraint.prototype.typeOf(other) 

Object type modifier 

.typeOf(other) 

other * a constraint or value to compare against 

Returns * a constraint whose value is typeof this.get() 

Example: 

var valIsNumber = val.typeOf().eq('[object Number]'); 

new cjs.FSM(...state_names) 

Note: The preferred way to create a FSM is through the cjs.fsm function This class represents a finite-
state machine to track the state of an interface or component 

.FSM(...state_names) 

...state_names string Any number of state names for the FSM to have 

cjs.FSM.state 

The name of this FSM's active state 

Example: 

var my_fsm = cjs.fsm("state1", "state2"); 
my_fsm.state.get(); // 'state1' 

cjs.FSM.prototype._setState(state, 
transition) 

Changes the active state of this FSM. This function should, ideally, be called by a transition instead of 
directly. 

._setState(state, transition) 

state State,string The state to transition to 

transition Transition The transition that ran 
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cjs.FSM.prototype.addState(...state_nam
es) 

Create states and set the current "chain state" to that state 

.addState(...state_names) 

...state_names string Any number of state names to add. The last state becomes 
the chain state 

Returns FSM this 

Example: 

var fsm = cjs.fsm() 
             .addState('state1') 
             .addState('state2') 
             .addTransition('state2', cjs.on('click')); 

cjs.FSM.prototype.addTransition(...) 

Add a transition between two states 

.addTransition(to_state) 

to_state string The name of the state the transition should 
go to 

Returns function A function that tells the transition to run 

.addTransition(to_state, add_transition_fn) 

to_state string The name of the state the transition should 
go to 

add_transition_fn CJSEvent,function A CJSEvent or a user-specified function for 
adding the event listener 

Returns FSM this 

.addTransition(from_state, to_state) 

from_state string The name of the state the transition should 
come from 

to_state string The name of the state the transition should 
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go to 

Returns function A function that tells the transition to run 

.addTransition(from_state, to_state, add_transition_fn) 

from_state string The name of the state the transition should 
come from 

to_state string The name of the state the transition should 
go to 

add_transition_fn CJSEvent,function A CJSEvent or a user-specified function for 
adding the event listener 

Returns FSM this 

Examples: 

var x = cjs.fsm(); 
x.addState("b") 
 .addState("a"); 
 
var run_transition = x.addTransition("b"); //add transition from a to b  
window.addEventListener("click", run_transition); 
// run that transition when the window is clicked 
 
 
 
 

var x = cjs.fsm(); 
x.addState("b") 
 .addState("a") 
 .addTransition("b", cjs.on('click')); 
// add a transition from a to b that runs when the window is clicked 
 
 
 
var x = cjs.fsm(); 
x.addState("b") 
 .addState("a") 
 .addTransition("b", function(run_transition) { 
      window.addEventListener("click", run_transition); 
 }); // add a transition from a to b that runs when the window is 
clicked 
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var x = cjs.fsm("a", "b"); 
var run_transition = x.addTransition("a", "b"); 
//add a transition from a to b 
window.addEventListener("click", run_transition); 
// run that transition when the window is clicked 
 
 
 
var x = cjs.fsm("a", "b"); 
x.addTransition("a", "b", cjs.on("click")); 
 
 
 
 
var x = cjs.fsm("a", "b"); 
var run_transition = x.addTransition("a","b",function(run_transition) {      
  window.addEventListener("click", run_transition); 
 }); 
// add a transition from a to b that runs when the window is clicked 

cjs.FSM.prototype.destroy(...) 

Remove all of the states and transitions of this FSM. Useful for cleaning up memory 

cjs.FSM.prototype.getState() 

Returns the name of the state this machine is currently in. Constraints that depend on the return value will 
be automatically updated. 

