

Expressing Interactivity with States and Constraints
by Stephen William-Lucas Oney

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

April 2015
CMU-HCII-150-100

Committee:
Brad Myers (Chair)
Joel Brandt (Adobe Research)
Scott Hudson
John Zimmerman

Human-Computer Interaction Institute
School of Computer Science
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213 USA

Funding for this research comes from a Microsoft SEIF award, multiple gifts from
Adobe, an ARCS Scholarship, a Ford Foundation Fellowship, and from NSF
grants IIS-1116724 and IIS-1314356. Any opinions, findings, conclusions, or
recommendations are those of the authors and do not necessarily reflect those of
any of the sponsors.

 ii

Keywords: constraints, state machines, user interface development, development frameworks,
multi-touch development, event systems, spreadsheets

 iii

Abstract
A Graphical User Interface (GUI) is defined by its appearance and its behavior. A GUI’s behavior
determines how it reacts to user and system events such as mouse, keyboard, or touchscreen
presses, or changes to an underlying data model. Although many tools are effective in enabling
designers to specify a GUI’s appearance, defining a custom behavior is difficult and error-prone.
Many of the difficulties developers face in defining GUI behaviors are the result of their reactive
nature. The order in which GUI code is executed depends upon the order in which it receives
external inputs.

Most widely used user interface programming frameworks use an event-callback model, where
developers define GUI behavior by defining callbacks—sequences of low-level actions—to take in
reaction to events. However, the event-callback model for user-interface development has several
problems, many of which have been identified long before I started work on this dissertation.
First, it is disorganized: the location and order of event-callback code often has little
correspondence with the order in which it will be executed. Second, it divides GUI code in a way
that requires writing interdependent code to keep the interface in a consistent state. This is
because maintaining a consistent state requires referencing and modifying the same state variables
across multiple different callbacks, which are often distributed throughout the code.

In this dissertation, I will introduce a new framework for defining GUI behavior, called the state-
constraint framework. This framework combines constraints—which allow developers to define
relationships among interface elements that are automatically maintained by the system—and
state machines—which track the status of an interface. In the state-constraint framework, developers
write GUI behavior by defining constraints that are enforced when the interface is in specific
states. This framework allows developers to specify more nuanced constraints and allows the
GUI’s appearance and behavior to vary by state. I created two tools using the state-constraint
framework: a library for Web developers (ConstraintJS) and an interactive graphical language
(InterState).

ConstraintJS provides constraints that can be used both to control content and control display,
and integrates these constraints with the three Web languages—HTML, CSS, and JavaScript.
ConstraintJS is designed to take advantage of the declarative syntaxes of HTML and CSS: It
allows the majority of an interactive behavior to be expressed concisely in HTML and CSS, rather
than requiring the programmer to write large amounts of JavaScript.

InterState introduces a visual notation and live editor to clearly represent how states and
constraints combine to define GUI behavior. An evaluation of InterState showed that its
computational model, visual notation, and editor were effective in allowing developers to define
GUI behavior compared to conventional event-callback code. InterState also introduces
extensions to the state-constraint framework to allow developers to easily re-use behaviors and
primitives for authoring multi-touch gestures.

 iv

Acknowledgements
I am grateful for the advice and feedback of my co-advisors, Brad Myers and Joel Brandt. Both of
them have helped guide my research trajectory in a beneficial way, from small details to the
bigger picture. I also thank my committee for their guidance and feedback since my dissertation
proposal. In particular, thanks to my Friendship Ave. roommates (and co-authors): Chris
Harrison, Jason Wiese, Amy Ogan, and Eliane Wiese. I will have many fond memories of our
time in Pittsburgh.

I would also like to thank a number of other members of the Human-Computer Interaction
Institute who brightened my days throughout the PhD, including Eiji Hayashi, Iris Howley,
Queenie Kravitz, Ian Li, Jennifer Marlow, Julia Schwarz, Yla Tausczik. I’d also like to thank my
other co-authors and collaborators, including John Barton, Su Baykal, Miso Kim, Sukhada
Kulkarni, Tessa Lau, Jeff Nichols, Kursat Ozenc, Tao Xie, and John Zimmerman. Most of all,
I’d like to thank my most enthusiastic supporters: my parents, Stephenie and Logan II; my sisters
Theresa and Christina; and my brother Logan III.

 v

Table of Contents
Abstract .. iii	

Acknowledgements ... iv	

Table of Contents ... v	

List of Figures ... viii	

List of Tables .. xv	

1	 Introduction ... 16	
1.1	 Interactive Behaviors ... 16	
1.2	 Problem Statement .. 18	
1.3	 A Paradigm for Expressing Interactivity .. 18	
1.4	 Reusing and Combining Behaviors .. 21	
1.5	 Multi-Touch Development .. 22	
1.6	 Contributions .. 22	
1.7	 Outline ... 23	

2	 Related Work ... 24	
2.1	 Motivating Research .. 24	
2.2	 Constraints .. 25	
2.3	 Declarative Models for UI Development .. 28	
2.4	 State Machines in User Interface Tools .. 30	
2.5	 UI Management Systems and Frameworks ... 32	
2.6	 Behavior Re-Use .. 33	
2.7	 Visual Programming .. 34	
2.8	 Live Development .. 34	
2.9	 Multi-touch Gestures ... 35	
2.10	 Conclusion .. 36	

3	 ConstraintJS ... 38	
3.1	 Web Development Technologies .. 38	
3.2	 Contributions .. 40	
3.3	 Terminology ... 41	
3.4	 Motivating Example .. 42	
3.5	 ConstraintJS Overview .. 45	
3.6	 Implementation ... 56	
3.7	 Example Applications .. 58	
3.8	 Conclusion .. 62	

4	 InterState .. 63	
4.1	 JavaScript Library Limitations ... 63	
4.2	 Contributions .. 64	
4.3	 Motivating Example .. 66	
4.4	 Computational Model ... 69	

 vi

4.5	 Visual Notation ... 77	
4.6	 Behavior Reuse .. 82	
4.7	 InterState Editor .. 87	
4.8	 Laboratory User Evaluations ... 89	
4.9	 Scalability and Evaluation ... 92	
4.10	 Implementation ... 94	
4.11	 Conclusion .. 102	

5	 Defining Custom Event Types ... 103	
5.1	 Managing Event Conflicts ... 103	
5.2	 Improving Custom Events .. 104	
5.3	 Event Infrastructure .. 105	
5.4	 Conclusion .. 108	

6	 Multi-Touch Primitives ... 109	
6.1	 Multi-Touch Challenges .. 109	
6.2	 Motivating Example .. 111	
6.3	 Integrating Multi-Touch with InterState ... 113	
6.4	 Touch Gesture Examples .. 118	
6.5	 Conclusion .. 122	

7	 Limitations and Future Work ... 124	
7.1	 Scope .. 124	
7.2	 Tools for Non-Developers ... 126	
7.3	 Pre-Supplied Widgets .. 127	
7.4	 Debugging Tools .. 128	
7.5	 Animations .. 129	
7.6	 Annotations ... 129	
7.7	 InterState Editor Feature Extensions .. 129	
7.8	 Direct Manipulation .. 131	
7.9	 Better Support for Exploration ... 132	
7.10	 Referencing Web Services in InterState .. 132	
7.11	 Conclusion .. 132	

8	 Conclusion ... 133	

9	 References .. 135	

Appendix A ConstraintJS Tutorial .. 148	
A.1	 Introduction .. 148	
A.2	 Using ConstraintJS ... 149	
A.3	 Constraint Variables ... 149	
A.4	 ConstraintJS Internals .. 151	
A.5	 DOM Bindings ... 152	
A.6	 Detecting Variable Changes ... 153	
A.7	 Array and Map Constraints .. 154	
A.8	 States and FSMs .. 155	
A.9	 Templates .. 157	

 vii

A.10	 Template Syntax ... 157	

Appendix B ConstraintJS API ... 161	

 viii

List of Figures
Figure 1.1	 An example ConstraintJS application that uses the Facebook API to retrieve

a list of a user’s friends and subsequently a picture for every friend. While
the list of friends is loading, the message “Loading friends…” is shown. After
the list of friends has loaded, this interface displays the name of every friend
next to their picture. While any user’s picture is loading, a spinning loading
icon is displayed next to their name. ... 19	

Figure 1.2	 ConstraintJS code to create the interface shown in Figure 1.1. Here, the
Facebook API is called (asynchronously using fb_request) to fetch a list
of friends and a profile picture for each friend. The rest of the code displays
the data fetched in the first five lines by specifying which graphics should
appear by state. Chapter 3 further describes this example in detail. 20	

Figure 1.3	 An illustration of a basic InterState object, named draggable. Properties,
which control draggable’s display, are represented as rows (e.g. x, y, and
fill). States and transitions are represented as columns (e.g. no_drag,
drag, and drag_lock). An entry in a property’s row for a particular state
specifies a constraint that controls that property’s value in that state. Chapter
4 further describes this example. ... 21	

Figure 3.1	 The target application for the motivating example. An asynchronous
Facebook API call returns a list of friends. While the list of friends is loading,
“Loading Friends…” appears on screen. After the list of friends has loaded,
the profile picture of each friend is then independently requested. While the
application is waiting for the Facebook API to return a picture URL for a
friend, a loading image is displayed. .. 42	

Figure 3.2	 The JavaScript code for the example shown in Figure 3.1. This code, which
uses the jQuery library to increase clarity, first creates an element to display
the “Loading friends…” loading indicator (line 1). It then makes an
asynchronous call to load the user’s friends (line 2, handler lines 3-26). Then,
for every friend, it creates a loading indicator (lines 6-23) and updates their
picture when it has loaded (lines 15-22). This code requires three levels of
nested callbacks: one for the initial friends list request, another to create a
scope closure for every friend (a JavaScript convention), and another to load
the picture for every friend. ... 43	

Figure 3.3	 The ConstraintJS code for the example in Figure 3.1. Here, the Facebook
API is called (asynchronously using fb_request) to fetch a list of friends
(line 1) and a profile picture for each friend (lines 2—5). These values are
placed into the friends and pics constraint variables respectively. Lines
8—20 declare a template that depends on these variables. As the list of
friends is loading, friends.state will be pending, so the message
“Loading friends…” is displayed (line 9). After the list of friends has loaded

 ix

(lines 11—21) the pictures for all friends are displayed alongside their names.
While the application is waiting for the Facebook API to return a picture
URL for a friend, a loading image (loading.gif) is displayed (line 15).
The code also correctly notifies the user of any errors (lines 10, 17). 44	

Figure 3.4	 (Left) An illustration of an interactive behavior where hovering over one
block highlights the other block. (Right) the FSM used by both blocks to track
their state. .. 48	

Figure 3.5	 The FSM of asynchronous constraints in ConstraintJS. Asynchronous
constraints are constraints that don’t have a value until after some delay
period, e.g. data returned from network or file system queries. While the
constraint is waiting for a value, the FSM is in the “Pending” state. When it
successfully receives a value, it enters the “Resolved” state. If there is an
error or the request times out, it enters the “Rejected” state. 50	

Figure 3.6	 An illustration of a jQuery UI slider widget. Constraint variables can be
attached to track its value. ... 53	

Figure 3.7	 A color selector that uses constraint variables to automatically update the
preview color and hex value text. A constraint variable tracks the values for
each of the red, green, and blue sliders (r, g, and b respectively). A fourth
constraint variable (hex) computes a hex color value. Finally, constraints
update the background color and text of the color selector to reflect the
slider values. ... 54	

Figure 3.8	 An illustration of Bubble Cursors [6]. Clickable “targets” are light grey-filled
circles. When the cursor is too far from any of the targets, a grey dotted halo
appears around the cursor (A). When a target is in range (B), the halo
becomes red and shrinks enough that it intersects the target, which turns
dark grey. The ConstraintJS implementation of this application allows all of
this behavior to be expressed declaratively. ... 59	

Figure 3.9	 A scatterplot application implemented with ConstraintJS. By default,
constraints set the position of every data point to reflect the values of an
underlying data model (A). When a point is dragged (B), a constraint in the
opposite direction updates the underlying data model based on the position
of the point, which in turn, is constrained to the mouse’s position. The axes
may also be dragged (C) and constraints automatically update the axis labels
to reflect its position. Finally, axes’ scales may be changed (D) by dragging a
point while holding SHIFT. This example illustrates how one-way
constraints in ConstraintJS may be combined with FSMs to enable
functionality that was previously only possible with multi-way constraints. 60	

Figure 3.10	 An illustration of a touchscreen-based application written with ConstraintJS.
Constraints control the position, scale, and angle of photos, which users can
manipulate with one or two fingers. When two fingers touch a photo, a red

 x

slider appears that controls the photo’s opacity and can be changed using a
third finger. Constraints set the position and text of the slider. 61	

Figure 4.1	 A representative JavaScript snippet that implements the drag lock behavior
for an object named draggable. ... 66	

Figure 4.2	 An illustration of a basic InterState object, named draggable. Properties,
which control draggable’s display, are represented as rows (e.g. x, y, and
fill). States and transitions are represented as columns (e.g. no_drag,
drag, and drag_lock). An entry in a property’s row for a particular state
specifies a constraint that controls that property’s value in that state; while
draggable is in the drag state, x and y will be constrained to mouse.x
and mouse.y respectively, meaning draggable will follow the mouse
while dragging. Note that in this example, when the user performs a double
click to initiate drag lock, the drag_lock object does enter and then leave
the drag state intermittently as a result of the mouse.down and
mouse.up events that are fired during a double click. Section 5.1 will
introduce a mechanism that would allow a developer to avoid having
drag_lock enter the drag state during a double click by adding a delay
before registering the mouse.down event used in the no_drag to drag
transition. This delay would allow a double click (mouse.dblclick) event
to register resulting in entering the drag_lock state without any
mouse.down events registering. .. 67	

Figure 4.3	 The JavaScript code for drag lock (introduced in Figure 4.1) augmented to
allow the user to press ESC to exit from drag lock (lines 42—49), use click
rather than double click to exit from drag lock (lines 36—41 and several
lines removed from Figure 4.1), and change the fill color by state (lines 4, 16,
26, and 32). As the line numbers for these changes indicate, augmenting the
example in Figure 4.1 requires significantly modifying the previous
JavaScript code. ... 68	

Figure 4.4	 The InterState code for drag lock (introduced in Figure 4.2) augmented to
allow the user to press ESC to exit from drag lock (the topmost transition),
use click rather than double click to exit from drag lock (the next topmost
transition), and change the fill color by state (the bottom field). In this
example, draggable indicates its current state with its fill color so that it is
black by default, blue while it is dragging, and navy in the drag_lock
state. ... 69	

Figure 4.5	 Two objects (obj1 and obj2) have state machines with transitions that fire
when the mouse clicks. InterState executes the constraints that are set on
these transitions as if they are executed simultaneously. 72	

Figure 4.6	 An example of a standard radio button widget on the left. The table on the
right shows the various states that a radio button item may be in with respect

 xi

to whether it is selected, keyboard focused, and pressed. The FSMs for each
category are independent, meaning that every item has one selection state,
one keyboard focus state, and one mouse state. These states combine to
form 2x2x4=16 possible states for any radio button item. 75	

Figure 4.7	 A preliminary version of InterState (then called Euclase). This version
contains the basic object layout (states as columns and properties as rows).
However, this version of Euclase does not differentiate between states and
events. The state of an object is the last event that occurred on that object.
Every object also has a draw field that specifies, in JavaScript canvas code,
how it should be drawn (typically referencing other fields), as described in
section 4.4.5. This example also utilizes the defunct KEEPVALUE primitive,
described in section 4.4.1. Empty cell values are KEEP by default (greyed out
in the figure); an idea that was maintained through the current version of
InterState by replacing the “KEEP” keyword with a circle. 78	

Figure 4.8	 The trapezoidal state machine design. This version of InterState also used a
slightly different event type, with each transition using the parameterizable
on() function to define events. .. 79	

Figure 4.9	 The final state machine design for InterState state machines. This design
reduces the amount of horizontal space taken by the state machines. 79	

Figure 4.10	 An InterState state machine for an “event-oriented” behavior with few states
and many events. This state machine represents the behavior of a ball in the
game of breakout. Here, the ball might bounce off of the paddles, blocks,
walls, or might go out of bounds (the bottom wall). .. 80	

Figure 4.11	 The InterState editor shows one object at a time (in this case, myShape)
and the fields and current values of every parent object in the containment
hierarchy (in this case, sketch and paper). The editor also allows
developers to pin objects to the screen by dragging them to the bottom of the
window. ... 81	

Figure 4.12	 InterState (then Euclase) with a tree layout. However, the tree notation
resulted in too many objects being visible at one time and visual clutter. 82	

Figure 4.13	 InterState uses a prototype-instance inheritance model with multiple
inheritance. Prototypes are simply specified in the prototypes property.
Here, my_square inherits from square. Because my_square does not
define a value for height, it inherits the definition of square.height,
as indicated by the greyed out text in the columns on the right. Note that
my_square inherits the definition of height, not the value. Thus, the
width property of my_square evaluates to a different value (20) than the
width of square (15). .. 83	

 xii

Figure 4.14	 An object that inherits from both draggable and selectable
behaviors. Note that the definitions for the color property are inherited
from draggable ('red') and selectable ('blue'). 84	

Figure 4.15	 An object with multiple copies; copies is set to ['Jane', 'Sue'].
Every copy has two properties: my_copy, which is set to that copy's item
(here, either 'Jane' or 'Sue') and copy_num, which is set to that copy's
index. Here, we are looking at the first copy (index 0). 85	

Figure 4.16	 Two InterState objects (favs_panel and color_disp) that create a
dynamically changing display for a dynamic list of favorite colors.
Annotations are in gold boxes. This code stores a list of favorites under
favs_panel.favorites. When a user clicks on any color (represented
favs_panel’s transition diagram as mouse.click(color), that color
is added to the list of favorites (by setting favorites to
favorites.push(color) in the color click transition). Because
color_disp’s copies field is set to favorites, new copies of
color_disp are added and removed as favorites changes, automatically
adding and removing visual elements from the screen. 86	

Figure 4.17	 Syntax and runtime errors are highlighted in the editor but do not prevent
the program from running. Fields with errors and other fields that depend
on them are given the value undefined. ... 89	

Figure 4.18	 The relative times (in minutes) across 20 participants to complete tasks in
JavaScript (JS) and InterState (IST). Every participant performed one task in
InterState and one task in JavaScript, meaning that for every one of the four
bars in this chart, N=10 (overall N=20). The error bars represent the
standard deviation from the mean. Smaller values are better. 91	

Figure 4.19	 Benchmark results. In the first test, N is the length of the prototypes chain.
In the second, N is the number of children. In the third, N is the number of
prototypes. ... 93	

Figure 4.20	 A representation of the basic object structure for the objects shown in Figure
4.13. The basic object tree is a mutable tree that gets modified when the
developer performs an edit on their program. This model contains three
objects (sketch, square, and my_square) and five cells (sq_protos,
sq_width, sq_height, mysq_protos, and mysq_width). Note there
is no field for my_square.height, the inherited field that only exists in
the contextual object tree shown in Figure 4.21. There is also no slot for
values, which are computed in the contextual object tree because the value of
a given variable depends on its computation context. This model makes two
simplifying assumptions. First, it omits the state machines of square and
my_square (which would each have one start state). Second, it gives
human-readable names to objects (sq_protos, sq_width, etc.) whereas

 xiii

in the InterState runtime, objects’ names only exist in their container
object’s field name. .. 98	

Figure 4.21	 The contextual object tree for the basic object tree shown in Figure 4.20.
Unlike the basic object tree, the contextual object tree is computed by the
InterState runtime from the basic object tree. As the basic object tree is
updated, the InterState runtime automatically updates its contextual object
tree. This tree bears some resemblance to the tree in Figure 4.20, but with a
few notable differences. First, every contextual cell contains a computed
value, which is not present in the basic object tree. Second, every contextual
dict and contextual cell contains a context that defines how values are
evaluated. For example, although both c_sq_height and
c_mysq_height are cells whose expression is width, their computed
values (15 and 20 respectively) are different because they are evaluated in
different contexts. .. 98	