.getState() 

Returns string The name of the currently active state 

Example: 

var my_fsm = cjs.fsm("state1", "state2"); 
my_fsm.getState(); // 'state1' 

cjs.FSM.prototype.is(state_name) 

Check if the current state is state_name 

.is(state_name) 

state_name string The name of the state to check against 
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Returns boolean true if the name of the active state 
is state_name. false otherwise 

Example: 

var my_fsm = cjs.fsm("a", "b"); 
my_fsm.is("a"); // true, because a is the starting state 

cjs.FSM.prototype.off(callback) 

Remove the listener specified by an on call; pass in just the callback 

.off(callback) 

callback function The function to remove as a callback 

Returns FSM this 

cjs.FSM.prototype.on(spec, callback, 
[context]) 

Call a given function when the finite-state machine enters a given state. spec can be of the form: 

'*': any state 

'state1': A state named state1 

'state1 -> state2': Immediately after state1 transitions to state2 

'state1 >- state2': Immediately before state1 transitions to state2 

'state1 <-> state2': Immediately after any transition between state1 and state2 

'state1 >-< state2': Immediately before any transition between state1 and state2 

'state1 <- state2': Immediately after state2 transitions 2 state1 

'state1 -< state2': Immediately before state2 transitions 2 state1 

'state1 -> *': Any transition from state1 

'* -> state2': Any transition to state2 

.on(spec, callback, [context]) 

spec string A specification of which state to call the callback 
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callback function The function to be called 

[context] object What this should evaluate to when callback is called 

Returns FSM this 

Example: 

var x = cjs.fsm("a", "b"); 
x.on("a->b", function() {...}); 

cjs.FSM.prototype.startsAt(state_name) 

Specify which state this FSM should begin at. 

.startsAt(state_name) 

state_name string The name of the state to start at 

Returns FSM this 

Example: 

var my_fsm = cjs.fsm("state_a", "state_b"); 
my_fsm.startsAt("state_b"); 

new cjs.MapConstraint([options]) 

Note: the preferred way to create a map constraint is with cjs.map This class is meant to emulate 
JavaScript objects ({}) but with constraints 

Options: 

• hash: a key hash to use to improve performance when searching for a key 
(default: x.toString()) 

• valuehash: a value hash to use improve performance when searching for a value (default: false) 

• equals: How to check for equality when searching for a key (default: ===) 

• valueequals: How to check for equality when searching for a value (default: ===) 

• value: An optional starting value (default: {}) 

• keys: An optional starting set of keys (default: []) 

• values: An optional starting set of values (default: []) 
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• literal_values: True if values that are functions should return a function rather than that 
function's return value. (default:false) 

• create_unsubstantiated: Create a constraint when searching for non-existent keys. 
(default: true) 

.MapConstraint([options]) 

[options] Object A set of options to control how the map constraint is evaluated 

cjs.MapConstraint.BREAK 

Any iterator in forEach can return this object to break out of its loop. 

cjs.MapConstraint.prototype.clear() 

Clear every entry of this object. 

.clear() 

Returns cjs.MapConstraint this 

Example: 

var map = cjs({x: 1, y: 2}); 
map.isEmpty(); // false 
map.clear(); 
map.isEmpty(); // true 

cjs.MapConstraint.prototype.destroy([si
lent=false]) 

Clear this object and try to clean up any memory. 

.destroy([silent=false]) 

[silent=false] boolean If set to true, avoids invalidating any dependent 
constraints. 

cjs.MapConstraint.prototype.entries() 

Get every key and value of this object as an array. 
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.entries() 

Returns array.object A set of objects with properties key and value 

Example: 

var map = cjs({x: 1, y: 2}); 
map.entries(); // [{key:'x',value:1}, 
               //  {key:'y',value:2}] 

cjs.MapConstraint.prototype.forEach(cal
lback, thisArg) 

The forEach() method executes a provided function once per entry. If cjs.MapConstraint.BREAK is 
returned for any element, we stop looping 

.forEach(callback, thisArg) 

callback function Function to execute for each entry. 

thisArg * Object to use as this when executing callback. 

Returns cjs.MapConstraint this 

Example: 

var map = cjs({x:1,y:2,z:3}); 
map.forEach(function(val, key) { 
     console.log(key+':'+val); 
     if(key === 'y') { 
         return cjs.MapConstraint.BREAK; 
     } 
}); 
// x:1 ... y:2 

cjs.MapConstraint.prototype.get(key) 

Get the item at key (like this[key]) 

.get(key) 

key * The entry's key 

Returns *,undefined the value at that entry or undefined 
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Example: 

var map = cjs({x: 1, y: 2}); 
map.get("x"); // 1 

cjs.MapConstraint.prototype.getOrPut(ke
y, create_fn, [create_fn_context], 
[index=this.size], [literal=false]) 

Search for a key or create it if it wasn't found 

.getOrPut(key, create_fn, [create_fn_context], [index=this.size], [literal=false]) 

key * The key to search for. 

create_fn function A function to create the value if key is not found 

[create_fn_context] * The context in which to call create_fn 

[index=this.size] number Where to place a value that is created 

[literal=false] boolean Whether to create the value as a literal constraint 
(the value of a function is the function) 

Returns number The index of the entry with key=key or -1 

Example: 

var map = xjs({x: 1, y: 2}); 
map.getOrPut('x', function() { 
     console.log("evaluating"); 
     return 3; 
}); 
// output: 'evaluating' 
// 3 
map.getOrPut('x', function() { 
     console.log("evaluating"); 
     return 3; 
}); 
// (no output) 
// 3    

cjs.MapConstraint.prototype.has(key) 

Check if there is any entry with key = key 
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.has(key) 

key * The key to search for. 

Returns boolean true if there is an entry with key=key, false otherwise. 

Example: 

var map = cjs({x: 1, y: 2}); 
map.has('x'); // true 

cjs.MapConstraint.prototype.indexOf(key
) 

Get the index of the entry with key = key 

.indexOf(key) 

key * The key to search for. 

Returns number The index of the entry with key=key or -1 

Example: 

var map = cjs({x: 1, y: 2}); 
map.indexOf('z'); // -1 

cjs.MapConstraint.prototype.isEmpty() 

Check if this object has any entries 

.isEmpty() 

Returns boolean true if there are no entries, false otherwise 

Example: 

var map = cjs({x: 1, y: 2}); 
map.isEmpty(); // false 

cjs.MapConstraint.prototype.item(...) 

Convert my value to a standard JavaScript object. The keys are converted using toString 



Appendix B: ConstraintJS API 
 

 

222 

.item() 

Returns object A standard JavaScript object 

.item(key) 

key number The object key 

Returns * The value at index key 

.item(key, value) 

key number The object key 

value * The new value 

Returns cjs.MapConstraint this 

Example: 

var map = cjs({x: 1, y: 2}); 
map.item(); // {x:1,y:2} 
var map = cjs({x: 1, y: 2}); 
map.item('x'); // 1 
var map = cjs({x: 1, y: 2}); 
map.item('z', 3); 
map.keys(); //['x','y','z'] 

cjs.MapConstraint.prototype.itemConstra
int(key) 

Return a constraint whose value is bound to my value for key 

.itemConstraint(key) 

key *,Constraint The array index 

Returns Constraint A constraint whose value is this[key] 

Example: 

var map = cjs({x: 1, y: 2}); 
var x_val = map.itemConstraint('x'); 
x_val.get(); // 1 
map.item('x', 3); 
x_val.get(); // 3 
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cjs.MapConstraint.prototype.keyForValue
(value, [eq_check]) 

Given a value, find the corresponding key 

.keyForValue(value, [eq_check]) 

value * The value whose key to search for 

[eq_check] function How to check if two values are equal (default: === 

Returns *,undefined The key where this.get(key)===value 

Example: 

var map = cjs({x: 1, y: 2, z: 3}); 
map.keyForValue(1); // 'x' 

cjs.MapConstraint.prototype.keys() 

Get the keys on this object. 