Figure 5.1 	 A state machine showing the various states of an event with priority p. Every
event can be in three states: idle, pending fire, and pending block. By default,
every event is in the idle state. When the event requests to fire (a), through
the fire method, it enters the pending fire state. After enough time
(specified by the timeout parameter) or if the event has no timeout
parameter, then the event’s firing is confirmed (b). If the event firing is
cancelled (through the cancel method) before the timeout interval passes,
then the event is cancelled (c). If another event in the same group with
higher priority is requested before the timeout interval passes, then the event
moves to the pending block stage (g). If all of the events with a higher
priority are cancelled, then the event will return to the pending fire state (f).
If any other event with a higher priority fires, then the event is blocked (d). If
another event is still pending fire when the event’s timeout interval passes,
then the event is also blocked (e). ... 107	

Figure 6.1	 The default, “non-greedy” behavior for touch clusters is that every touch
cluster can claim the same fingers. For instance, suppose a developer defines
one three-finger touch cluster and three one-finger touch clusters across
different elements in an interface. With non-greedy behavior, when the user
presses three fingers down, all four touch cluster activation events would fire.115	

Figure 6.2	 Like in Figure 6.1, here the developer has defined one three-finger touch
cluster and three one-finger touch clusters. However, the developer has
specified that the three-finger touch cluster should be “greedy”, so that other
touch clusters should not fire with any of the touches used. In this case, when
the user presses three fingers down, only the three-finger touch cluster will
fire. ... 115	

Figure 6.3	 In most multi-touch devices, when a user taps a numeric input field, a
numeric keypad is invoked. In this example, I augment that interaction to
allow a user’s finger to also “nudge” the numeric slider left or right to select

 xiv

a number slightly lower or higher than the current value. Implemented with
InterState’s touch extensions, this example uses path crossing events to
determine if the user’s finger is moving horizontally or tapping the widget. .. 119	

Figure 6.4	 In this example, the user can swipe one finger up from the bottom of a
touchscreen to invoke a brushes menu or they can swipe two fingers from
the bottom of the screen to invoke a colors menu. If the user swipes up, the
menu is docked (stays in place after the user releases). If the user swipes
down, the menu hides. While the user is swiping, the menu follows the
finger. InterState uses the event conflict management system described in
the previous chapter to differentiate between one-finger and two-finger
swipes. .. 121	

Figure 6.5	 This example represents an undo/redo (or more generally, back/forward)
mechanism for tablet applications. The user first presses down two fingers (in
the diagram shown, the index and ring fingers) and presses a third to the left
to undo or a third finger to the right to redo. To prevent conflicts with
panning and scrolling gestures, this undo/redo gesture also cancels if the two
finger centroid moves or scales past a low threshold. 122	

Figure A.1	 y depends on x (think of x's value as flowing to y) ... 151	

Figure A.2	 y is invalidated after x changes ... 151	

 xv

List of Tables
Table 4.1	 The relative sizes of the user study’s two behaviors and the minimum size of

modifications required for the tasks. (Note that these numbers represent the
minimum number of changes, rather than the number of changes made by
participants.) .. 90	

Table 4.2	 A comparison of the features of basic objects and contextual objects. Basic
objects are responsible for tracking the definitions that are declared by
developers. Contextual objects are responsible for tracking the values that are
used in the runtime. The contextual object hierarchy is automatically
generated based on the basic object hierarchy. ... 96	

Table 4.3	 A non-exhaustive list comparing the fields of basic and contextual objects.
The fields of basic objects are oriented towards tracking definitions, whereas
the fields of contextual objects are oriented towards tracking values. 97	

Table 4.4	 The inputs and outputs of several attachment types in InterState.
Attachments create JavaScript objects that can be inherited within the
context of InterState’s standard inheritance mechanism. 101	

16

1 Introduction

Creating a good Graphical User Interface (GUI) requires more than carefully
arranging the graphical elements that define its appearance; it also requires defining
the interface’s behavior. A GUI’s behavior consists of the dynamic parts of an
interface: how it changes in response to user inputs and other stimuli. It can be
described as the feel of a GUI, as opposed to its look. Although there are many
effective tools that allow designers to specify a custom GUI’s appearance, defining its
behavior is costly, error-prone, and typically limited to expert developers [85,101].

1.1 Interactive Behaviors

A GUI’s behavior is made up of smaller interactive behaviors, which describe the
behavior of specific interface components. An interactive behavior might determine
how a button reacts when a user’s mouse cursor hovers over and presses on it or how
a sliding menu appears on a touchscreen when a user swipes their finger from the left
edge. Taken in aggregate, these interactive behaviors define a GUI’s behavior.

Throughout this dissertation, the terms behavior and interactive behavior are
interchangeable. Additionally, the granularity of interactive behaviors is subjective,
as very few behaviors are entirely independent. For example, in a shape drawing
application, we might consider the behavior of a color selector to be a singular
behavior. Still, whether the color selector is enabled or disabled might depend on
factors outside of the scope of the behavior, such as whether a shape in the drawing
panel is currently selected.

Chapter 1: Introduction / Interactive Behaviors

17

1.1.1 Implementing Interactive Behaviors
Most user interfaces are developed using general purpose programming languages—
programming languages whose features are designed to support a wide variety of
programming goals. Nearly all widely deployed user interface frameworks built for
these languages—e.g., Cocoa, QT, Java Swing, .NET Windows Forms, and
JavaScript/Web development—rely on an event-callback programming model [38,50].
In this model, developers specify interactive behaviors by writing imperative code
that determines how the user interface should react to every relevant stimulus.

The problem with defining interactive behaviors in this model is that a typical
interactive behavior involves many events, which has several detrimental effects for
developers. First, it splits the implementation of a single behavior across many
callbacks in a GUI’s source [110,132], making it more difficult to reason about the
control flow of a given interactive behavior. Second, a typical GUI component’s
behavior and appearance often depend upon its state [4] but general-purpose
programming languages currently do not support a notion of state. Thus, developers
need to properly track and maintain an implicit notion of state across these callbacks.
Third, the interactions between distinct GUI behaviors further complicate their
implementation, making it more difficult to implement independent, re-usable
behaviors. The net result of all these challenges is that event-callback code tends to
produce error-prone, interdependent “spaghetti” code [110].

Of course, one way to address the challenges developers face writing interactive
behaviors is by providing reusable widgets—pre-built, customizable interactive
behaviors. A number of GUI toolkits and GUI builders allow developers to drop
common widgets into their applications, including scroll bars, buttons, and menus.
These widgets can help experienced and novice GUI developers by providing basic
scaffolding upon which they can build their application.

However, reusable widgets and GUI builders do not represent a complete solution
for the problems UI developers face. Although these widgets allow developers to
work at higher abstraction levels—button presses instead of mouse clicks or menu
item selections rather than touchscreen presses—the interactions between these
components can still be challenging to implement correctly. For instance, a
developer might be able to re-use a color selection widget in the context of a drawing
application, but they still must program what the effect of the user picking a color
should be (to change the color of the currently selected shape) and when it is
activated (when a shape is selected).

Also, widget creators cannot anticipate all of the widgets that developers will want or
all of the ways they will want to customize a widget. When a designer or developer
has an idea for a new interaction technique to help users accomplish a task in their
interface, to implement or explore their idea, developer must write it from scratch.
Thus it is important that the underlying frameworks and tools they use address the
difficulties of creating interactive behaviors. Because designing, implementing, and
evaluating new interactive behaviors are common in the Human-Computer

Chapter 1: Introduction / Problem Statement

18

Interaction (HCI) community, making interactive behaviors easier to implement is a
fundamental problem in HCI [98].

1.2 Problem Statement

Many of the factors that make interactive behaviors difficult to implement in
general-purpose programming languages can be attributed to the reactive nature of
interactive behaviors [85,133]. Unlike sequential systems, which execute code in the
same order it is written, reactive systems execute code in an order that depends upon
external inputs, such as mouse, keyboard, touchscreen, timer, or network events that
may occur at any time.

Further, many features that make a GUI more usable also make its interactive
behaviors more difficult to design and implement [112]. Giving users visibility of system
status [118] requires developers to write code to provide end-users with immediate
feedback for any number of ways they might interact with a GUI. Presenting
context-relevant information and controls, which helps prevent user errors and
contributes to an aesthetically pleasing and minimalist interface [118], requires tracking
the GUI’s status and modifying its appearance and behavior based on that status. For
example, widgets that are not available in a particular state (like the aforementioned
color selector when no shape is selected) should be visibly disabled or not shown in
that state.

To address this issue, researchers and practitioners have created libraries that
augment existing languages and GUI frameworks with new programming models,
including constraints (relationships that are maintained automatically) [94,110,126]
and state machines [4,137]. However, when producing a user interface is the
programmer’s primary goal, many aspects of the underlying language are often not
ideal for expressing interactive behaviors [85].

1.3 A Paradigm for Expressing Interactivity

This dissertation begins with the insight that programming tools can better support
user interface development by supporting language primitives designed to address
the challenges of expressing interactive behaviors. I will first present a set of new
language primitives and illustrate how they fit together to express interactive
behaviors. I then describe a visual notation and live editor to represent these
primitives, and a series of evaluations of these primitives. I then will present
extensions to these languages primitives to further support developers in creating and
re-using custom gestures.

The Application Program Interface (API) primitives outlined in this dissertation
combine constraints—relationships that are declared by the developer and
automatically maintained by a constraint solver—with state machines—which control
an interface's behavior by tracking its state and include a set of rules that control
when it changes state. Its use of constraints was motivated by previous research

Chapter 1: Introduction / A Paradigm for Expressing Interactivity

19

showing how constraints can help developers avoid writing spaghetti code [94,110].
In contrast with the event-callback model, which requires writing a snippet of code
that considers every possible user event or model change, the relationships specified
by constraints are maintained regardless of user events or model changes. Its use of
state machines was motivated by the stateful nature of GUIs—the state of an
interface or component often dictates its appearance and behavior. However,
tracking and maintaining a consistent state can be challenging in event-callback code
[137].

In this dissertation, I will describe two programming tools that I created based on
this paradigm: ConstraintJS and InterState.

1.3.1 ConstraintJS: A Library for Web Developers
ConstraintJS is a JavaScript library that enables constraints to control content and
control display features in interactive Web applications. ConstraintJS is designed to
take advantage of the declarative syntaxes of HTML and CSS: it allows the majority
of an interactive behavior to be expressed concisely in HTML and CSS, rather than
requiring the programmer to write large amounts of JavaScript. The example in
Figure 1.1 (whose code is shown in Figure 1.2), for instance, requires almost no
imperative code.

Figure 1.1 An example ConstraintJS application that uses the Facebook API to retrieve a list of a user’s
friends and subsequently a picture for every friend. While the list of friends is loading, the
message “Loading friends…” is shown. After the list of friends has loaded, this interface
displays the name of every friend next to their picture. While any user’s picture is loading, a
spinning loading icon is displayed next to their name.

Loading Friends…

Karen Collins Eric Marshall

Sarah Kelly Keith Malcom

Ellyn ToddCorey Smith

(after friends list has loaded)

Chapter 1: Introduction / A Paradigm for Expressing Interactivity

20

1 friends = cjs.async(fb_request("/me/friends"));
2 pics = friends.map(function(friend) {
3 return cjs.async(fb_request("/" + friend.id
4 + "/picture"));
5 });
6
7 //display code:
8 {{#fsm friends.state}}
9 {{#state pending }} Loading friends...
10 {{#state rejected}} Error
11 {{#state resolved}}
12 {{#each friends friend i}}{{#fsm pics[i].state}}
13 {{#state pending }}
14 {{#state resolved}}
15 {{#state rejected}}
16 {{/ fsm }}
17 {{friend.name}}
18 {{/each}}
19 {{/fsm }}

Figure 1.2 ConstraintJS code to create the interface shown in Figure 1.1. Here, the Facebook API is
called (asynchronously using fb_request) to fetch a list of friends and a profile picture for
each friend. The rest of the code displays the data fetched in the first five lines by specifying
which graphics should appear by state. Chapter 3 further describes this example in detail.

Chapter 3 describes ConstraintJS in detail and shows how it can simplify the
development of interactive behaviors by integrating Finite-State Machines (FSMs)
with constraints. Further, it explains how state-oriented constraints integrate well
with existing event architectures when necessary, including JavaScript’s event-
callback architecture.

1.3.2 InterState: An Interactive Editor
InterState explores whether the programming primitives introduced by ConstraintJS
can also simplify other aspects of programming interactive behaviors, including
understanding how interactive behaviors operate and re-using custom interactive
behaviors. To do this, InterState extends the ideas behind ConstraintJS in four
primary ways. First, it removes much of the boilerplate required to express
constraints by allowing users to express constraints with simple equations—like those
in spreadsheets—rather than requiring inline JavaScript functions [94,126]. Second,
it enables behavior reuse with a new set of language primitives for inheritance and
templating. Third, it introduces a visual notation that groups together the states and
properties relevant to an interactive behavior. Finally, it provides a live editor that
enables quicker exploration by removing the edit-compile-run evaluation cycle.

Chapter 1: Introduction / Reusing and Combining Behaviors

21

Figure 1.3 An illustration of a basic InterState object, named draggable. Properties, which control
draggable’s display, are represented as rows (e.g. x, y, and fill). States and transitions
are represented as columns (e.g. no_drag, drag, and drag_lock). An entry in a property’s
row for a particular state specifies a constraint that controls that property’s value in that
state. Chapter 4 further describes this example.

An illustration of a basic InterState object is shown in Figure 1.3. InterState displays
properties as rows and states as columns. Just as a spreadsheet allows users to scan
categories of information quickly by looking across rows and columns, this layout
allows developers to see which events affect a property by scanning across the
property’s row and which properties an event affects by scanning the event’s column.

1.4 Reusing and Combining Behaviors

Beyond defining custom interactive behaviors, developers often need to re-use and
combine interactive behaviors. This dissertation presents a framework for behavior
re-use that extends traditional prototype-instance inheritance. This framework for
behavior re-use is implemented in the context of the InterState interactive
development environment, but is generalizable beyond InterState and declarative
development environments. It leverages the state-constraint framework that
ConstraintJS and InterState introduce.

1.4.1 Behavior Inheritance
Interactive behaviors are often inherited and combined to produce new, compound
behaviors. However, the traditional notion of inheritance in languages like Java or
JavaScript only allows properties and methods to be inherited. InterState introduces
a style of inheritance that extends traditional prototype-instance inheritance
mechanisms to allow full behaviors to be inherited. For example, a developer might
create a custom slider behavior once and use it throughout their applications.

1.4.2 Event and Gesture Abstraction
A separate, but related concept is the idea of behavior re-use through abstraction.
Event abstraction allows developers to create customizable events types that can be
used in the context of the state machines for another behavior. For example, a
developer might define a custom n-click gesture (double click, triple click, etc.) where

'black'fill

(div)
313
763y

x
prototypes

0
0

'black'
y
x mouse.x

'navy'
mouse.y

mouse.x

'blue'
mouse.y

Add Field

own

dom.div

draggable

Copies:

...

no_drag drag drag_lock

mouse.click

mouse.down(this)
mouse.dblclick(this)

mouse.up

Chapter 1: Introduction / Multi-Touch Development

22

developers can customize the number of clicks (n). They can then abstract away this
gesture and use it like any other built-in event in other behaviors’ state machines.

1.5 Multi-Touch Development

Another important consideration in the design of a development model combining
states and constraints was scalability and generalizability beyond mouse-keyboard
platforms. To explore how states and constraints can help define behavior outside of
the mouse-keyboard paradigm, I also created several primitives to enable expressive
multi-touch development in InterState.

Multi-touch development is often more challenging than mouse-keyboard
development for several reasons. First, multi-touch behaviors often have a larger
state-space than mouse-keyboard as a result of tracking multiple pointers rather than
one. This often means that in addition to tracking the state of their interface,
developers often need to track the state of the gesture itself. Second, multi-touch
gestures often contain ambiguities where the target of a gesture cannot be
determined until after some delay. This makes it more difficult for developers to
provide intermediate feedback in their behaviors. Finally, multi-touch gestures often
are feature-rich relative to mouse-keyboard gestures. Unlike mouse-keyboard
gestures, the direction and speed of finger movement often determine which gesture
a user is performing.

To explore how InterState’s touch primitives could better scale to the challenges of
multi-touch programming, I extended InterState’s primitives to enable developers to
describe higher-level multi-touch events including multi-finger touch events and
“path crossing” events that fire when a set of fingers cross a given path. I also
extended InterState’s event model to add mechanisms to resolve many of the types
of conflicts that developers face when defining multi-touch gestures. Chapter 6 will
describe these primitives in further detail.

1.6 Contributions

This dissertation contributes new frameworks, techniques, and tools aimed at
reducing the barriers to implementing interactive behaviors. Specifically, it
contributes:

• A framework to make constraints more expressive by integrating a notion of
state, allowing developers to write constraints that only are enforced under
certain conditions.

• Evidence that such constraints can help developers implement interactive
behaviors in the context of imperative code.

• A JavaScript library (ConstraintJS) that enables developers to make use of
these frameworks using a familiar syntax.

Chapter 1: Introduction / Outline

23

• A visual notation to help developers visualize and understand how these
constraints and state machines are combined.

• A new model for inheritance and behavior re-use by augmenting the
prototype-instance behavior inheritance model.

• A live editor (InterState) for this visual notation.
• Evidence from a comparative laboratory study that this live editor is effective

in helping developers implement interactive behaviors compared to the
standard event-callback model.

• Extensions to this interactive editor for creating custom gestures and
touchscreen behaviors.

Thesis statement:

An interactive editor combining constraints with state can express nuanced
interactive behaviors more clearly and concisely than event-callback code.

To explore this statement, my dissertation will evaluate three hypotheses:

• The programming primitives presented in this document lower the barrier
to creating custom interactive applications by addressing the difficulties
developers face creating interactive software, including dealing with state
and maintaining constraints [85],

• the visual notation and live editor described in this document helps
developers to write and understand interactive behaviors better than the
event-callback paradigm [132], and

• these primitives can scale to effectively support the kinds of nuanced and
complex interactive behaviors that developers are often tasked with creating
[129].

To evaluate the first two hypotheses, I conducted a laboratory study comparing
developers using the InterState development environment with event-callback code.
Developers were able to complete tasks in nearly half the time. Section 4.8 will
describe this study in detail. To evaluate the third hypothesis, I created several fully
featured example applications with ConstraintJS and InterState. Sections 3.7 and
4.9.1 will focus on these example applications.

1.7 Outline

The following section describes related work. Chapter 3 will cover the design and
contributions of ConstraintJS in further detail. Chapter 4 will describe InterState’s
basic mechanics and how they build on the work of ConstraintJS. Chapter 5 will
cover InterState’s event model. This event model was built to allow developers to
build reusable custom gestures and help developers resolve conflicts between gestures
and events. Chapter 6 will cover InterState’s primitives for helping developers define
touchscreen gestures. This dissertation concludes with a summary of its scope,
limitations and a description of promising areas for future work.

24

2 Related Work

The work in this dissertation, which combines ideas from multiple programming
models, is informed by previous work in several domains, including constraints,
finite-state machines, event architectures, visual programming, and spreadsheet
programming. This chapter will relate previous research systems in these domains to
InterState and ConstraintJS. Because many of the systems described here fit into
multiple categories, different aspects of the same system might be described in
different subsections.

2.1 Motivating Research

This work is motivated by previous research showing that developing complex
custom interactive behaviors is particularly challenging [112]. Previous research has
pointed out the drawbacks of relying on the event-callback paradigm: producing
code that is often error-prone and difficult to debug [94,110,137]. Researchers have
also proposed creating new frameworks for interaction-oriented programming [85].
Although most of these frameworks are intended for developers, tools to help users
specify interactive behaviors could be more broadly useful. In particular, interaction
designers—who are often responsible for specifying an interface’s behavior before
developers implement it—are not satisfied with existing tools for sketching and
evaluating custom behaviors [40,101].

The API primitives described in this dissertation were designed around two aspects
that are particularly challenging in creating custom interactive applications:
expressing constraints [110] and dealing with state [137]. Two motivating studies
found that designers think about relationships between graphical objects with state,
constraint, and event-based concepts [132]. Additionally, tools for designers must
allow them to evaluate an interface as they are creating it (also known as reflection-

Chapter 2: Related Work / Constraints

25

in-action [129,143]). To support reflection-in-action, InterState is implemented as a
live editor, where changes to the program source are immediately reflected in the
running program.

2.2 Constraints

ConstraintJS and InterState both integrate constraints into their programming model.
Constraints are relationships that are declared once and automatically maintained
by an underlying constraint solver. Constraints have a long history in user interface
development tools, starting with Sketchpad [150], one of the first graphical user
interfaces. Sketchpad allowed users to specify geometric constraints that determine
relationships between the shapes they draw. For example, users could specify that a
pair of lines should be of equal lengths or that two lines should always be
perpendicular. These constraints would hold as other lines are moved. Many of the
early constraint systems, including Sketchpad [150], used constraints to control
graphical element layouts. Researchers soon built more intricate constraint solvers
for various purposes, including Borning’s ThingLab [16] to emulate dynamic
physical systems and Sussman’s Hierarchical Constraint Networks (CONSTRAINTS)
[149] to simulate electrical circuits and physical systems.

The discussion of the parts of the constraint literature that are most relevant to this
dissertation are divided into subsections below. The first subsection discusses systems
that integrate constraints into user interface development toolkits. The second
subsection discusses JavaScript data-binding libraries. The next subsection discusses
systems that allow designers to specify relationships among graphical drawing
elements.

Although most spreadsheets are also constraint-enabled, related work in the domain
of spreadsheets is discussed separately in section 2.3.1 below. Note that this section
will focus on systems where a constraint solver is responsible for computing variables’
values, as opposed to assertion systems [53] (sometimes known as restriction systems)
where developers declare relationships between variables as an error prevention
mechanism. This section also will not go into detail regarding related work on
constraint solver efficiency; discussions of ConstraintJS’s and InterState’s
performance can be found in their corresponding chapters.

2.2.1 Constraints in User Interface Toolkits
Researchers have shown the potential for constraints to aid developers in defining
user interface behavior. Constraints help developers by automatically keeping
interface components consistent [110][31].

Most of the early constraint systems, such as GROW [8], HIGGENS [55], and
Garnet [106][105], used one-way constraints, as ConstraintJS uses. One-way
constraints compute the value of a variable based on others, but not vice-versa. For
instance, if a is constrained to b+1 (expressed a <= b+1) then a <= b+1 solves for

Chapter 2: Related Work / Constraints

26

a, but does not express what happens to b if a changes. The kinds of constraints that
user interface developers often want to express require nuanced control over how
values are propagated [139]. To allow developers to maintain better control over
value propagation, Vander Zanden introduced constraint grammars [171]. Constraint
grammars use multi-way constraints, where relationships can be calculated in any
direction [141] (a <=> b+1 solves for a or b). In order to give developers more
control over how constraints are computed, constraint grammars allow developers to
specify priorities or hierarchies [15].

Although constraint grammars are powerful and can be implemented efficiently
[140,141], they can be difficult for developers to predict and control [98]. When
developers want fine control over the order or direction of constraint maintenance,
more sophisticated constraint solvers may be a hindrance, requiring developers to
understand the mechanics of the constraint solver [98]. In order to keep the
simplicity and understandability of one-way constraints with the expressiveness of
multi-way constraints, ConstraintJS combines constraints with finite state machines.

Despite a wave of constraint systems in the research space that were created during
the 1980s, imperative code and the event-callback model became the predominant
way to specify interactive behaviors [98]. Still, a number of constraint systems
implemented constraints in the context of procedural code, including Garnet [106]
in LISP, subArctic [59] in Java, Kaleidoscope [34] in C++, Amulet [99] in C++,
and Ubit in C++ [84]. Because constraints are declarative in nature, integrating
constraints with imperative code can be challenging and the underlying language
features can influence design decisions. For example, Amulet used C++’s
overloading and type-conversion features to make its syntax more consistent with
standard C++. As the ConstraintJS chapter will discuss, features of JavaScript and
the Web guided many API design decisions for ConstraintJS. Additionally, part of
the motivation for creating InterState as a full development environment was the
limitations on the ideas that ConstraintJS could explore as a JavaScript library.

Of previous constraint systems, this dissertation was most influenced by Amulet [99].
ConstraintJS uses a constraint solver similar to Amulet’s [168], with features added
to work in conjunction with finite-state machines and to help Web developers deal
with asynchronous values. Like Amulet, InterState also builds its inheritance model
on prototype-instance inheritance. However, my systems (ConstraintJS and
InterState) differ from Amulet in several key ways, three of which I will describe
here: first, both of my systems allow developers to integrate finite-state machines to
control constraint execution. Second InterState extends prototype-instance
inheritance to allow interactive behaviors to be inherited, rather than relying on
interactor primitives [56,99]. Third, InterState is implemented as a complete
development environment. Although GILT [103] and other interactive tools
[57,71,102,169] allow constraints to be declared visually, InterState allows custom
behaviors to be created visually (although not in a direct manipulation environment
like GILT; see Future Work).

Chapter 2: Related Work / Constraints

27

2.2.2 Data Bindings
Despite their advantages, general constraints still largely have not been integrated
into mainstream programming languages. However, many user interface
frameworks include a limited version of constraints called data bindings. Data bindings
are constraints that connect GUI elements with the underlying application variables.
Relative to constraint libraries, however, data binding libraries are limited in the
types of relationships that programmers can declare.

Data bindings are particularly popular in frameworks that use the Model-View
Controller (MVC) pattern [2,10,11,82]. MVC is an architecture pattern to help
separate the logic of a user interface’s underlying model from the specification of its
user interface. MVC separates the implementation of the user interface into three
parts: a model, a view, and a controller. The model represents the underlying data,
independent of the user interface. The view presents information in the model to a
user. The controller handles user input in the view to update the model. Data-
bindings are common in MVC frameworks to help developers keep the view in sync
with the model.

Several data-binding libraries are available for JavaScript. Many of these libraries
enable declarative bindings between JavaScript objects and Document-Object
Model (DOM) objects, which specify a web page’s content [5,17,37,73,138,157].
Some of these libraries also contain templating features that allow DOM nodes
created by these templates to be automatically updated when a property’s value
changes. Data binding libraries are also available for the related ActionScript
language [3]. While all of these libraries can be effective in allowing skilled
developers to write clearer code for interactive applications, none of them include
primitives for dealing with state or a visual notation for the data bindings.

AngularJS [37] enables multi-way data bindings where developers can update an
underlying model based on UI components. ConstraintJS uses a more general
constraint solving method than other JavaScript libraries that enable data-bindings
to allow constraints to be declared between variables. It also uses finite-state
machines to allow developers to control the direction of the constraints. These finite-
state machines can define the same interactions as multi-way data bindings. Other
systems also do not allow programmers to attach bindings to control attributes or
Cascading StyleSheet (CSS) values of arbitrary DOM nodes, which control how those
nodes are displayed.

2.2.3 Constraints for Visual Layouts
Sketchpad influenced a number of other constraint systems in the 1980s as
researchers saw the potential for constraints to help users in a number of domains.

In addition to data-bindings, another domain in which constraints have been
adopted is in the specification visual layouts. Early research in geometric constraints,
including The Constraint Window System (CWS) [31], IDEAL [166], Juno [116],

Chapter 2: Related Work / Declarative Models for UI Development

28

Animus [29], and GITS [123], and OPUS [57] focused on maintaining relationships
in drawings or animations. Peridot [97] inferred geometric constraints and
interactive behaviors from designers’ interactions with a direct-manipulation
interface.

Many current interface builders also use a form of constraints to determine
application layout. Typically, such constraint systems use special-purpose constraint
solvers to determine visual layout. For example, iOS development libraries enable
“springs and struts” and “auto-layout” to help developers write applications that can
work across multiple screen sizes and resolutions.

Cascading Style Sheets (CSS), one of the three Web languages, has limited support
for constraints built in. For example, media queries allow CSS rules to depend on the
user’s display size. Constraint Cascading Style Sheets (CCSS) [6] extends CSS by
enabling more general hierarchical constraints to control CSS properties. While
these types of constraints increase the flexibility of CSS, they do not provide any way
to add constraints that use values from JavaScript variables to control the behavior.

2.2.4 Maintaining Constraints across Clients
As section 4.7 will discuss, InterState’s runtime and editor use constraints to
communicate and stay in sync. This is particularly important when the runtime and
editor are running on separate clients, such as when the runtime is on a tablet and
the editor is on a desktop. MEL [51], Unidraw [158], Doppler [13], and Rendezvous
[49] use constraints to help developers create multi-user applications across devices
that also stay in sync. Rendezvous [49] introduced the Abstracting-Link-View (ALV)
paradigm, which used constraints to help keep clients in multiuser applications in
sync. Conceptually, these systems use constraints across devices in a way that is
similar to the InterState runtime and editor. However, implementation-wise,
InterState’s communication mechanism does not resemble ALV.

2.3 Declarative Models for UI Development

Declarative programming systems allow developers to specify the logic of a program
without defining the specific steps it should take. In effect, declarative paradigms
allow programmers to specify what should happen without specifying how the
computer should do it. Constraints, for example, are declarative in nature. Although
neither InterState nor ConstraintJS are fully declarative systems, both systems have
significant declarative components as a result of their reliance on constraints. The
following sections discuss the related declarative work.

2.3.1 Spreadsheet Programming
InterState borrows many of its interactions from the spreadsheet paradigm.
Spreadsheets are considered by many researchers to be the most popular form of
“programming” [98]. Part of their appeal lies in their beginner friendliness: the user

Chapter 2: Related Work / Declarative Models for UI Development

29

always has a working program and errors can be localized. Constraints are also a
fundamental part of the spreadsheet paradigm: users can write equations that
establish relationships between cells. By automatically propagating values,
spreadsheets allow users to express relatively advanced concepts without learning the
syntax or control structures of imperative code. Spreadsheets also help guide design
decisions for how to make constraints learnable and understandable in InterState.

There is a long and rich history of researchers adopting the spreadsheet model.
NoPumpG [86] extends the traditional spreadsheet model to allow users to control
graphical objects’ properties with spreadsheet cells. This relatively simple extension
greatly reduces the burden of syntactic knowledge for non-developers to use
constraints. C32 [111], Penguims [61], and Forms/3 [20] also extend the
spreadsheet model to enable GUI programming. Penguims [61] extends the
spreadsheet model further by enabling more complex constraint expressions, adding
primitives for re-use, and integrating imperative code. Penguims, like InterState, is a
full development environment, allowing developers to write a dynamic interface.
Penguims and InterState also extend the prototype-instance model to enable
behavior re-use. InterState extends the ideas beyond these systems by including state
as a primitive, which allows users to have more nuanced control over how interface
objects react to user events.

Spreadsheets have also been extended to allow them to use Web data and APIs. FAR
[22], Quilt [12], and Gneiss [24,25,26] all allow spreadsheets to be integrated with
standard Web sites and Web services. However, whereas these applications aim
primarily to make it easier for developers to handle data flows, the goal of InterState
is to improve the development of interactive behaviors. As I will discuss in the
Error! Reference source not found. chapter, a future version of InterState
could use the ideas behind these other systems to enable better integration with Web
services.

2.3.2 Functional Reactive Programming 2.3.2 Functional Reactive Programming
Functional Reactive Programming (FRP) [30] is an approach for GUI programming
that allows developers to declaratively define reactive systems. The original
formulation of FRP [30] introduced behaviors (sometimes called signals) and events
(sometimes called event streams). Behaviors represent values that change over time,
such as an animated object’s position or a mouse’s coordinates. Events represent a
series of discrete events to which the system might react, such as button presses or
animation timer events.

A number of variants of FRP have been proposed since its initial creation (see [28]
for an overview). Although intended for declarative environments, the increased
code clarity, conciseness, and error-resistance of FRP over traditional event-callback
code [94] has led to it being incorporated into many imperative languages, including
several JavaScript frameworks [28,94,95,130,155]. FRP represents another
promising approach to help developers define interactive behaviors.

Chapter 2: Related Work / State Machines in User Interface Tools

30

Functional Reactive Programming has a similar goal to ConstraintJS and InterState
but the mechanisms are not related. Although FRP uses constraint-like primitives (in
its behaviors), it does not include mechanisms for defining state. Instead, most FRP
systems focus on enabling developers to define events that are more descriptive than
would be possible in other paradigms, including event-callback and ConstraintJS’s
transition events. Still, by including a notion of state, ConstraintJS and InterState
make it easy to declare relationships that depend on the application status.

2.4 State Machines in User Interface Tools

ConstraintJS and InterState extend the constraint model by integrating finite state
machines (FSMs) or state machines for short. FSMs are formalisms in which the state
machine has one1 active state, or status. Researchers have used state machines across
many domains, including text parsing, input handling, and modeling embedded
systems. However, this section will focus on previous research that uses state
machines in the context of user interface development tools.

Newman [117] and Parnas [133] first proposed using state machines to describe user
interface behavior in 1968 and 1969 respectively. State machines are a natural way
to describe a GUI’s interactive behaviors because they allow developers to handle
user and system events in a way that depends on the current state of the GUI. State
machines are also beneficial in GUI programming because a GUI’s appearance and
behavior often depend on its state. However, no mainstream programming language
currently supports a notion of state. Thus, researchers have built toolkits and
libraries that enable GUI developers to use FSMs.

Most of the early work on integrating state machines with user interface toolkits used
state machines to model users’ paths through various states [117,133] rather than
implementing behaviors with the state machine. Subsequently, a number of User
Interface Management Systems (UIMS) used state machines (or related formalisms,
such as petri nets [7,135] and context-free grammars [120]) as part of their
development model [7,32,38,48,63,121,122,159,160]. Garnet [106] and Amulet
[99] rather than including a general state machine mechanism, used the same three-
state machine (with “start”, “running”, and “outside” states) for all of their
interactors [109]. Developers could control their interactive behavior by specifying
how to react to the pre-built transitions among those three states.

InterState’s state machines contain several features introduced by Statecharts [44],
including concurrent and nested states. Concurrent states allow multiple state
machines to operate independently, meaning that multiple states may be active
simultaneously. Nested states allow any state to contain substates. Both features aim
to avoid the “state explosion problem”, where the number of states to describe a

1 InterState’s state machines, like Harel’s Statecharts [44], allow multiple states to be active
simultaneously to reduce the verbosity of expressing certain state machines [45]. However,
state machines that enable multiple simultaneous states are functionally equivalent to state
machines in which only one state may be active at a time [62,148].

Chapter 2: Related Work / State Machines in User Interface Tools

31

behavior grows exponentially. Propositional Production Systems (PPS) [122], an
alternative notation for describing high-level GUI behavior with state machines, also
enabled a similar notion of parallel states.

Some recent examples include SwingStates [4], Chasm [163], IntuiKit, and HsmTk
[4,14,83,163]. SwingStates [4] integrates state diagrams into the Java Swing toolkit.
It features parallel state diagrams (the ability to have multiple diagrams affect one
object) and fits well with the standard Java syntax. Chasm [163] used a tiered
representation to describe 3D user interfaces while allowing developers to specify
finite state machines as part of the paradigm. However, neither framework includes
mechanisms for specifying constraints or permanent relationships among objects.

Adobe Flex [3] includes mechanisms for customizing views based on states using its
MXML language, and also includes the ability to bind data to attributes. However,
the notion of states in Flex is specific to components, which makes it difficult for a
widget’s behavior to depend on other states such as the application or parent
widget’s state. Also, in Flex, data bindings are restricted to MXML attributes and
require extra syntax for dealing with collections of objects.

Although developers can use state machine libraries in combination with constraint
libraries, the constraint library would need to deal with a number of potential
complications to properly integrate with state machines. Not only would the
constraint library need to allow constraints to be switched on and off; they would
also have to correctly deal with potential timing issues related to the order in which
constraints are evaluated. Additionally, the syntactic differences of a separate
constraint and state library could raise the learning curve for developers.
ConstraintJS shows how integrating constraints with state can be more expressive
than combining separate libraries for expressing state and constraints. InterState
shows how fully featured interfaces can be created with these primitives alone,
without imperative code.

2.4.1 Promises and Futures
Asynchronous variables are variables that have an indeterminate wait time before
returning a value. They are common in Web programming when fetching
information from third-party Web services. As section 3.5.3 below discusses,
handling asynchronous values can be particularly challenging because developers
have to manage the state of the asynchronous call, correctly propagate values, and
handle any possible errors that might occur during the call.

Although not explicitly state machines, promises (also known as futures) are one
approach to helping developers deal with the states of asynchronous values.
Friedman first proposed promises as a way to handle values that are unknown (as an
asynchronous call is until it has a value) by representing them as proxy objects [35].
jQuery [65] and other libraries support promises through a standardized API. In this
API, promise objects have three states: pending (the asynchronous value does not have
a value yet), fulfilled (the asynchronous value has a value), and rejected (there was an

Chapter 2: Related Work / UI Management Systems and Frameworks

32

error of some sort). As section 3.5.3 below discusses, ConstraintJS uses these three
states in its state machine for asynchronous values.

Promises help developers correctly handle the state of asynchronous calls, and the
timing of changed asynchronous values—when the developer cannot make one
asynchronous call until another has finished. However, by combining the notion of
state used in promises with constraints, ConstraintJS also helps developers manage
the propagation of asynchronous values—ensuring that objects that depend on their
result stay in sync when the value is fulfilled.

2.4.2 Event Languages and Models
ConstraintJS and InterState utilize events to trigger the transitions between states of
an FSM. Event-callback mechanisms have a long history in GUI programming [121].
Many commercial and research systems have used and augmented the event-
callback framework. Early event models, like Sassafras [50] and the University of
Alberta User Interface Management System [39] inspired the features of future
commercial systems, most notably their event-based model [98]. One interesting
extension of the standard event model is the elements, events, & transitions (EET)
model, which allowed programmers to more concisely express how user interfaces
should respond to user events [33]. ConstraintJS and InterState built on some of the
ideas introduced in these systems, such as dynamic event targets in transitions, to
increase the expressiveness of the state machines.

2.4.3 Probabilistic State
As I will discuss in section 6.1.2 below, many multi-touch gestures cannot be sure of
their current state until after some delay. For example, in an interface that reacts to a
tap event and a press-and-hold event, when a user’s finger presses down, the
interface cannot determine if the user is performing a tap or a press-and-hold until
after some delay. Further, an interface should still ideally provide some visual
feedback while it is uncertain which input it is receiving Hudson, Schwarz, et al.
proposed using probabilistic states [58] to help developers track the possible
application states for uncertain inputs (also applicable in domains beyond multi-
touch, like speech input) [144]. Like Schwarz et al.’s approach, InterState
differentiates between confirmed and possible events (see section 5.3 below). However,
Schwarz et al.’s approach automatically manages the various probabilities and could
be more useful when developers work in probabilistic terms.

2.5 UI Management Systems and Frameworks

Many of the related work systems described in the previous sections were
implemented in the context of User Interface Management Systems (UIMSs)
[9,23,121,153]. “UIMS” is an umbrella term to describe many systems that helped
developers build UIs. Most UIMS also help developers separate the underlying
program logic (the model) from the user interface logic (the view). Although the term

Chapter 2: Related Work / Behavior Re-Use

33

“UIMS” was coined by Kasik in 1982 [72], the separation of user interface logic and
view logic is a longstanding idea [9]. Although the distinction between UIMS and
non-UIMS systems is not cut and dried, I do not consider ConstraintJS or InterState
to be a UIMS. Although ConstraintJS and InterState contain features to
communicate with JavaScript objects, the goal of my systems is to simplify the
specification of interface behavior, rather than separating the logic of interface
behavior from an underlying data model. However, both systems and the ideas
behind them can be incorporated into a UIMS.

2.6 Behavior Re-Use

One of InterState’s contributions is to provide a mechanism for re-using interactive
behaviors. InterState includes two mechanisms for code re-use. The first is behavior
inheritance, which extends standard prototype-instance inheritance [88] to allow
interactive behaviors to be inherited as well as fields. The second is InterState’s
copies (or templating) mechanism, which allows developers to easily create any
number of copies of a behavior.