.keys() 

Returns array.* The set of keys 

Example: 

var map = cjs({x: 1, y: 2}); 
map.keys(); // ['x','y'] 

cjs.MapConstraint.prototype.move(key, 
to_index) 

Move the entry with key key to `index 

.move(key, to_index) 

key * The key to search for 

to_index number The new index for the key 

Returns cjs.ArrayConstraint this 
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Example: 

var map = cjs({x: 1, y: 2, z: 3}); 
map.keys(); // ['x','y', 'z'] 
map.move('z', 0); 
map.keys(); // ['z','x', 'y'] 

cjs.MapConstraint.prototype.moveIndex(o
ld_index, new_index) 

Move the entry at old_index to index new_index 

.moveIndex(old_index, new_index) 

old_index number The index to move from 

new_index number The index to move to 

Returns cjs.ArrayConstraint this 

Example: 

var map = cjs({x: 1, y: 2, z: 3}); 
map.keys(); // ['x','y', 'z'] 
map.moveIndex(1, 0); 
map.keys(); // ['y','x', 'z'] 

cjs.MapConstraint.prototype.put(key, 
value, [index=this.size], [literal]) 

Set the entry for key to value (this[key]=value) 

.put(key, value, [index=this.size], [literal]) 

key * The entry's key 

value * The entry's value 

[index=this.size] number The entry's index 

[literal] boolean Whether to treat the value as literal 

Returns cjs.MapConstraint this 
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Example: 

var map = cjs({x: 1, y: 2}); 
map.put("z", 3, 1); 
map.keys(); // ['x','z','y'] 

cjs.MapConstraint.prototype.remove(key) 

Remove a key's entry (like delete this[key]) 

.remove(key) 

key * The entry's key 

Returns cjs.MapConstraint this 

Example: 

var map = cjs({x: 1, y: 2}); 
map.remove("x"); 
map.keys(); // ['y'] 

cjs.MapConstraint.prototype.setEquality
Check(equality_check) 

Change the default equality check when getting a key 

.setEqualityCheck(equality_check) 

equality_check function The new key equality check 

Returns cjs.ArrayConstraint this 

cjs.MapConstraint.prototype.setHash(has
h) 

Change the hash function when getting a key 

.setHash(hash) 

hash function,string The new hashing function (or a string representing a property 
name for every key to use as the hash) 

Returns cjs.ArrayConstraint this 
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cjs.MapConstraint.prototype.setValueEqu
alityCheck(vequality_check) 

Change the default value equality check when getting a value 

.setValueEqualityCheck(vequality_check) 

vequality_check function The new value equality check 

Returns cjs.ArrayConstraint this 

cjs.MapConstraint.prototype.setValueHas
h(hash) 

Change the hash function when getting a value 

.setValueHash(hash) 

hash function,string The new hashing function (or a string representing a property 
name for every key to use as the hash) 

Returns cjs.ArrayConstraint this 

cjs.MapConstraint.prototype.size() 

Get the number of entries in this object. 

.size() 

Returns number The number of entries 

Example: 

var map = cjs({x: 1, y: 2}); 
map.size(); // 2 

cjs.MapConstraint.prototype.toObject([k
ey_map_fn]) 

Converts this array to a JavaScript object. 
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.toObject([key_map_fn]) 

[key_map_fn] function A function to convert keys 

Returns object This object as a JavaScript object 

Example: 

var map = cjs({x: 1, y: 2, z: 3}); 
map.toObject(); // {x:1,y:2,z:3} 

cjs.MapConstraint.prototype.values() 

Get the values on this object. 

.values() 

Returns array.* The set of values 

Example: 

var map = cjs({x: 1, y: 2}); 
map.values(); // [1,2] 