Many of the early User Interface Management Systems (UIMSs) also included
mechanisms for behavior abstraction and re-use. Although the mechanism varied
across UIMS, they are sometimes called interactors and they typically encapsulate a
graphical object’s behavior. Interactors are typically parameterizable. In some
UIMSs, interactors are tied to graphics [57] and in others, interactors can be
attached to graphical objects. When interactors are coupled with graphical objects,
they are typically called widgets [57,93].

Peridot [104,107] and Lapidary [106] allow developers to attach interactors to
graphical objects in direct manipulation environments. Unidraw [134], Garnet
[109], subArctic [56], and Amulet [99] also allow multiple interactors to be attached
to a group of graphical objects. Like these systems, InterState aims to make
interactive behaviors easier to re-use and parameterize across multiple widgets.
However, unlike these systems, InterState folds its behavior inheritance in with its
standard inheritance mechanism. InterState’s inheritance mechanism also allows
behaviors to be combined by inheriting from multiple behaviors. Thus, InterState’s
inheritance mechanism reduces the need for specialized interactors.

InterState’s templating mechanism allows developers to create multiple copies of a
single widget for every item in an array. Unlike InterState’s inheritance model, the
templating mechanism can be used when multiple items are similar enough that they
can be created from the same prototype object. For example, in a list of similar items
(such as songs in a playlist or items in a to-do list), a developer can define the display
of one of these items and specify how many copies of that item they want. The
number of copies can also be a dynamic constraint to create a dynamic list whose
items depend on some underlying model.

Chapter 2: Related Work / Visual Programming

34

Amulet’s [99] “maps” (see section 4.9 in [96]) helped guide several design decisions
in InterState’s templating mechanism. Like Amulet’s maps, when developers create
multiple copies of a prototype, each copy has two special fields to indicate the item
and index of that copy. Both mechanisms also allow developers to enter a number or
an array into the copies field. This value can also be a constraint, to allow for
dynamically updating lists. However, InterState’s templating mechanism is more
general than Amulet’s maps. InterState’s copies mechanism can be used for
graphical objects, behavior objects, events, groups, or any other kind of InterState
object.

2.7 Visual Programming

InterState can be considered a visual programming environment, since part of the
programming involves non-textual elements. InterState’s visual notation primarily
draws inspiration from spreadsheets (see section 2.3.1 above) and previous visual
representations of state transition diagrams. Many programming environments
provide non-textual elements. Outside of spreadsheets, perhaps the most widely used
visual programming environments are interface builders, which allow users to create
GUIs through direct manipulation techniques rather than programming.

Trillium [47] and Menulay [23] were two of the earliest interface builders and were
influential in the design of modern interface builders [98]. LiveWorld [154], OPUS
[57], and several GUI builders allow users to set object properties using “property
sheets.” These property sheets list settable properties and allow users to change
them, sometimes updating the interface to reflect their current values. Property
sheets can specify the look (colors, fonts, positions, etc.) of an application but
InterState incorporates states and constraints to allow developers to also specify how
an application behaves.

InterState’s visual notation also includes a graphical representation for objects’ state
machines, an idea explored by a number of visual programming systems—see
[52,108,172] for surveys. State machines and Statecharts are typically represented as
2-D diagrams [44]. Previous tools that allowed developers to visually manipulate
state machines have also used 2-D representations [63,64,87]. As I will describe
later, InterState’s visual notation introduces a way to “flatten” the visual
representation of state machines, so that each state and transition can be allocated a
column. This notation can also represent nested and concurrent states. This
flattened representation is crucial to InterState’s representation of behaviors because
it allows every state and transition to be represented as a column and every field to
be represented as a row.

2.8 Live Development

Live development environments are ones that provide some form of immediate
feedback when developers edit their programs. Liveness is a relatively common

Chapter 2: Related Work / Multi-touch Gestures

35

feature in visual programming languages [21,151], particularly in spreadsheets
[20,161]. Live development environments can help developers by allowing them to
switch between editing and debugging quickly [81] and informing them of the
current status of an application [20,146].

Tanimoto, who coined the term “liveness” to describe such development systems,
described four levels of liveness [21,151,152]. Level 1 provides no semantic
information to the developer. In level 2 liveness, developers must manually request
semantic information about their program and it is provided at a later time. Level 3
live environments automatically provide developers with feedback when they
perform an edit. Level 4 live systems provide developers with immediate feedback
when they perform edits and when the state of their program changes (in response to
user events, etc.). Tanimoto later proposed two further levels of liveness for
development systems that predict future programmer actions (level 5 liveness) and
automatically synthesize working programs (level 6 liveness) [152].

InterState is a level 4 live development environment; changes in the editor are
immediately reflected in the running application and the editor always displays the
application’s current state and field values. One of the criticisms of level 4 live
environments is that they are too computationally expensive [152]. Burnett et al.
recommended several implementation methods for level 4 live systems [21].
Although performance was a secondary consideration in the implementation of the
InterState runtime, behind design considerations for the environment itself, these
recommendations might improve the implementation of future versions of
InterState.

2.9 Multi-touch Gestures

InterState also contains features to help developers define behaviors that involve
multi-touch touchscreen events. These multi-touch gestures can be particularly
challenging to write in event-callback code because multi-touch gestures are often
distinguished by nuanced differences in touch timing and trajectory. Further, custom
multi-touch gestures are common [41,68], as developers invent new multi-touch
gestures [113] or mix and match previous gestures [69]. Researchers have proposed
a number of systems to help developers define multi-touch gestures. The following
sections will review a few of the previous approaches researchers have taken.

2.9.1 Declarative Multi-Touch Event Models
One way to address the difficulties of writing multi-touch gestures in event-callback
frameworks is by introducing declarative event models, where developers specify the
features of the gestures in which they are interested rather than how to classify them
[54]. CoGest [36], GeForMT [70], Coder [90], GDL [75], Midas [142], Proton
[77], and Proton++ [78] all introduce various declarative syntaxes for defining
multi-touch gestures based on regular expressions. These regular expressions (which
are functionally equivalent to state machines), abstract away many of the difficulties

Chapter 2: Related Work / Conclusion

36

of implementing these behaviors in event-callback code. The focus of all of these
systems is on building more intuitive and understandable event architectures. The
goals of ConstraintJS and InterState are related, but different: to focus on ways that
constraints can help build highly state-oriented interactive behaviors.

2.9.2 Recognition Techniques
An alternate way to help developers define multi-touch gestures is by allowing them
to train and use a gesture recognizer. GRANDMA [136] was one of the first
automatic gesture recognition systems. The $1 gesture recognizer [164] focuses on
making it easier to include custom gestures into applications. Gesture Coder builds
on previous work by allowing developers to create state machines for classifying
multi-touch gestures by demonstrating gesture examples to its learning system [90].
InterState does not currently support machine learning for multi-touch gestures, but
future versions of InterState could allow developers to write a multi-touch gesture by
demonstration and automatically generate a state machine.

2.9.3 Crossing Gestures and Picking Views
InterState’s multi-touch development primitives also include a notion of “crossing
events”, which fire when a user’s finger crosses a path that is specified by the
developer. Crossing gestures have been proposed as an interaction technique in
mouse and keyboard environments [1], but InterState’s use of crossing gestures is to
help developers define the state of a multi-touch gesture. Crossing events have also
been used in EventHurdle [76] to help designers prototype mobile applications.
However, InterState’s crossing gestures are more expressive by allowing developers
to define crossing gestures on custom, dynamic paths and enabling crossing events to
be combined in the context of a larger multi-touch gesture.

InterState’s multi-touch primitives also include a way for developers to “draw”
custom shapes on the screen and bind events to them. This idea is analogous to
“picking views” in MDPC (an extension of MVC) [27]. For instance, in both systems,
developers can specify that they want a menu to slide out if the user presses in the
bottom left corner by drawing a rectangle in the bottom left corner of the screen and
binding event handlers to touch events on this rectangle. This rectangle would not be
visible to users of the applications but would be visible for developers to help them
debug. InterState extends picking views by allowing such shapes to be dynamic
through constraints.

2.10 Conclusion

As this chapter overviews, ConstraintJS and InterState have been influenced by a
number of previous systems. The computational model for both systems also extends
two previous paradigms that have been the subject of much previous work: states
and constraints. Many of the contributions described in this dissertation stem from

Chapter 2: Related Work / Conclusion

37

the ways that ConstraintJS and InterState combine and augment these features in
cohesive development tools.

38

3 ConstraintJS2

ConstraintJS is a JavaScript library to help Web developers create custom interactive
behaviors. ConstraintJS enables constraints that can be used both to control content
and control display across interface states, and integrates these constraints with the
three Web languages— HTML, CSS, and JavaScript. ConstraintJS is designed to
take advantage of the declarative syntaxes of HTML and CSS: it allows the majority
of an interactive behavior to be expressed concisely in HTML and CSS (see Figure 1),
rather than requiring the programmer to write large amounts of JavaScript.

This chapter begins with an overview of Web development tools and particular
challenges of Web development. It then will give an overview of how ConstraintJS
and its features address some of these challenges—first through a motivating
example and then with a more specific breakdown of ConstraintJS’s contributions.
Finally, it will detail how ConstraintJS is implemented and describe example
applications built with ConstraintJS.

3.1 Web Development Technologies

The World Wide Web is perhaps today’s most widely used GUI platform. The three
standard publishing languages used today on the Web are HTML, CSS, and
JavaScript. These languages interact through a shared representation of the web
pages called the Document Object Model (DOM).

3.1.1 The Three Web Languages
In theory, the Web’s three languages have complimentary, pre-defined roles. HTML,
a declarative markup language, defines a page’s content. CSS defines the appearance

2 Portions of this chapter were adapted from [126]

Chapter 3: ConstraintJS / Web Development Technologies

39

of that content with a declarative language that allows developers to specify stylistic
properties of particular DOM nodes. CSS uses a “selector” language to allow
developers to specify the DOM nodes they are controlling. JavaScript defines a
page’s interactivity by modifying the DOM tree.

In practice, these roles are not set in stone. Dynamic Web pages, which load data
from a third-party server without requiring users to reload their browser, define
significant portions of the page’s content using JavaScript. CSS can also define a
limited range of interactive behaviors using “dynamic pseudo-classes”. Dynamic
pseudo-classes—most notably the “hover” pseudo-class, which is activated when the
user hovers their mouse over an element, can be used in combination with style
definitions to show and hide elements.

Like most general-purpose languages, JavaScript uses the event-callback mechanism
to define interactive behaviors. Specifically, developers write callbacks for user events
that change the content of the page by adding, removing, and modifying the content
of the DOM. The browser’s rendering engine then immediately propagates any
changes to the DOM.

3.1.2 Web Frameworks and UI Toolkits
A number of frameworks and libraries have been created to help Web developers
script interactive behaviors. Because the landscape of JavaScript libraries is prone to
rapid change, this section will give an overview of some of the most relevant and
widely used libraries as of the writing of this dissertation. Whereas the related work
section of Chapter 2 focused on the most relevant and state of the art research
systems, this section will focus on JavaScript libraries that are currently widely used
by Web developers.

Currently, one of the most widely used libraries is jQuery [65], a JavaScript library
that provides a wide array of useful functions. Of the functions most relevant to
implementing interactive behaviors, jQuery simplifies the process of modifying the
DOM with JavaScript by providing a mechanism by which developers can query the
DOM. jQuery also provides several functions to help developers write correct,
succinct event specifications for event-callback code and pre-defined UI widgets [66].
jQuery also includes a “promise” API (sometimes called “futures”) that helps
developers track the status of asynchronous calls (described in section 3.4 below).
jQuery’s functions help JavaScript developers write interactive behaviors in a more
succinct and readable fashion, but it does not address many of the control flow issues
that make event-callback code difficult to write and debug.

Other JavaScript libraries use variations of the Model-View-Controller (MVC)
framework to improve Web development. At the time of writing, the most popular of
these frameworks is AngularJS [37]. Like ConstraintJS, Angular supports data
bindings that help connect the visual appearance of a Web page with some
underlying data model, reducing the need for writing callbacks. It also introduces
mechanisms for creating templates and to help developers structure their code in a

Chapter 3: ConstraintJS / Contributions

40

readable and maintainable way. However, whereas the goal of ConstraintJS is to
introduce primitives for defining interactive behaviors, Angular is intended to help
developers structure large Web applications. Although MVC Web frameworks like
Angular reduce the need for event-callback code through data-bindings, templates,
and other built in primitives, they still rely on the event-callback paradigm for
developers to define new interactive behaviors.

Differentiating Libraries and Frameworks

Another consideration in the design of ConstraintJS was the need for interoperability
with other JavaScript libraries and frameworks. In order to be more practical for
JavaScript developers, many of ConstraintJS’s features were designed to avoid fixing
developers into one particular code structure. In other words, whereas most UI
toolkits are frameworks, I wanted to implement ConstraintJS as a library. A library is a
set of methods or utilities that can be called or referenced anywhere within a
developer’s code. A framework inverts that control structure and decides when to call
the developer’s code. Although there are tradeoffs for libraries and frameworks,
frameworks generally require a larger buy-in on the part of developers because they
put more requirements on how a developer structures the code.

3.2 Contributions

ConstraintJS shows how constraints and FSMs can be effectively integrated with
three Web languages—JavaScript, CSS, and HTML Although both constraints and
state machines have been subject to a large body of prior research, ConstraintJS is
the first library to show how combining constraints with states augments the
expressive power of constraints and allows developers to write interactive behaviors
more succinctly and clearly.

3.2.1 Constraints
As section 2.2 describes, constraints can help developers avoid writing spaghetti code
[94,110]. However, constraints have only caught on in GUI programming in two
special-purpose ways: 1) data bindings for frameworks that use the Model-View-
Controller (MVC) or related design patterns to keep the GUI view in sync with its
model (e.g., [5,73,138]) and 2) special-purpose graphical constraints that control the
layout of graphical elements (e.g., [17]). Similarly, for Web programming, CSS offers
a limited constraint language for specifying graphical layout, and separately, there
are several JavaScript-based data-binding libraries [5,73,138].

While both of these types of constraints are useful to programmers, they are often
limited in expressiveness, and further are almost entirely distinct and unaware of
each other, despite their conceptual similarities. For instance, while current
JavaScript data binding libraries allow developers to create constraints to set the
content of DOM nodes, they do not allow them to create constraints that control CSS
or DOM attributes.

Chapter 3: ConstraintJS / Terminology

41

3.2.2 States in GUIs
One of the main differentiators of interactive behaviors from general programming
is that GUIs are often stateful [85]—the application state determines the appearance
and behavior. When thinking about graphical layouts and data bindings, interaction
designers often think in terms of states, along with constraints [101]. As an example,
consider the requirement: “when the toolbar is docked, it is displayed above the
workspace; when it is dragging, it follows the mouse.” Here, each constraint (“the
toolbar is above the workspace” or “the toolbar follows the mouse”) applies in
different application states (“when the toolbar is docked” or “when the toolbar is
being dragged”). Transitions describe when and how the application changes state—
for example, when the user presses the toolbar header in docked mode, it enters
dragging mode.

3.2.3 Integrating Constraints and States
As the introduction describes, ConstraintJS goes beyond the existing constraint
literature by integrating the notion of state into its constraint system, allowing
developers to write constraints that sometimes hold. This chapter will describe how the
development of interactive behaviors in GUIs can be simplified by integrating finite-
state machines (FSMs) with constraints in ConstraintJS.

Not only does ConstraintJS allow developers to create more expressive constraints;
developers can also create many interactive behaviors using only FSMs and
constraints, without extra JavaScript. The example in Figure 3.3, for instance,
requires almost no imperative code. Furthermore, I found that ConstraintJS’s state-
oriented constraints integrate well with existing imperative languages, including
JavaScript (see sections 3.5.7 and 3.5.9 below for examples of how ConstraintJS can
work with third-party JavaScript libraries). Further, this model enables 1) support for
the asynchronous behaviors which are inherent in Web programming, and 2) the full
control provided by one-way constraints that programmers desire [98], but with
much of the expressiveness provided by multi-way dataflow constraint solvers [141].

3.3 Terminology

Throughout this chapter, I will use the term constraint to mean a one-way constraint
[170]. As described in section 2.2.1, one-way constraints compute the value of a
variable based on others, but not vice-versa, and are therefore like spreadsheet
formulas. For instance, if a is constrained to b+1 (expressed a <= b+1) this
constraint solves for a. A constraint’s definition is the equation that specifies its value.
For example a’s definition is b+1. This is in contrast to its value, which is the
computed value of that equation. If the value of b is 1, the value of a is 2; if the value
of b is 100, the value of a is 101.

Chapter 3: ConstraintJS / Motivating Example

42

3.4 Motivating Example

To help concretely illustrate ConstraintJS’s features, consider the example shown in
Figure 3.1, which uses the Facebook API3 to pull in a list of Facebook friends and
display their names alongside their pictures. The Facebook API makes this a three-
step process (not counting the required initial authentication): first, the code must
retrieve a list of friend IDs. This is done using one Facebook API call, which returns a
list of friend IDs and names. After the list of friends has been retrieved, the second
step is to take this list of friend IDs and retrieve a URL pointing to a picture for each
friend. This means that the code must make another Facebook API call for each
friend the user has. Finally, once these data are retrieved, they must all be correctly
displayed.

Figure 3.1 The target application for the motivating example. An asynchronous Facebook API call
returns a list of friends. While the list of friends is loading, “Loading Friends…” appears on
screen. After the list of friends has loaded, the profile picture of each friend is then
independently requested. While the application is waiting for the Facebook API to return a
picture URL for a friend, a loading image is displayed.

To further complicate matters, every JavaScript Facebook API call is asynchronous.
This means that when a call is made to the Facebook API, Facebook does not
provide a return value immediately. Instead, a callback function is executed at a later
point when the data are ready. This introduces three types of complications. First,
the system must wait for the initial API call (which fetches the list of friends) to finish
before attempting to make API calls for each friend the user has. Second, when
fetching the friends’ pictures, the code cannot rely on the API to send return values
back in the same order in which they are requested. For example, if the code asks for
pictures for Alice and then Bob, the Facebook API might return Bob’s picture before
Alice’s. The developer must take measures to ensure that the right friend is mapped
to the right picture. Finally, the code must gracefully handle the failure of any of
these asynchronous calls.

1 var people = $(selector).text("Loading friends...");
2 FB.api("/me/friends", function(answer) {
3 var friends = answer.data;

3 This example code is based on version 1 of the Facebook API

Loading Friends…

Karen Collins Eric Marshall

Sarah Kelly Keith Malcom

Ellyn ToddCorey Smith

(after friends list has loaded)

Chapter 3: ConstraintJS / Motivating Example

43

4 if(friends) {
5 people.text("");
6 friends.forEach(function(friend) {
7 var img = $("");
8 people.append($("<div>" +
9 friend.name +
10 "</div>"))
11 .prepend(img);
12
13 img.attr("src", "loading.gif");
14 FB.api("/" + friend.id + "/picture",
15 function(picanswer){
16 var picture = picanswer.data;
17 if(picture) {
18 img.attr("src", picture);
19 } else {
20 img.attr("src", "error.gif");
21 }
22 });
23 });
24 } else {
25 people.text("Error");
26 }
27 });

Figure 3.2 The JavaScript code for the example shown in Figure 3.1. This code, which uses the jQuery
library to increase clarity, first creates an element to display the “Loading friends…” loading
indicator (line 1). It then makes an asynchronous call to load the user’s friends (line 2, handler
lines 3-26). Then, for every friend, it creates a loading indicator (lines 6-23) and updates their
picture when it has loaded (lines 15-22). This code requires three levels of nested callbacks:
one for the initial friends list request, another to create a scope closure for every friend (a
JavaScript convention), and another to load the picture for every friend.

The fact that the API calls are asynchronous means that the developer will need to
write code to wait for all three steps to be completed: first, for the list of friends to
load, then for the URL for each friend's photo, and finally for the image located at
that URL to load. To provide a good user experience, however, the system should
indicate progress by displaying whatever information is available: the application
should start with a “Loading friends…” screen, then add in the name and a picture-
loading graphic when it has a friend’s name but not a picture, and finally replace the
loading icon with the photo when it has a photo URL.

Implementing this in JavaScript without ConstraintJS requires writing opaque and
error-prone code, as the code block in Figure 3.2 shows. It requires three levels of
nested callbacks and scope checking to ensure that the pictures are loaded and
displayed in the right places, that the friends’ pictures do not attempt to load before
they are ready, and that images and text indicating loading delays and errors are
properly displayed for every profile. It also requires code to ensure that the view
stays in sync with the model—that the place-holder symbols show up and then
disappear when a picture is available, that the list of friends and pictures is in the
right order, and that each picture is linked properly to each friend.

Chapter 3: ConstraintJS / Motivating Example

44

In fact, when I submitted the ConstraintJS paper for publication, it included the
code in Figure 3.3. One reviewer countered that they could create the same behavior
in almost the same amount of lines of code with CoffeeScript and sent a code snippet
in response. However, their implementation contained two errors. Figure 3.2 is that
reviewer’s code, but with these errors corrected. The first error is that as a result of
an error in how it handles the state of the asynchronous call, their code never
removed the “Loading Friends…” message after the list of friends had been loaded
(line 5 in Figure 3.2 was not in the original snippet). Second, as a result of not
correctly handling value propagation correctly, it did not properly set the picture for
every friend as it was fetched (line 6 in Figure 3.2 did not evaluate in the correct
context in the original snippet).

I include this anecdote not to complain about the reviewer, particularly because he
or she was willing to illustrate the claims with solid evidence. Instead, I believe it
illustrates how difficult it is to reason about asynchronous values. This reviewer was
clearly a skilled programmer, but even so produced buggy code as a result of making
an error in reason about the code state and how values are propagated. The root of
this problem is not JavaScript's syntax (addressed by CoffeeScript and others) or its
lack of built-in functions (addressed by libraries like jQuery). Instead, it is the
fundamental callback/side-effect mechanism that JavaScript requires.

1 friends = cjs.async(fb_request("/me/friends"));
2 pics = friends.map(function(friend) {
3 return cjs.async(fb_request("/"+friend.id
4 +"/picture"));
5 });
6
7 // display code:
8 {{#fsm friends.state}}
9 {{#state pending }} Loading friends...
10 {{#state rejected}} Error
11 {{#state resolved}}
12 {{#each friends friend i}}
13 <div>
14 {{#fsm pics[i].state}}
15 {{#state pending }}
16 {{#state resolved}}
17 {{#state rejected}}
18 {{/fsm}}
19 {{friend.name}}
20 </div>
21 {{/each}}
22 {{/fsm}}

Figure 3.3 The ConstraintJS code for the example in Figure 3.1. Here, the Facebook API is called
(asynchronously using fb_request) to fetch a list of friends (line 1) and a profile picture for
each friend (lines 2—5). These values are placed into the friends and pics constraint
variables respectively. Lines 8—20 declare a template that depends on these variables. As
the list of friends is loading, friends.state will be pending, so the message “Loading
friends…” is displayed (line 9). After the list of friends has loaded (lines 11—21) the pictures
for all friends are displayed alongside their names. While the application is waiting for the
Facebook API to return a picture URL for a friend, a loading image (loading.gif) is displayed
(line 15). The code also correctly notifies the user of any errors (lines 10, 17).

Chapter 3: ConstraintJS / ConstraintJS Overview

45

With ConstraintJS, things are much easier. The code is shown in Figure 3.3. At a
high level, this code sets up a constraint variable (friends) whose value is the list of
friends (line 1). This variable will have no value until the list of friends has been
fetched. It then declares a constraint variable (pics) with a picture URL for each of
these friends. pics will not have a value until friends returns a list of friends.
When friends returns, pics takes that list and returns a list of picture URLs for
each friend (lines 2–5). Before any of these constraint variables have values, we
create an HTML/Handlebars template [74] whose value depends on friends and
pics (lines 9–22). This template looks at every friend and its state. If friends has
not loaded, it displays the text “Loading friends…” (line 10). When friends has
loaded, it displays the name of each friend (line 19). For each friend, if the picture
URL has not been loaded yet, then the code displays a loading image (line 15). If it
has been loaded, then it displays the friend's photo (line 16).

Overall implementing this example with constraints produces relatively clear and
straightforward code. Another benefit of using constraints is that if our list of friends
were a changing entity (i.e. the code intermittently updates the list of friends) the
code in Figure 3.3 would automatically update (and not completely replace) the list
of friends to reflect any changes over time. Further, this example shows how
ConstraintJS can work well with existing event architectures, such as the event-
callback model used for third-party APIs.

3.5 ConstraintJS Overview

The following sections describe the ConstraintJS application programming interface
(API). All of ConstraintJS’s functionality is accessed via a global cjs() JavaScript
function4 to avoid potential conflicts with other libraries.

3.5.1 Basics: Creating Constrainable Variables
Any JavaScript object or widget may be turned into a constrainable variable using
the cjs function with the JavaScript variable as a parameter. For instance, this code
snippet creates x as a constrainable variable whose value is 1:

var x = cjs(1); // x <= 1

The .get() function fetches the value of a constrainable variable and
.set(value) sets its value:

x.get(); // = 1
x.set(2); // x <= 2
x.get(); // = 2

4 In JavaScript, function objects may have properties, so although cjs is a callable function, it

also has subfields (for example, cjs.mouse).

Chapter 3: ConstraintJS / ConstraintJS Overview

46

Dynamically computed variables can be created by passing a function as the
parameter:

var y = cjs(function() {
 return x.get() + 1; // y <= x + 1
});

x.get(); // = 2
y.get(); // = 3
x.set(9); // x <= 9
y.get(); // = 10

Constrainable variables also have several utility methods to create new dependent
variables. For instance, the declaration of y above may seem cumbersome but the
same thing can be achieved with:

y = x.add(1); // y <= x + 1

In this case, .add() is a built-in function that creates a new constrainable variable.
Custom constraint functions may also be created, as we describe in “Convenience
Methods” below.

Constraints may be “conditional” if an object with a “condition” property is
passed in:

var z = cjs({ condition: x.gt(0), // if x > 0
 value: x }, // z <= x

 { condition: "else", // else
 value: x.mul(-1)}); // z <= x*-1

A Note on Non-Constraint Variables

ConstraintJS requires a thin wrapper for its constraint variables (the get() and
set() methods described above) because JavaScript currently does not have any
widely adopted standard for overriding variable setters and getters. Unfortunately,
this can be a source of confusion when developers mix constraint and non-constraint
(standard JavaScript) variables. For instance, consider the following code snippet:

var should_compute = false,
 x = cjs(1),
 my_constraint = cjs(function() {
 if(should_compute) {
 return x.get() + 1;
 } else {
 return 0;
 }
 });

console.log(my_constraint.get()); // 0
should_compute = true;
console.log(my_constraint.get()); // 0

Chapter 3: ConstraintJS / ConstraintJS Overview

47

Many developers would expect the last call to my_constraint.get() to return
the value 2, because x is 1 and x+1 is 2. However, because should_compute is not
a constraint variable, my_constraint is not recomputed when it changes. This is
because when constraints are computed, the constraint solver caches their value
(imagine if the getter function for my_constraint contained an expensive
computation; the constraint solver should avoid calling the getter if its value does not
change). Thus, the first call to my_constraint.get() calls the getter and caches
the result. The second call to my_constraint.get() then returns the cached
value because my_constraint was never invalidated. my_constraint was never
invalidated because it is impossible to automatically determine that it should be
invalidated when should_compute is set to true. Instead, this block should be
expressed as (changes are underlined):

var should_compute = cjs(false),
 x = cjs(1),
 my_constraint = cjs(function() {
 if(should_compute.get()) {
 return x.get() + 1;
 } else {
 return 0;
 }
 });

console.log(my_constraint.get()); // 0
should_compute.set(true);
console.log(my_constraint.get()); // 1

The difference is that in the second snippet, should_compute is a constraint
variable, so the constraint solver knows to invalidate my_constraint when it
changes.

3.5.2 Finite State Machines
Because many pages have properties and graphics that depend on the current state,
ConstraintJS integrates its FSMs with constraints and the page’s HTML and CSS. To
illustrate, suppose a developer wants to implement the behavior shown in Figure 3.4.
Here, there are two DOM elements and hovering over one has the effect of
highlighting the other element. The code to create the FSM shown in the right side of
Figure 3.4 is shown below5:

var block_a_fsm = cjs.fsm()
 .add_state("idle")
 .add_transition(cjs.on("mouseover", block_a),
 "myhover")
 .add_state("myhover")
 .add_transition(cjs.on("mouseout", block_a),
 "idle")
 .starts_at("idle");

5 The state name myhover is used in this example instead of hover to emphasize that this is

not the standard CSS built-in hover.

Chapter 3: ConstraintJS / ConstraintJS Overview

48

This snippet uses “chaining,” a convention in JavaScript where an object property
performs an operation on that object and returns the object back. Here, cjs.fsm()
creates an FSM and .add_state("idle") adds a new state named “idle” to that
FSM and returns the FSM back. The .add_transition() method then creates a
transition from the last state added to any other state. Its first argument specifies when
the transition should occur. ConstraintJS has several built in event types, including
cjs.on(<event>, <element>), which listens for <event> to occur on
<element>. Custom events may also be created. The second argument to
.add_transition() is the state to which the FSM will transition when the event
occurs. Finally, .starts_at specifies the initial state of the FSM.

Figure 3.4 (Left) An illustration of an interactive behavior where hovering over one block highlights the
other block. (Right) the FSM used by both blocks to track their state.

Binding Constraint Values to FSM states

The developer would then create variables and constraints that depend on this FSM.
The two blocks shown in Figure 3.4 would require two FSMs: block_a_fsm and
block_b_fsm. The behavior for block_a would be as follows (the code for
block_b is analogous):

block_a.css("background-color",
 block_b_fsm, {
 "idle": "black",
 "myhover": "yellow"
 });

The second parameter passed into block_a.css is an FSM. The third parameter is
an object where the keys ("idle" and "myhover") represent states in the FSM

passed in6. The values ("black" and "yellow" respectively) represent the value for
the constraint in the different states. Alternatively, we could create a constraint for
the hover color to be whatever color is shown in the hex variable in Figure 3.4:

6 Multiple states may be selected by joining them with a comma: "idle, myhover" or with

wildcards: "*". Transitions may also be used to instantaneously set constraint values: "idle
-> myhover".

A B

BA

A B No hover
, nothing higlighted

Hover over B
, A highlighted

Hover over A
, B highlighted

idle

myhover

m
ouseover

m
ouseout

Chapter 3: ConstraintJS / ConstraintJS Overview

49

block_a.css("background-color",
 block_b_fsm, {
 "idle": "black",
 "myhover": hex
 });

Every FSM also has a variable called .state whose value is the name of its current
state. For instance, block_b_fsm.state.get() returns either "idle" or
"myhover" depending on the current state of block_b_fsm. This allows an
alternate implementation approach: the class attribute of block_a and block_b
could be constrained to the value of state. Then, custom CSS for the classes idle
and myhover could be used to specify how the block is displayed visually:

// JavaScript
block_a.class(block_b_fsm.state);
block_b.class(block_a_fsm.state);

// CSS
.idle { background-color: black; }
.myhover { background-color: yellow; }

3.5.3 Asynchronous Values
In JavaScript, developers often have to deal with asynchronous calls: requests that do
not provide a return value right away, but instead use a callback to provide the
return value at some later time. The Facebook API described earlier in the paper
uses asynchronous callbacks. For example, the fb_request function takes a query
(e.g., "/me" to fetch the information of whomever is logged in) and a callback
function that will be called whenever the return value is ready.

Sometimes, the asynchronous callback will receive an error, (e.g. if we passed in an
incorrectly formatted query in the initial call) or might not return at all (e.g., if there
was a network problem). To handle these cases in conventional JavaScript code, a
developer would need to both create custom error handling code inside the callback
and also manage a timeout after which a query is considered failed.

Constraints are particularly well-suited to handling asynchronous values because
they automatically propagate values when values become available. ConstraintJS
includes two mechanisms for handling asynchronous values: using a state machine or
by pausing and resuming constraint getter functions. The state machine method is
intended to handle most types of asynchronous calls using a built-in FSM. The
pause/resume method is intended to handle asynchronous calls where a developer
wants to define their own set of states rather than use the built-in FSM.

Dealing with Asynchronous Values using State Machines

The first method for defining asynchronous constraints is through state machines.
ConstraintJS allows developers to handle asynchronous values with a combination of

Chapter 3: ConstraintJS / ConstraintJS Overview

50

a built-in FSM and a constrainable variable that depends on that FSM [126]. The FSM
for asynchronous constraints has three states:

Figure 3.5 The FSM of asynchronous constraints in ConstraintJS. Asynchronous constraints are
constraints that don’t have a value until after some delay period, e.g. data returned from
network or file system queries. While the constraint is waiting for a value, the FSM is in the
“Pending” state. When it successfully receives a value, it enters the “Resolved” state. If there
is an error or the request times out, it enters the “Rejected” state.

• "pending" – waiting for a result
• "resolved" – a result was successfully returned
• "rejected" – an error occurred

Asynchronous constraints are created with the cjs.async() method, which
automatically creates the FSM in Figure 3.5 to track the state of the constraint.
cjs.async() returns a constraint whose .state property is the FSM in Figure 3.5.
This constraint can be treated just the same as normal constraints; we can depend on
them, set up dependencies in them, etc. However, the variable will not have a value
until the asynchronous callback has returned. If we want to update the variable’s
value, we can call its .refresh() method, which puts the state machine back in the
pending states and redoes the asynchronous request. The .refresh() method
cannot be called automatically because there is currently no standard way for third-
party services to indicate that there was a data update.

Handling Asynchronous Values by Pausing and Resuming Getters

To give developers more flexibility when making an asynchronous calls,
ConstraintJS also allows a constraint’s getter function to pause and then resume
when the asynchronous value is ready. Thus, constraints contain the functions
pauseGetter and resumeGetter, which are illustrated in the snippet below. This
snippet defines async_result as the result of do_async_call (which accepts a
function to handle its asynchronous result, as is standard in JavaScript) but only if
needs_result is true:

Pending

ResolvedRejected

successerror
refresh timeout

refresh

Chapter 3: ConstraintJS / ConstraintJS Overview

51

var needs_result = cjs(true),
 async_result = cjs(function(self) {
 if(needs_result.get()) {
 self.pauseGetter("waiting for value...");
 do_async_call(function(result) {
 self.resumeGetter(result);
 });
 }
});

It may seem that the pause/resume functionality of the constraint solver could be
implemented by simply setting the value of a constraint after an asynchronous call. To
see why setting the value of a constraint after an asynchronous call is not sufficient,
consider the following code snippet:

var needs_result = cjs(true),
 async_result = cjs("waiting for value...");

if(needs_result.get()) {
 do_async_call(function(result) {
 async_result.resumeGetter(result);
 });
}

In the first snippet, async_result’s definition was do_async_call and its value was
the result of do_async_call. In the second snippet, async_result’s definition
and value are set to the result of do_async_call. The difference is that in the first
snippet if needs_result or some other constraint that async_result depends on
changes, the constraint solver will know to call do_async_call again.

3.5.4 Templates
ConstraintJS also allows HTML templates to be declared using the syntax similar to
Handlebars.JS [74] or Ember [73] with values that update based on the constraint
variables. We extend the syntax of Handlebars by allowing states to be included in
the template declaration. These templates accept snippets of HTML code with
constraints that automatically update the values of parameters. Templates are
created with the cjs.template function and variables are specified using double
curly braces ({{x}}). For instance, this template creates a <div /> element whose
text is constrained to the variables firstname and lastname:

<script id="greeting" type="cjs/template">
 <div>Hello {{firstname}} {{lastname}}</div>
</script>

var fn = cjs("Mary"),
 ln = cjs("Parker");
cjs.template("#greeting", {firstname: fn, lastname: ln});

These templates may also include conditionals (omitting the <script/> tag in
subsequent examples):

Chapter 3: ConstraintJS / ConstraintJS Overview

52

{{#if logged_in}}
<div>Hello {{firstname}}
 {{lastname }}</div>

{{#else}}
 Log in
{{/if}}

and iterations through collections:

{{#each people person}}
<div>
 Hello {{person.firstname}} {{person.lastname}}
</div>

{{/each}}

and state diagrams:

{{#fsm selected_lang}}
 {{#state english}}
 <div>Hello {{firstname}} {{lastname}}</div>
 {{#state french}}

 <div>Bonjour {{firstname}} {{lastname}}</div>
{{/fsm}}

3.5.5 Arrays
ConstraintJS also allows developers to create constraint arrays (which work like
normal arrays but are incorporated into the constraint network). The .map()
function creates an array whose values depend on the values of a constraint based on
another array. For instance:

var x = cjs([1,2,3]),
 y = x.map(function(val) {
 return val + 1;
 });

y.get(); // = [2,3,4]

When the source array (x) changes, .map() computes the difference from the
previous value in terms of items removed, items added, and items moved. If the
value of x changes to [3,4], then y should get the value [4, 5]. The .map()
function will detect that 3 was already in the source array and so it only computes
the mapped value for 4. The same difference mechanism is used in the
.children() method (described in section 3.5.8 below) to avoid removing and re-
adding DOM child nodes unnecessarily.

3.5.6 Convenience Methods
We previously showed that CJS provides a convenience method for add, as in: x =
y.add(z). Suppose a developer wanted to be able to express power functions in the
same way, as in:

Chapter 3: ConstraintJS / ConstraintJS Overview

53

var x = cjs(2); // x <= 2
var y = x.pow(3); // y <= x^3
y.get(); // = 8
x.set(3); // x <= 3
y.get(); // = 27

The developer can define this method as follows:

cjs.Constraint.prototype.pow = function(to_the) {
 return Math.pow(this.get(), to_the);
 });

3.5.7 Constraints from UI Widgets
Developers can also create constrainable variables tied to user widgets. For example,
suppose a developer wants to create a constrainable variable whose value is always
the value of the jQuery UI slider widget shown in Figure 3.6, called jq_ui.

Figure 3.6 An illustration of a jQuery UI slider widget. Constraint variables can be attached to track its
value.

The constrainable variable s will have a getter function that returns the slider’s value
using the jQuery UI syntax:

var s = cjs(function() {
 return jq_ui.slider.option("value");
 });

The variable s now knows how to compute its value but it does not know when to
compute its value. One possible answer is to get its value whenever it is requested.
However, as the “A Note on Non-Constraint Variables” above discusses,
recomputing the value may be expensive and it is best to avoid recomputing values
more than necessary. For this reason, when a constrainable variable’s value is
requested, its value is cached and not recomputed until the cached value has been
invalidated using the .invalidate() function. Invalidation marks a pulled
constraint (see section 3.6) to re-evaluate its value the next time it is requested, rather
than using its cached value. Normally, when a constraint’s value depends on other
constraints, invalidation occurs automatically. However, when depending upon pure
JavaScript widgets, the invalidation stage needs to be called explicitly. For example,
in the jQuery slider described above, the invalidation call must occur whenever the
slider’s value changes, which can be done using the jQuery UI syntax:

jq_ui.on("slide change", s.invalidate);

Thus, it only takes four lines to create a variable whose value always represents the
slider’s value. This can now be treated just like any other constrainable variable and

59

Chapter 3: ConstraintJS / ConstraintJS Overview

54

have any number of other variables, including DOM elements (as shown below)
depend on it.

3.5.8 Constraining DOM objects to variables
We have shown how to create constrainable variables from regular JavaScript
variables. However, to affect any user-visible behaviors, these constraint variables
must be linked to the Document Object Model (DOM), the underlying
representation for every element on a webpage.

Figure 3.7 A color selector that uses constraint variables to automatically update the preview color and
hex value text. A constraint variable tracks the values for each of the red, green, and blue
sliders (r, g, and b respectively). A fourth constraint variable (hex) computes a hex color
value. Finally, constraints update the background color and text of the color selector to
reflect the slider values.

Suppose a developer wants to create the color selection interface shown in Figure
3.7. As the user selects a color with the sliders, the background color of the
container element and the text value in hexval automatically update. Three of
the sliders shown in Figure 3.7 and implemented in the previous section are used,
named r, g, and b. A constrainable variable named hex will hold the hexadecimal
color value:

// decimalToHex converts an integer to hex
var hex = cjs(function() {
 return "#" + decimalToHex(r.get())
 + decimalToHex(g.get())
 + decimalToHex(b.get());
 });

153
0
0

#990000

div.container

div.hexval

r

g

b

hex

div.red_slider

div.green_slider

div.blue_slider

text background-color

"#"+
decimalToHex(r.get())+
decimalToHex(g.get())+
decimalToHex(b.get()) jq_ui.slider.option("value")

Chapter 3: ConstraintJS / ConstraintJS Overview

55

Next, the developer binds the hex constraint variable to the background color of the
container (called container) and the text value of the color display (called
hexval). To enable this, ConstraintJS includes several built-in functions to
constraint DOM element properties to dynamic constraint values:

• domElem.class(cjsVar)—constrains the class name of domElem (a DOM
element) to the current value of cjsVar.

• domElem.attr(attrName, cjsVar) — constrains the attribute named
attrName of domElem (a DOM element) to the current value of cjsVar.

• domElem.css(styleName, cjsVar) — constrains a CSS attribute named
styleName of domElem (a DOM element) to the current value of cjsVar.

• domElem.text(cjsStr) — set the text content of domElem (a DOM element)
to the current value of cjsStr.

• txtElem.val(cjsStr) — constrains the value of txtElem (a text input
element) to the current value of cjsStr.

• domElem.children(cjsArr)— constrains the child nodes of domElem (a DOM
element) to the elements in cjsArr.

In Figure 3.7, to constrain the background color of container and the text value of
hexval, we would respectively use .css() and .text() methods:

container.css("background-color", hex);
hexval.text(hex);

As the user moves the slider, the background color and text of the surrounding box
also change. Now suppose that if the variable changes values too quickly, the
developer does not actually want to update our DOM element every time the
constraint changes, but limit it to a certain number of changes per second. All of the
six methods mentioned above take an optional argument specifying the maximum
update interval:

hexval.text(hex, 500);

This will ensure that there is at least a 500 millisecond delay between consecutive
updates to hexval but that hexval will always have the latest constraint value.

3.5.9 Working with Third Party Libraries
So far, we have described how to attach constraints to regular DOM objects but
JavaScript has a number of libraries that do not use standard DOM objects. We have
already extended ConstraintJS to work with the jQuery UI library, as explained
above, but we could never provide support for every possible future library ourselves.
Therefore, I provide an extension mechanism so that developers can easily get
ConstraintJS’s constraints, FSMs and other features to work with new libraries. This
mechanism is also used internally to allow constraint variables to control DOM
properties.

Chapter 3: ConstraintJS / Implementation

56

For instance, suppose a developer wants to attach constraints to elements in the
RaphaelJS drawing library (found at raphaeljs.com), which uses its own graphics
primitives. RaphaelJS objects use the .attr(prop, val) method to change
display properties, as in:

circle.attr("fill", "red");

A natural way of expressing a constraint on a RaphaelJS graphics primitive might
be:

cjs(circle).raphael_attr("fill", constraint_var);

ConstraintJS supports this through the function:

cjs.binding.bind(ctx, attr_val, setter, max_update_interval);

which accepts an object (ctx), a value or constrainable value to set that object to
(attr_val), a function to call to set the object value (setter), and an optional
maximum update interval (max_update_interval). This provides a convenient
way to add new output types by extending the cjs.Binding prototype that defines
functions to bind visible elements’ display properties to the value of constraint
variables:

1 cjs.Binding.prototype.raphael_attr =
2 function(attr_name, val, max_updates) {
3 var setter = function(raphael_obj, val) {
4 raphael_obj.attr(attr_name, val.get());
5 };
6 return cjs.bind(val, setter, max_updates);
7 };

In this code, the first line extends the cjs.Binding.prototype object to add a
new function called raphael_attr (which accepts arguments attr_name, val,
and max_updates). This function defines a setter that defines how to set an
attribute named attr_name to the value val in a raphael object (raphael_obj).
The last call to cjs.bind then automatically calls setter at the appropriate times
after the value of the val constraint variable changes.

3.6 Implementation

Most data-binding libraries have opted for the eager evaluation constraint model
(also known as the “push” model), where whenever a constraint’s value changes,
updates are “pushed” to any constraint that depends upon it. However, in
ConstraintJS, constraints may be turned on and off depending on application state,
meaning that the eager evaluation implementation for constraints might do
unnecessary work if values are pushed to constraint variables that are turned off and
do not currently affect the DOM (see [60] for an deeper efficiency analysis of a
similar constraint algorithm).

Chapter 3: ConstraintJS / Implementation

57

By default, the constraints in ConstraintJS are demand driven constraints (also called
“pull” constraints), meaning that a constraint’s value is not computed until it is asked
for. As section 3.6.2 below discusses, ConstraintJS also allows developers to emulate
eager evaluation (also called “push” constraints) in situations where developers want
constraint variables to be re-evaluated as soon as they are invalidated.

ConstraintJS’s basic constraint solving algorithm is based on the pointer-constraints
algorithm outlined by Vander Zanden et. al [168]. Using this algorithm,
dependencies between variables are automatically computed and values are cached
until they are invalidated. ConstraintJS modifies this constraint solver by allowing
constraint evaluation to be paused and resumed (for asynchronous values) and by
enabling eager evaluation for constraint variables whose values affect DOM
properties (similar to the algorithm described by Hudson [60]).

To parse the equations used in ConstraintJS’s templates, I also wrote a JavaScript
string parser available at http://jsep.from.so/. This parser is capable of parsing
simple expressions, such as function calls, field names and mathematical equations.

3.6.1 Pausing and Resuming Constraint Evaluation
As section 3.5.3 discusses, ConstraintJS allow developers to handle asynchronous
values using pauseGetter and resumeGetter. ConstraintJS’s implementation of
pausing and resuming constraint evaluation works by assigning paused constraints a
temporary, internal value when the developer calls pauseGetter. This temporary
value becomes the node’s computed value until the developer calls resumeGetter
(typically after an asynchronous call has returned). This temporary value behaves
like a normal constraint value: it can be passed on to other constraint variables or
used in computation. When resumeGetter is called, the node is assigned a value
(the result of the asynchronous call). If the new value is different form the temporary
value assigned by the pauseGetter call, the node is then invalidated. This
invalidation then proceeds like a standard invalidation call.

3.6.2 Eager Evaluation for DOM Nodes
As section 3.5.8 describes, ConstraintJS allows developers to bind constraint values
to DOM objects’ attributes and children. Doing this requires emulating the eager
evaluation model to update DOM nodes whenever the constraint’s value changes.
Thus, ConstraintJS’s constraint solver allows constraints to specify callbacks (as an
optional parameter) to be called when the constraint’s value is invalidated. These
callbacks are called after the invalidation stage has run (during invalidation, a list of
change callbacks is stored). In order to emulate eager values, developers can simply
call the constraint’s getter to fetch its new value whenever it is invalidated (this is why
callbacks are called after the invalidation state, so that all of the dependencies are
marked as needing to be recomputed).

Chapter 3: ConstraintJS / Example Applications

58

3.6.3 Constraint Cycles
Another potential problem with push-based constraints is in handling cycles, such as:

a <= b+1
b <= a+1

If not handled carefully, cycles may cause an infinite evaluation loop as each variable
involved in the cycle is updated and invalidates the next. Pull-based constraints can
be resistant to cycles by computing constraints with a “once around” algorithm,
which evaluates each constraint in the cycle only once per invalidation [106,168]. In
ConstraintJS, the constraint solver tries to satisfy the constraints for a and b once but
stops once it encounters a cycle, as shown in the code block below:

var a = cjs(1),
 b = a.add(1); // b <= a+1

b.get(); // 2

a.set(b.add(1)); // a <= b+1

b.get(); // 2
a.get(); // 3

Ideally, a library would also check for cycles in constraint networks and throw an
error when it encounters a cycle (which the developer could choose to ignore).
However, I did not implement automatic cycle detection in ConstraintJS because of
potential performance concerns of checking for cycles whenever the constraint
network changes.

3.6.4 Size & Performance
The version of ConstraintJS described in this thesis is a 25 KB file when compressed
using UglifyJS and Gzip. It can be included in any JavaScript application, including
phone/tablet web browsers and server-side JavaScript applications that use the Node
platform. In testing the current version of ConstraintJS inside the Safari web browser
on a Macintosh with a 2.6 GHz Core 2 Duo processor, our system was able to
handle without any noticeable delay up to around 1,000 simultaneously evaluated
constraints all affecting DOM objects and simultaneously smoothly animating
around 200 DOM properties.

3.7 Example Applications

We further illustrate ConstraintJS through a series of examples, which we briefly
describe below. For the sake of space, we do not include the full example code, but
only the relevant snippets. In full, these examples are relatively small, with each
example being roughly 200 lines of code.

Chapter 3: ConstraintJS / Example Applications

59

3.7.1 Bubble Cursor (Custom Graphics)
Although the most of examples explained in the API section have been standard
interaction techniques, constraints and FSMs can also be used to more easily define
novel interactions. In this example, we implement a bubble cursor [42] – a cursor
that searches for the nearest target (represented as grey-filled circles) to the mouse
within a maximum radius (the dotted grey circle outline in Figure 3.8-A). The targets
are animated to move continuously, and when there is a single target sufficiently
near to the mouse, the dotted outline around the mouse is red and the selected target
is a darker grey (shown in Figure 3.8-B).

Figure 3.8 An illustration of Bubble Cursors [6]. Clickable “targets” are light grey-filled circles. When the
cursor is too far from any of the targets, a grey dotted halo appears around the cursor (A).
When a target is in range (B), the halo becomes red and shrinks enough that it intersects the
target, which turns dark grey. The ConstraintJS implementation of this application allows all
of this behavior to be expressed declaratively.

All of the interaction, including the display colors, position, and movement of the
targets and cursor, are defined using constraints. Additionally, this example uses the
extensions for the RaphaelJS drawing library, explained in the previous section. In
contrast with the equivalent imperative version, the constraint version of the code for
the bubble cursor is shorter and uses less interdependent components. For instance,
the code to set the radius and color of the cursor is relatively self-contained:

// max_bubble_select_distance is a constraint in case
// we want it to vary based on mouse speed
// select_cursor_radius is a constraint that
// depends on closest_target
cjs(cursor_halo)
.raphael_attr("stroke", cjs({ // stroke color
 condition: closest_target.isNull(),
 value: "grey"
 }, {
 condition: "else",
 value: "red"
 }))
.raphael_attr("r", cjs({ // radius
 condition: closest_target.isNull(),
 value: max_bubble_select_distance
 }, {
 condition: "else",

(A) (B)

Chapter 3: ConstraintJS / Example Applications

60

 value: select_cursor_radius
}));

In contrast, in a conventional implementation, this functionality would necessarily be
spread across callbacks that listened for changes to the closest target and maximum
selection distance.

3.7.2 Scatter Plots (Multi-Way Constraints)
As explained earlier, ConstraintJS uses a one-way constraint solver, as opposed to a
multi-way constraint solver. Multi-way constraint solvers have been touted as a way
to represent some useful constraints that could not be represented as one-way
constraints [139]. In particular, multi-way constraints have been claimed to make it
easier to create variables with dependencies that go both ways. Take as an example
the scatterplot application in Figure 3.9. When a data point is being dragged, a
constraint sets the model’s value for that data point depending on its current display
position, which in turn is constrained to follow the mouse. When the user releases
the point, a constraint in the opposite direction maintains the x and y display
positions based on the underlying model, so if the underlying model’s data changes,
the point will be updated.

Figure 3.9 A scatterplot application implemented with ConstraintJS. By default, constraints set the
position of every data point to reflect the values of an underlying data model (A). When a
point is dragged (B), a constraint in the opposite direction updates the underlying data model
based on the position of the point, which in turn, is constrained to the mouse’s position. The
axes may also be dragged (C) and constraints automatically update the axis labels to reflect
its position. Finally, axes’ scales may be changed (D) by dragging a point while holding
SHIFT. This example illustrates how one-way constraints in ConstraintJS may be combined
with FSMs to enable functionality that was previously only possible with multi-way
constraints.

This example was originally used to demonstrate the advantages of multi-way
constraints over conventional one-way constraints [139,141]. However, by
combining one-way constraints with FSMs, ConstraintJS makes this example easy to
implement without the overhead of a multi-way solver. In the default state for every
point, a constraint sets the display position based on an underlying data model,
where the data model consists of constrainable variables (A). When the user starts to
drag a point (B), its state changes, so a different set of constraints are enforced that
compute the model’s values based on the graphics. When the dragging stops, the
state reverts to the default. This is expressed with the following constraint (div and
sub are convenience methods for division and subtraction respectively):

0 100
0

100

15 115

0

100

0 100
0

200

0 100
0

100

(A) (B) (C) (D)

Chapter 3: ConstraintJS / Example Applications

61

cjs(dot_fsm, {
 "init, idle": x.div(scale_x),
 "dragging" : (cjs.mouse.x).sub(offset.x)
});

A similar pattern is used for the axes and changing the scale. Note that dataflow
multi-way solvers required developers to write the constraints in both directions
[139,141], just as ConstraintJS does – those solvers just select which set of constraints
to use. However, developers often found that they needed to extra features, such as
constraint hierarchies [141] to control the direction. In ConstraintJS, FSMs (which
are likely to be more understandable and controllable for developers [98,101]) keep
track of the dragging state for each point and axis and manage enabling and
disabling constraints.

3.7.3 Multi-touch Moveable/Resizable Image (Tablets)
Although all of the examples we have discussed so far are based on mouse and
keyboard input, ConstraintJS is not limited to desktop applications. ConstraintJS
works with any kind of user input that can be translated into JavaScript events.
Figure 8 illustrates a simple multi-touch photo manipulation interface for tablet
devices we built with ConstraintJS. In this application, users can move and
manipulate photos in a virtual workspace. Touching a photo with one finger drags
the photo within the workspace. Manipulating a photo with two fingers changes the
rotation, scale, and position of the photo. When a photo is touched with two fingers,
a red slider widget that controls the photo’s opacity appears and may be
manipulated with a third finger. The slider indicates the current value by its position
and text.

Figure 3.10 An illustration of a touchscreen-based application written with ConstraintJS. Constraints
control the position, scale, and angle of photos, which users can manipulate with one or two
fingers. When two fingers touch a photo, a red slider appears that controls the photo’s
opacity and can be changed using a third finger. Constraints set the position and text of the
slider.

The layout of every component in this application is controlled by constraints –
photo position, scale, rotation, & opacity and the position, visibility & text of the

61

Chapter 3: ConstraintJS / Conclusion

62

opacity slider. Compared to an implementation of this example that does not use
constraints, the ConstraintJS implementation requires fewer lines of code and fewer
callbacks.

3.7.4 ConstraintJS in Other Projects
ConstraintJS is currently used in two research projects: InterState (Chapter 4) and
Gneiss [25]. InterState’s use of ConstraintJS as its underlying constraint solver will
be described in more detail in section 4.10. Gneiss augments spreadsheets to allow
developers to interact with Web services and simplify programming dynamic data
bindings. Gneiss uses ConstraintJS to define its front end and to manage
relationships between spreadsheet cells and between cells and external Web APIs.
One change that I made to the ConstraintJS API as a result of Gneiss was to expose
the (previously hidden) ConstraintJS parser. In Gneiss, this parser helps convert cell
strings to constraints.

3.8 Conclusion

ConstraintJS integrates constraints and finite-state-machines (FSMs) with Web
languages. ConstraintJS can be included in any JavaScript application without
browser modifications and it can interoperate with other JavaScript libraries. By
integrating constraints and FSMs, ConstraintJS can help simplify the development of
interactive behaviors. In fact, many interactive behaviors can be built entirely as a
combination of FSMs and constraints, which can both be specified declaratively.
InterState (described in the next chapter) leverages this ability to create interactive
behaviors using FSMs and constraints by introducing a visual representation of both
primitives and an interactive editor. However, I feel that in its current form,
developers will find that the ConstraintJS language and toolkit is a clearer way to
program interactive behaviors for the Web.

63

4 InterState7

InterState further develops the idea of integrating constraints and states by
introducing a spreadsheet-like syntax, new language primitives, a visual notation,
and a live interactive editor. InterState builds on ConstraintJS both conceptually and
functionally. Conceptually, InterState builds on ConstraintJS’s paradigm of defining
interactive behaviors by adding a visual notation and primitives for behavior re-use.
Functionally, InterState builds on ConstraintJS by using ConstraintJS as its
underlying constraint solver. This chapter discusses InterState’s contributions and
design in detail and evaluates its effectiveness in allowing developers to create custom
interactive behaviors.

4.1 JavaScript Library Limitations

There were a number of concepts that could not be explored in ConstraintJS. Some
of these concepts are outside of the range of possibilities for any JavaScript library to
implement. For example, one design goal in ConstraintJS was to reduce the
boilerplate needed to express constraints as much as possible. In ConstraintJS,
defining x <= y+1 is declared as:

var x = cjs(function() { return y.get() + 1; });

I also introduced a syntax that simplified this somewhat:

var x = y.add(1);

However, developers should ideally be able to write “y+1”, which requires parsing
constraint values at runtime or compiling ConstraintJS code before deployment, as

7 Portions of this chapter were adapted from [127,128]

Chapter 4: InterState / Contributions

64

JavaScript does not have an operator overloading mechanism. Other ideas, such as
providing a visual notation to help developers understand ConstraintJS variables,
also require a custom IDE.

There were also a number of practical decisions that influenced the scope of
ConstraintJS’s features. Most immediately, JavaScript libraries are limited in size
because they are designed to minimize the bandwidth servers need to use when
communicating with Web clients. A 30 kilobyte library, for example, would be
considered large by current Web standards. Thus, ConstraintJS’s feature set was
limited, in part, to minimize its size when deployed.

Another consideration that limited the scope of ConstraintJS was the need for
interoperability with other JavaScript libraries and frameworks (see the
“Differentiating Libraries and Frameworks” section above). One particular example
of how the need for interoperability influenced the design of ConstraintJS is the
design decision to exclude behavior inheritance from the ConstraintJS feature-set.
Behavior inheritance would allow UI elements to inherit the interactive behaviors of
other UI elements. It is useful because behavior re-use is common in GUIs but not
supported by JavaScript or many Web libraries. However, because JavaScript does
not allow developers to override its default inheritance mechanism, implementing
behavior inheritance in ConstraintJS would necessarily dictate the structure in which
inheritable behaviors must be defined.

Because of these limitations, I decide to implement InterState as a custom interactive
development environment (IDE), rather than a library. Implementing InterState as a
full IDE allowed me to explore designs for a visual notation, inheritance mechanism,
and live editor.

4.2 Contributions

InterState improves user interface development by redesigning the language and
runtime features in concert. InterState contributes to the state of the art for user
interface development tools by introducing a number of innovations: in its
computational model, visual notation, inheritance mechanism, and live editor for its
visual notation. Further, InterState demonstrates how designing these features to
work well together improves both the individual components and the usability of the
system as an integrated whole.

Computational Model — The state of a user interface often controls its appearance and
behavior, which in turn are defined by relationships among objects. In event-
callback code, it is difficult to manage, maintain, debug, and understand these states
and relationships (see chapters 3.4 and 4.3). InterState introduces a computational
model that addresses these challenges by including state machines and constraints as
fundamental language constructs. This model expresses interactive behaviors as
constraints that are enforced only in particular states. It also removes much of the
boilerplate that is required to express constraints in other systems (see

Chapter 4: InterState / Contributions

65

[94,99,106,126] for examples of boilerplate code required in other constraint
libraries), allowing programmers to express constraints with simple equations—like
those in spreadsheets—rather than with a complex syntax.

Visual Notation — In most languages, understanding what user events affect a
particular property or, conversely, what properties are affected by a particular user
event, can be difficult because event-callback code is usually spread throughout
multiple locations [110]. InterState introduces a visual notation that concisely
represents interactive behaviors as a table whose rows are properties and columns
are states. Combined with its computational model, the visual notation allows
programmers to see which events affect a property by scanning the property’s row
and which properties an event affects by looking at that event’s column.

Behavior Reuse — Programmers often want to reuse, combine, and inherit interactive
behaviors in user interfaces, but nearly every widely-used programming language
only allows properties and methods to be inherited. InterState introduces a style of
inheritance that extends traditional prototype-instance inheritance mechanisms to
allow behaviors to be inherited. This is possible in InterState because its computational
model defines behaviors using state machines whose structure can be inherited.
Because interactive behaviors are often combined, InterState supports multiple
inheritance by combining property values across states. The table-based
representation of property values offers an intuitive way to resolve the ambiguities
inherent in multiple inheritance in other systems: potential conflicts use left-most
precedence, which is readily visible due to the clear visual notation. InterState also
introduces a mechanism for templates that allows items in a list of interactive
components to be dynamically created and updated to reflect changes in an
underlying data model.

Live Development — Quick experimentation and parameter tuning are crucial parts of
the design process that are not well supported by today’s programming
environments [18,19]. InterState introduces a live editor for its visual notation,
where edits are immediately reflected in the running application (runtime) and
changes in runtime state and property values are highlighted in the editor [152].
This helps bridge the “gulf of evaluation” in determining the effects of a change
[119], which has been shown to be a significant barrier for experienced and new
programmers [79] alike.

Complimentary Features — In addition to innovations in the aforementioned areas, a
significant contribution of InterState is in designing these features and concepts to
complement each other in a cohesive programming environment. This chapter will
detail the ways in which InterState’s primitive combine, such as how the visual
notation provides an intuitive way for developers to understand inheritance conflicts
and how InterState’s inheritance mechanism combines with its computational model
to allow developers to define dynamic prototypes.

Chapter 4: InterState / Motivating Example

66

4.3 Motivating Example

Drag-lock is an example of a common interactive behavior. Drag-lock is a standard
accessibility feature that augments “drag and drop” to avoid the need to hold the
mouse down during the entire drag operation. Instead, with drag-lock, users double
click an object to initiate the dragging state. The object is then tied to the user’s
cursor until they double click again. Suppose I want to implement drag-lock on an
object named draggable. I will later re-use the draggable behavior (through
inheritance in InterState) in multiple components of a user interface. I asked an
expert programmer to implement this behavior in JavaScript and refactored their
code for clarity by adding more descriptive variable names and removing
unnecessary lines. The resulting code is shown in Figure 4.1.

At 20 lines, it is compact but difficult to follow and even more difficult to write
correctly. When a user double clicks on draggable to initiate a drag lock, five
different snippets of code are executed in an order that is difficult to predict
(mousedown, mu_listener, mousedown, mu_listener, then dblclick). Some
of these listeners also activate and deactivate other listeners, making it even more
difficult to understand the snippet’s state at a given time.

1 var isDragLocked = false,
2 mm_listener = function(mm_event) {
3 draggable.attr({ x: mm_ev.x, y: mm_ev.y });
4 },
5 mu_listener = function(mu_event) {
6 removeEventListener("mousemove", mm_listener);
7 removeEventListener("mouseup", mu_listener);
8 };
9 draggable.mousedown(function(md_ev) {
10 draggable.attr({ x: md_ev.x, y: md_ev.y });
11 addEventListener("mousemove", mm_listener);
12 addEventListener("mouseup", mu_listener);
13 }).dblclick(function(md_event) {
14 if(isDragLocked) {
15 removeEventListener("mousemove", mm_listener);
16 } else {
17 addEventListener("mousemove", mm_listener);
18 }
19 isDragLocked = !isDragLocked;
20 });

Figure 4.1 A representative JavaScript snippet that implements the drag lock behavior for an object
named draggable.

Compare this with InterState’s implementation of the same behavior, shown in
Figure 4.2. With InterState, the execution flow is clearly illustrated, as are the
different possible values for x and y. Further, InterState makes it easy to follow
which state the draggable object is in by highlighting the active state and relevant
values, and by animating transitions as they fire. In the evaluation described later in
this paper, these features were found to be effective in helping programmers

Chapter 4: InterState / Motivating Example

67

implement this behavior in about half the time with InterState compared to
JavaScript.

Figure 4.2 An illustration of a basic InterState object, named draggable. Properties, which control
draggable’s display, are represented as rows (e.g. x, y, and fill). States and transitions
are represented as columns (e.g. no_drag, drag, and drag_lock). An entry in a property’s
row for a particular state specifies a constraint that controls that property’s value in that
state; while draggable is in the drag state, x and y will be constrained to mouse.x and
mouse.y respectively, meaning draggable will follow the mouse while dragging. Note that in
this example, when the user performs a double click to initiate drag lock, the drag_lock
object does enter and then leave the drag state intermittently as a result of the mouse.down
and mouse.up events that are fired during a double click. Section 5.1 will introduce a
mechanism that would allow a developer to avoid having drag_lock enter the drag state
during a double click by adding a delay before registering the mouse.down event used in the
no_drag to drag transition. This delay would allow a double click (mouse.dblclick) event
to register resulting in entering the drag_lock state without any mouse.down events
registering.

Further, suppose I want to extend this example to add some common usability
features that users expect: keyboard accessibility and a visual indication of the
current state. Specifically, in our example, pressing ESC should terminate drag lock
and the color of draggable should change when it is “locked”. In JavaScript,
adding keyboard accessibility requires at least eight more lines of code that are
interwoven and interdependent with the previous code. In InterState, it simply
requires the addition of two new transitions (from the drag and drag_lock states)
and no modifications of the existing states or transitions.

In JavaScript, adding a visual state indication to draggable (e.g. so it is black by
default, blue while dragging, and navy when drag-locked) requires five more
carefully placed lines that, again, would modify the original code. In InterState, this
simply requires specifying the color in three existing states (the addition of ESC and
state indication changes are both included in the code of Figure 4.4). Finally,
modifying the behavior to use a single click to escape drag-lock rather than a double
click, which is seemingly trivial, requires nearly a complete rewrite of the JavaScript
code (to work with the original mouseup and dblclick listeners) but only requires
modifying the event for one transition in InterState (from mouse.click to
mouse.dblclick).

y

(div)
313

prototypes

763
x 0

0 y
x mouse.x

mouse.y
mouse.x
mouse.y

Add Field

own

dom.div

draggable

Copies:

...

no_drag drag drag_lock

mouse.dblclick

mouse.down(this)
mouse.dblclick(this)

mouse.up

Chapter 4: InterState / Motivating Example

68

Figure 4.3 shows the resulting JavaScript code after these modifications have been
incorporated. It is nearly twice as long and requires modifying significant portions of
the initial code shown in Figure 4.1.

1 var paper = new Raphael(0, 0, 500, 500),
2 rect = paper.rect(0, 0, 150, 100);
3
4 rect.attr("fill", "black");
5
6 var isDragLocked = false,
7 mm_listener = function(mm_event) {
8 rect.attr({
9 x: mm_event.x - rect.attr("width")/2,
10 y: mm_event.y - rect.attr("height")/2
11 });
12 },
13 mu_listener = function(mu_event) {
14 window.removeEventListener("mousemove", mm_listener);
15 window.removeEventListener("mouseup", mu_listener);
16 rect.attr("fill", "black");
17 };
18
19 rect.mousedown(function(md_event) {
20 rect.attr({
21 x: md_event.x - rect.attr("width")/2,
22 y: md_event.y - rect.attr("height")/2
23 });
24 window.addEventListener("mousemove", mm_listener);
25 window.addEventListener("mouseup", mu_listener);
26 rect.attr("fill", "blue");
27 }).dblclick(function(dc_event) {
28 if(isDragLocked) {
29 removeEventListener("mousemove", mm_listener);
30 } else {
31 addEventListener ("mousemove", mm_listener);
32 rect.attr("fill", "navy");
33 }
34
35 isDragLocked = !isDragLocked;
36 }).click(function() {
37 if(isDragLocked) {
38 isDragLocked = false;
39 removeEventListener("mousemove", mm_listener);
40 }
41 });
42 window.addEventListener('keypress', function(event) {
43 if(event.keyCode === 27) { // esc
44 if(isDragLocked) {
45 isDragLocked = false;
46 mu_listener();
47 }
48 }
49 });

Figure 4.3 The JavaScript code for drag lock (introduced in Figure 4.1) augmented to allow the user to
press ESC to exit from drag lock (lines 42—49), use click rather than double click to exit from

Chapter 4: InterState / Computational Model

69

drag lock (lines 36—41 and several lines removed from Figure 4.1), and change the fill color
by state (lines 4, 16, 26, and 32). As the line numbers for these changes indicate, augmenting
the example in Figure 4.1 requires significantly modifying the previous JavaScript code.

Figure 4.4 shows the InterState code after all of these modifications have been made.
It adds one more transition to enable ESC to take the user out of drag lock, one more
row to specify the fill field by state, and modifies the mouse.dblclick (double
click) event to end drag lock to be mouse.click (single click).

Figure 4.4 The InterState code for drag lock (introduced in Figure 4.2) augmented to allow the user to
press ESC to exit from drag lock (the topmost transition), use click rather than double click to
exit from drag lock (the next topmost transition), and change the fill color by state (the
bottom field). In this example, draggable indicates its current state with its fill color so that it
is black by default, blue while it is dragging, and navy in the drag_lock state.

Now, suppose I want to reuse our drag-lock behavior in other contexts (e.g. a drag-
lock slider). In JavaScript, I would need to carefully abstract and package this
behavior to be reusable in a way that does not interfere with other behaviors. In
InterState, this is supported by default since other objects can simply inherit from
draggable.

Frameworks that include a notion of state [4,14,126,162] would allow drag-lock to
be declared in a more natural way than plain JavaScript. However, they lack
InterState’s visual notation, which makes it relatively easy to understand and debug
this behavior in InterState. Further, none of these other frameworks address the
challenge of behavior reuse.

4.4 Computational Model

InterState starts with a computational model that builds on the idea of defining
interactive behaviors using constraints that apply in specific states, as used in
ConstraintJS and described in the previous chapter. However, whereas ConstraintJS
enabled this paradigm in the context of JavaScript (an imperative language),
InterState’s programming model is fundamentally declarative because its
combination of states and constraints is the underlying language. The declarative
nature of InterState also presented several language design challenges that required
additions beyond the model used by ConstraintJS.

'black'fill

(div)
313
763y

x
prototypes

0
0

'black'
y
x mouse.x

'navy'
mouse.y

mouse.x

'blue'
mouse.y

Add Field

own

dom.div

draggable

Copies:

...

no_drag drag drag_lock

mouse.click

mouse.down(this)
mouse.dblclick(this)

mouse.up

key.press('esc')

Chapter 4: InterState / Computational Model

70

4.4.1 Storing Static Values
First, InterState’s computational model needed to be modified to allow developers to
store static values. In the context of imperative code, this is simply a matter of
declaring a normal variable and setting its value at the proper time. However
InterState’s development model is built on constraints, meaning that every field’s
definition is interpreted as a dynamic value. Suppose I have a widget named
myWidget whose position is determined by fields myWidget.x and myWidget.y. If
myWidget is draggable, it might have dragging and not_dragging states and I
might declare its position in a dragging state to be (as in previous chapters, <=
signifies defining a constraint):

myWidget.x <= mouse.x
myWidget.y <= mouse.y

However, when the mouse stops dragging, I want to express that its position keeps
the values (mouse.x, mouse.y) from the specific instant when the mouse was
released. In the context of an imperative language, a developer can create two
regular (non-constraint) fields to store the mouse’s position when the mouse stops
dragging and use them to set the position of myWidget. However, in InterState’s
development model, every field is a constraint, so there needs to be a way to
distinguish setting a field to the one-time value of an expression and dynamically
constraining its value whenever the expression changes.

To address this need, in InterState, field values can be set either on states (as usual)
but also on transitions, in which case they are evaluated once when the transition is
executed, so the value stays fixed afterwards even if dependencies change. In
contrast, constraints on states are continuously updated whenever dependencies
change while in that state. By setting values on transitions, InterState allows
developers to store the value of an expression at specific points in time, as transitions
control exactly when an expression’s value should be stored. For instance, this could
be used in the example illustrated in Figure 4.2 to store the offset (the position where
the mouse was pressed relative to the location of draggable) to drag from the
mouse’s offset rather than the top left corner.

Deprecated Special Values: KEEPVALUE, and ONCE

Perhaps a more immediately obvious solution to address the problem of storing
values was to include a method to allow developers to distinguish values that should
be constraints versus static values. Previous versions of InterState (then called Euclase,
short for End User Centered Language, APIs, System, and Environment)
experimented with this, using special primitives to allow developers to store static
values: KEEPVALUE and ONCE. However, these primitives were problematic for a
number of reasons, explained below.

KEEPVALUE was a special expression that specified that a field should retain its
current value and stop updating. In other words, a field would retain its value as soon

Chapter 4: InterState / Computational Model

71

as the InterState runtime evaluated its constraint expression as KEEPVALUE. ONCE()
had a similar purpose, but allowed developers to enter an expression as a parameter.
This expression would evaluate its value only one time; when the event was
activated. For instance, a cell with the expression ONCE(mouse.x + this.foo) in
the value column for some event E accesses the values of mouse.x and this.foo
immediately when E is activated and creates a static value from their sum.

However, there were several problems with KEEPVALUE and ONCE, notwithstanding
the fact that they were two “magic” keywords for InterState developers to memorize.
First, both expressions were incongruous with the rest of InterState’s constraint
expression conventions. ONCE and KEEPVALUE both behave more like directives
than constraint definitions. This particularly made it unclear how KEEPVALUE
should work when it was used as part of a larger expression.

The most salient problem with both expressions, however, was that they required
precise control of when they were evaluated. In example applications, the timing
requirements were nuanced (such as “after the user releases the mouse but before
another field’s constraint is evaluated”). Thus, both KEEPVALUE and ONCE were
almost always used on transitions, which are capable of specifying when something
should happen. Further, it became apparent that in most example applications,
nearly every value set on a transition contained a KEEPVALUE or ONCE, which led to
the design decision to remove the two directives and allow expressions on any
transition and treat these as instantaneous values.

4.4.2 Maintaining Event Order Consistency
The second problem that InterState’s computational model had to address in
translating ConstraintJS’s model to a declarative environment was to ensure
predictability and controllability for when transitions were executed. Suppose two
transitions use a mouse click event to decide if their state should change. The order
in which these two events are executed might be important; expressions that
calculate the value to use in one transition could depend on values for the other
transition, and since expressions on transitions are evaluated only once (Section
4.4.1), the order would matter. Thus, it is important for developers to be able to
understand and control the order in which transitions are executed and their
expressions evaluated. In the context of most imperative languages, including
JavaScript and Java, this is relatively easy to understand and control: the transitions
will execute in the order in which they were declared in the source file.

However, in a live declarative environment, this convention does not work as well.
This is because in live environments, the order in which code is executed might
depend upon the order in which the developer edited the source. The order in which
developers perform editor operations should have no effect on the way in which their
program executes because a developer cannot go back and inspect or change the
order in which they declared two transitions in order to modify their program’s
behavior. The left-to-right ordering convention used to resolve conflicts in constraint
expressions is one viable solution. The problem with using object ordering to control

Chapter 4: InterState / Computational Model

72

transition order is that when transitions with identical events are declared in multiple
objects, the order of these objects would affect both the transition order and the
display order, which also relies on object ordering. Instead, InterState modifies
ConstraintJS’s development model to evaluate constraints in an order that makes it
seem like they execute simultaneously.

To illustrate, consider the two objects shown in Figure 4.5, which has two objects
(obj1 and obj2) that simultaneously transition from the state noclick to the state
clicked when the user clicks their mouse anywhere, which is expressed as
mouse.click(). After the user clicks their mouse, obj1.x will be 3 (its value from
the clicked state). The value of obj2.x will be 2 because its value was evaluated
“during” the click event, where obj1.x was still 2. Because this value is on a
transition rather than on a state, it does not re-evaluate its constraint expression
during the clicked state. This example illustrates how the InterState runtime
executes these two transitions “simultaneously”.

Figure 4.5 Two objects (obj1 and obj2) have state machines with transitions that fire when the mouse
clicks. InterState executes the constraints that are set on these transitions as if they are
executed simultaneously.

Internally, the simultaneous event mechanism is implemented by passing every event
through an internal event-queue that evaluates the properties that are invalidated by
a fired transitions twice: once “during” the transition, and then again after the
transition has fired. Although to my knowledge, this mechanism is not fundamentally
more expressive than any other execution order, its primary advantage is that is
more predictable and understandable.

4.4.3 Constraint Expressions
Constraints are a built-in primitive in InterState, which allows many other InterState
features to benefit from their expressiveness; state machine transitions can use
constraints to express mutable targets and events (e.g., a transition could trigger on

obj2 >
obj1 >
abc >
svg >
dom >
find (native function)
device >
timeout (timeout)
mouse (mouse)
key (keyboard)
touch (touch)
event >
physics >

(empty)

Add Field

prototypes undefined
x 3

Files Undor �

sketch obj1

+
own

noclick clicked
mouse.click()Copies:

1 32

obj2 >
obj1 >
abc >
svg >
dom >
find (native function)
device >
timeout (timeout)
mouse (mouse)
key (keyboard)
touch (touch)
event >
physics >

(empty)

Add Field

prototypes undefined
x 2

Files Undor �

sketch obj2

+
own

noclick clicked
mouse.click()Copies:

obj1.x

Chapter 4: InterState / Computational Model

73

obj1.ev1, with both obj1 and ev1 being calculated by constraints at run-time), objects
can dynamically vary their prototypes using constraints, and constraints can express
a dynamic list of items to be displayed with a given template. InterState allows
programmers to express constraints with simple equations—like those in
spreadsheets—rather than with a complex syntax, as required in previous work
[94,99,106,126]. These equations are still capable of concisely expressing many
complex constraints. For instance, constraints may contain indirection (the target
object can itself be calculated by a constraint) [99,106,168] such as:

this.currentlyPlayingSong.title

It is also often useful to express operations on groups of objects [131]. InterState
includes a function called find for making such queries with a chaining syntax
inspired by other query languages, including EET [33] and HANDS [131]. For
example, in a Breakout game, players reach the next level by destroying all of the
blocks in the current level. This can be expressed as a transition:

find(blocks).in_state('alive').is_empty()

Naming and Containment Hierarchy
Every InterState object exists in a containment hierarchy whose root is called
sketch. References and scoping across a large containment hierarchy can be
challenging, sometimes requiring specialized query languages—e.g. XQuery [165]
or Sizzle [67]. In other frameworks, referencing objects elsewhere in the
containment hierarchy requires long chains of “parent” expressions that are brittle
with respect to changes to the program’s structure [99]. InterState makes referencing
fields in constraints easier by naming every field, unlike the DOM and other XML-
based containment hierarchies. This allows references to jump up the containment
hierarchy by using unique field names in a manner analogous to scoping rules in
textual languages. Field names can be reused locally (for example,
my_obj.x.x.prop uses a field named x in my_obj and in my_obj.x). When field
names are reused, the cells referencing that field name return the object closest in the
containment hierarchy (for example, if my_obj.x.x.prop’s cell definition is “x”,
its value would be my_obj.x.x). Although it requires an effort on the part of the
programmer to name every field and provide unique names for important fields, it
makes the resulting code more readable and robust to structural changes.

Custom Methods
InterState also treats functions as first-class objects. A constraint’s value may be a
function that can then be called and referred to in other constraints. For instance:

myObj.plusOne <= function(x) {
 return x+1;
}
myObj.x <= 1
myObj.xPlusOne <= plusOne(x)

Chapter 4: InterState / Computational Model

74

4.4.4 State Machines
Including state machines as a built-in primitive allows InterState to handle the
stateful nature of user interface behaviors [137]. While some previous systems have
included state as a separate primitive [4,14,83,121], including state as a fundamental
part of objects is crucial to InterState’s support of behavior inheritance and reuse.
This is because an object’s state machines and fields define its behavior; so allowing
both to be inherited makes it possible for other objects to reuse its behaviors.

InterState objects contain one or more state machines and any number of named
properties, which provide a definition across each state and transition of its state
machine. This value can be empty (represented as a grey circle in the editor) in
which case the property’s last value remains in use. Otherwise, the value can be a
constant or a constraint. Thus, a property’s value in a state might depend upon
which transition was fired to arrive at that state.

Starting State

As the “scalability” section below will discuss, scalability is a multifaceted issue in
programming tools. Most of this chapter focuses on ways that InterState can scale up
to express complex behaviors. However, it is also important to consider how
programming frameworks scale down to concisely express simple behaviors.

In InterState, creating static interfaces (no interactivity) is straightforward. InterState
objects start with one state (the “start state,” represented as a filled in dot in Figure
1.3) to match the simplicity of property sheets [154], which allow programmers to
easily see and modify an object’s settable properties. However, whereas property
sheets can only specify the look of an application, InterState’s state machines scale to
allow programmers to specify its behavior.

This is in contrast to previous systems that have integrated state machines as a layer
[115,162] where interface behavior code goes inside of states. Consequently, these
systems scale down to static interfaces only as well as their underlying imperative
languages. Further, by relying on side-effects to define behavior, these systems can
still be subject to the “spaghetti” code problem that makes it difficult to determine
how an interactive behavior works [110].

Combining State Machines

Multiple independent FSMs are often useful to describe the look and feel of a single
interactive element. Consider the everyday example of radio buttons that may be
selected with the mouse or keyboard, as illustrated in Figure 4.6. Each radio button
is controlled by a combination of many states: if the radio button has keyboard focus,
it should have an outline around it, and there are various events that change which
button has keyboard focus. Separately, if the radio button is currently checked, it
should have a dot in the center. Finally, the radio button changes its look while it is
being interacted with using the mouse, based on whether it is idle, being hovered
over, if the mouse is pressed down, or if it is pressed down and moved outside while

Chapter 4: InterState / Computational Model

75

pressed. Combining all of these independent states into a single diagram would
require 2×2×4 = 16 states, many of which will be semantically un-intuitive (e.g.,
mouse pressed and outside with keyboard focus and checked).

Category States Display

Selection
not selected

selected

Keyboard focus
not focused (no outline)

focused

Mouse state

idle

hover

pressed

pressed out

Figure 4.6 An example of a standard radio button widget on the left. The table on the right shows the
various states that a radio button item may be in with respect to whether it is selected,
keyboard focused, and pressed. The FSMs for each category are independent, meaning that
every item has one selection state, one keyboard focus state, and one mouse state. These
states combine to form 2x2x4=16 possible states for any radio button item.

As more categories and states are added, the total number of states that the radio
button widget might be in grows exponentially, a problem known as the state explosion
problem [121]. Addressing the state explosion problem is important in any tool for
defining interactive behaviors because behaviors often combine multiple state
machines; an object might, for instance, be draggable and selectable. In order to
avoid requiring that programmers create combinatorial numbers of states (e.g.
draggingAndSelected, idleAndSelected, etc.), InterState borrows two ideas
from StateCharts [44]: concurrent and nested states. Objects can contain multiple
state machines that operate independently. When multiple states are active,
InterState uses left-to-right precedence (where only the left-most constraint is
activated) to choose which value the properties should use in the event of conflicts, a
convention that is easy to understand in InterState’s visual notation. Although this
design decision has the limitation that it is not possible to give one state machine
precedence for one property, and another precedence for a different property (for
example, it would not be possible if both draggable and selectable diagrams
set both x and y to use draggable’s x and selectable’s y), I have never seen this
issue come up in practice. Figure 4.14 and Figure 4.9 show how parallel and nested
state machines are represented in InterState’s visual notation.

Dogs
Squirrels
Llamas

Cats

Chapter 4: InterState / Computational Model

76

Transition Events

InterState’s event model is input agnostic. Any event exposed by the runtime
environment (usually the browser) can be used. For instance, when the runtime is
running on a mobile touchscreen device, InterState transitions can be triggered by
touch and accelerometer events. Chapter 5 discusses advanced events in more detail.

To allow programmers to concisely and declaratively express complex events, event
targets can be computed by dynamic constraints, e.g. mouse.click(currently-
PlayingSong). Such dynamic targets have been tried in previous systems [33] but
were hampered by performance and implementation challenges. In InterState’s
runtime, I optimized performance for dynamic event targets by using JavaScript’s
native event listener mechanism, rather than distributing events in the runtime. This
required using ConstraintJS’s features for emulating pushed constraints (described in
section 3.6.2 above), to update the native JavaScript event listeners whenever an
event’s target is changed.

Constraint Events

Another innovative way that InterState allows events to be dynamically calculated is
to support events that refer to changes in constraint values. For instance, in the
Breakout example, the player should lose a life when the ball goes past the paddle. In
imperative languages, this usually requires passing property changes through a setter
method, which then triggers the corresponding state change. InterState simplifies
this by introducing constraint events—Boolean expressions like (ball.cy >

paddle.y)—that fire any time the value of the expression switches from false to
true. While constraint events have technically been possible in other constraint
systems [94], InterState reduces the syntactic burden of expressing them by allowing
constraint events to be expressed using the same syntax as constraints. Further, the
efficient eager evaluation mechanism discussed in section 3.6.2 makes these
constraint events practical.

4.4.5 Manipulating Visual Objects
InterState is output-agnostic and can be made to work with any output supporting a
structured graphics model (sometimes called a “retained object model”). I have fully
implemented output mechanisms for HTML DOM objects and Scalable Vector
Graphics (SVG) objects. I have also created a prototype to confirm the feasibility of
using WebGL as an output mechanism for creating 3D interfaces.

InterState allows developers to create SVG objects by setting any object’s
prototypes field to include one of seven types of SVG objects: circle, ellipse,
image, rectangle, text, group, and path. (Creating HTML DOM nodes and
working with other output models works similarly.) All of these prototypes provide
default values for their display properties (for example, rectangle has a width
attribute with a default value of 150 and image has a src attribute with a default
URI that points to the InterState logo). InterState SVG objects also include attributes

Chapter 4: InterState / Visual Notation

77

that allow developers to specify how display properties should animate between
values, using CSS transitions. Finally, to enable a dynamic DOM hierarchy despite
the static containment hierarchy of InterState objects (discussed in section 4.4.3
above), InterState DOM objects include a property that allows programmers to
express a node’s DOM children as a dynamic constraint.

New outputs can be added by writing a JavaScript wrapper that maps changes in
InterState objects’ fields and containment hierarchy to operations in the output
mechanism. Depending on the specific output mechanism, additional code might
also be needed to detect input events. In total, our wrapper for the SVG output
mechanism only requires about 300 lines of JavaScript.

Deprecated: The draw field

In previous versions of InterState, every object contained a field named draw, which
contained a method specifying how to draw that object. Objects with no graphical
representation simply left the body of the draw field blank. One benefit of the draw
field was that it added a level of transparency to the low-level primitives of how
objects appeared on screen. Every built-in shape would have a draw field that
referenced its relative fields; a circle prototype’s draw function would reference the
cx, cy, and r fields and a square prototype’s draw function would reference its x, y,
width, and height fields. When the InterState runtime determines that any field
referenced by the draw field changes, it would schedule the object to be redrawn.

However, there were two problems with built-in draw fields. First, it was unclear
when the draw field would be called. When any of the fields upon which the draw
method references change, the InterState runtime calls draw. However, when
drawing objects with transparency (or when the draw method contains inadvertent
side effects), calling draw multiple times can result in unexpected results. Another
problem with the draw method was that it limited InterState to custom-drawn
applications rather than being able to use and modify DOM objects. For these
reasons, I decided to move InterState to the retained object model it currently uses,
where the draw method is hidden and called at appropriate times internally [80].

4.5 Visual Notation

InterState’s visual notation makes interactive behaviors easier to understand by
grouping their relevant properties and states. In the event-callback paradigm, the
code responsible for an interactive behavior is often distributed in multiple locations
[94,110,126]. This makes it difficult for developers to understand what user events
affect a particular property or conversely, what properties user events affect.
InterState displays object properties as rows and states as columns, as illustrated in
Figure 1.3. For example, to specify that rect’s color should be red when it is in the
dragging state, the user only needs to enter 'red' into the color row and the
dragging column.

Chapter 4: InterState / Visual Notation

78

In event-callback code, property values can be modified in any callback [94,110].
InterState’s computational model, by contrast, allows property values to change in
two ways: either a constraint in that property is recomputed (e.g. mouse.x changes
when the mouse moves) or the property’s specified value changes (e.g. a state change
or the programmer edits the property’s value). This design trades some flexibility—
losing the ability to set properties anywhere—for readability by ensuring all of a
property’s possible values are visible in its row.

4.5.1 State Machine Layout and Design
An important design requirement of the InterState editor is that it should lay state
machines out in a 2D fashion. This section will overview the evolution of InterState’s
state machine layout through three versions.

Deprecated: Transition-Centric State Machine View

Initial implementations of InterState displayed the program by giving transition
events columns, without a notion of state. Although this design was very space
efficient, because it lacked a notion of state, it set a low ceiling on the expressiveness
of its objects. A screenshot of this version of InterState is shown in Figure 4.7.

Figure 4.7 A preliminary version of InterState (then called Euclase). This version contains the basic
object layout (states as columns and properties as rows). However, this version of Euclase
does not differentiate between states and events. The state of an object is the last event that
occurred on that object. Every object also has a draw field that specifies, in JavaScript
canvas code, how it should be drawn (typically referencing other fields), as described in
section 4.4.5. This example also utilizes the defunct KEEPVALUE primitive, described in
section 4.4.1. Empty cell values are KEEP by default (greyed out in the figure); an idea that
was maintained through the current version of InterState by replacing the “KEEP” keyword
with a circle.

Chapter 4: InterState / Visual Notation

79

Deprecated: Trapezoidal State Machines

To increase the expressiveness of InterState’s state machines, I then experimented
with a visual notation in which states were represented as trapezoids. To achieve a
tabular layout with every state and transition represented in a column, InterState’s
visual notation flattened its state machines to allocate horizontal space for all local
and inherited states. The trapezoidal shape of states was designed to allocate a
column for every transition, horizontally centered where the transition’s arrow
begins. A screenshot of this version of InterState state machines is shown in Figure
4.8.

Figure 4.8 The trapezoidal state machine design. This version of InterState also used a slightly different
event type, with each transition using the parameterizable on() function to define events.

However, the problem with this trapezoidal representation of state machines was
that they took up too much horizontal space. As state machines got more complex,
the horizontal scrolling space that they required made them less readable.

Optimized State Machine View

In the current design for state machines, the design goal was to reduce the horizontal
space as much as possible while still allowing each transition to have an allocated
column. The state machines also had to be capable of displaying nested and
concurrent states. The final design optimizes for space by only allocating horizontal
space for the transition start points (unlike the trapezoidal shape, which allocated
space for transition start and end points) and by reducing the horizontal space taken
for states that do not have any values set on them. For example, in Figure 4.9,
active.out is narrower than active.hover because there is a property set on
active.hover (x) but nothing set on active.out.

Figure 4.9 The final state machine design for InterState state machines. This design reduces the
amount of horizontal space taken by the state machines.

Note that this design also enables nested states to be displayed and allocated their
own column; active.out and active.hover are both substates of active and
are displayed like any other states. InterState’s state layout allows for arbitrary levels
of nesting this way. Incorporating a way to represent nested states in the

Chapter 4: InterState / Visual Notation

80

representation of state machines is important because, as section 3.2.2 above
describes, nested states are an effective way to reduce the verbosity of state machines.

Challenges and Areas for Improvement

Although the current design is effective in reducing the amount of space required to
show state machines, there is room for design improvement. First, for extremely
large state machines (over 30 states), InterState’s representation of state machines
could dynamically resize the display size to emphasize states that the developer is
interested in. For example, the editor might allow developers to expand and collapse
sub-states for state machines that do not fit on a single page.

InterState’s state machine representation could also be better optimized for states
that have large numbers of self-transitions. These types of states are useful for event-
oriented behaviors, such as those used in games (see section 7.1.1 on Application
Areas). Figure 4.10 illustrates one such behavior from the Breakout example
described in section 4.9.1 below.

Figure 4.10 An InterState state machine for an “event-oriented” behavior with few states and many
events. This state machine represents the behavior of a ball in the game of breakout. Here,
the ball might bounce off of the paddles, blocks, walls, or might go out of bounds (the
bottom wall).

As Figure 4.10 shows, state machines grow larger both vertically and horizontally as
more transitions are added. However, when a behavior involves large numbers of
transitions, it can be difficult to understand which transition affects which property.
One way to rectify this would be to include an alternate “transition-centric” view
that allocates more space to transitions than the current state machine view.

4.5.2 Navigating Between InterState Objects
Navigability is an important consideration in any code editor [19]. Programmers
should be able to navigate between objects in the editor and their representations in
the runtime. InterState’s editor was built to enable quick exploration and navigation.
The runtime allows users to inspect objects in the runtime display pane to open those
objects in the editor window by pressing a built-in keyboard shortcut (CTRL+I) to
enter inspection mode and clicking the object they want to navigate to.

in_play dead

gameReset

collision(this,leftWall)
collision(this,paddle)

collision(this,rightWall)

collision(this,blocks)
collision(this,topWall)

collision(this,bottom)

Chapter 4: InterState / Visual Notation

81

Conversely, objects in the runtime display pane are highlighted whenever the mouse
is hovered over the corresponding representation in the editor. When properties
reference other objects in the containment hierarchy, programmers can click the
name of the object to navigate to it and cause it to be displayed. For example, in
Figure 4.11 below, if the developer clicks on the blue “(circle)” link, which is the
current value of myShape.prototypes, the editor would navigate to the
svg.circle object.

Figure 4.11 The InterState editor shows one object at a time (in this case, myShape) and the fields and
current values of every parent object in the containment hierarchy (in this case, sketch and
paper). The editor also allows developers to pin objects to the screen by dragging them to
the bottom of the window.

By default, the InterState editor displays a single object at a time and the names and
fields of every parent of the currently selected object in the containment hierarchy,
as Figure 4.11 illustrates. This design balances the competing needs of space
efficiency and for displaying relevant information. The editor also allows
programmers to “pin” objects so their display stays on the screen so they can be
referenced while editing another object. InterState’s editor includes an inline text
editor useful for quickly editing of short constraint values and a full multi-line text
editor useful for editing longer values, like expressions for constraints.

Deprecated: InterState Tree View

Early versions of InterState used a tree layout in which the containment hierarchy
was shown in a collapsible tree structure (Figure 4.12). However, I found that the
visual clutter of having so many objects on the screen at once would be detrimental
to programmers, since it required too much scrolling to find the desired objects.

paper >
helloWorld >
svg >
dom >
find (native function)
device >
timeout (timeout)
mouse (mouse)
key (keyboard)
touch (touch)
event >
physics >

prototypes (paper)
myShape >

(empty)

Add Field

prototypes (circle)
cx 100

Files �

sketch paper

width 400
height 400
fill 'white'

myShape

+
ownCopies:

svg.circle
2*r

show true true

clip_rect 'none' 'none'

cursor 'defaul 'default'

cy 100 2*r

fill 'teal' 'teal'

fill_opacity 1 1.0

opacity 1 1.0

r 50 50

stroke 'none' 'none'

stroke_dasharray '' ''

stroke_opacity 1 1.0

stroke_width 1 1

transform '' ''

animated_properties false false

animation_duration 300 300

animation_easing 'linear 'linear'

debugDraw false false

shape 'circle 'circle'

Chapter 4: InterState / Behavior Reuse

82

Figure 4.12 InterState (then Euclase) with a tree layout. However, the tree notation resulted in too many
objects being visible at one time and visual clutter.

4.6 Behavior Reuse

User interfaces often re-use and combine behaviors. InterState supports this by
introducing an inheritance mechanism that allows behaviors to be re-used as easily as
fields and methods are in traditional inheritance. It does this by allowing objects to
inherit not only properties and their constraints but also an instance 8 of the
prototypes’ state machines, as section 4.6.2 below details. InterState’s visual notation
also lets developers understand which properties and behaviors are inherited by
showing them with a grayed background in the editor (for example, the
my_square.height field in Figure 4.13).

In addition to inheritance, InterState also supports dynamic templating—another
form of behavior reuse. Dynamic templating allows developers to create a copy of an
element or behavior for each item in some underlying dynamically changing data
model. For example, a developer might want every item in a list view to have
different text content but the same selectable behavior. InterState allows any object
to serve as a dynamic template by setting an optional “copies” field, as explained
below.

4.6.1 Inheritance
Other toolkits have achieved behavior inheritance by requiring that programmers
create separate interactor objects that describe specific built-in behaviors and can be
attached to graphical objects [99,106]. Rather than requiring such specialized
mechanisms, InterState’s inheritance model extends traditional prototype-instance
inheritance [99] by adding several features to support behavior inheritance.

8 In this context, an “instance” of the state machine means a new state machine that has the

same structure but may have a different active state.

Chapter 4: InterState / Behavior Reuse

83

Figure 4.13 InterState uses a prototype-instance inheritance model with multiple inheritance. Prototypes
are simply specified in the prototypes property. Here, my_square inherits from square.
Because my_square does not define a value for height, it inherits the definition of
square.height, as indicated by the greyed out text in the columns on the right. Note that
my_square inherits the definition of height, not the value. Thus, the width property of
my_square evaluates to a different value (20) than the width of square (15).

First, when one InterState object inherits from another, it also inherits an instance of
that object’s state machine. For example, in Figure 4.14, my_selectable_drag-
gable gets an instance of the state machines for both selectable and drag-
gable. The fact that an instance of the state machine is inherited, rather than the
state machine itself, is important; we usually do not want all of the objects that
inherit from a particular object to be in the same state. For example, we do not want
every object that inherits from draggable to enter the dragging state when any
one of them does. When the structure (not current state) of a prototype’s state
machine is changed, that change is instantly reflected in the structure of all objects
that inherit from it. This allows programmers to quickly modify the behavior of
objects in their interface to explore behavior variations. For example, in an interface
with a number of draggable elements, drag-lock could be implemented for every
element by modifying the definition of the “draggable” prototype.

Second, rather than inheriting a property’s value, InterState inherits the property’s
constraint. Further, the values of the references in the constraint expression are
computed based on the context of the instance, not the prototype. By inheriting the
constraint’s definition and redetermining referents, InterState allows prototypes to
define behaviors that reference the state and property values of the objects that
inherit from them. This is illustrated in Figure 4.13, where my_square inherits the
definition of height, rather than its value, and the value computed for
my_square.height depends on my_square.width, not square.width.
Amulet and Garnet included a similar mechanism [99,106], but using a more
verbose syntax.

Third, unlike most prototype-instance inheritance models, InterState allows multiple
inheritance. A handful of other prototype-instance frameworks have included
multiple inheritance, but only for fields [106,156]. In InterState, multiple inheritance
is crucial because interface components often combine multiple inherited behaviors.
InterState objects may inherit from any number of other objects. InterState then
combines inherited values across states. If an object’s property is not defined for a state
but it is in one of the object’s prototypes, then that prototype’s definition is used for
the state. This allows multiple behaviors to control the same property

my_square

(square)
20
20height

width
prototypes

20
square

width
10+5

own square

square

undefined
15
15height

width
prototypes

width
10+5

Copies:

Add Field

ownCopies:

Add Field

Chapter 4: InterState / Behavior Reuse

84

simultaneously. For example, in Figure 4.14, selectable and draggable define
color. my_selectable_draggable combines the definitions of both of these
prototypes. In the selected state, it will be 'blue'; otherwise, it will be 'black'
or 'red', depending on the dragging state. For conflicting values, the left-most
value is used; a convention that is easy to control and understand in concert with the
visual notation, as discussed above in section 4.2. When a developer instead wants to
combine conflicting values, they can instead write a constraint that references the
object’s state (either directly or indirectly through another field).

Previous multiple inheritance frameworks have been hampered by the “diamond
problem”, which occurs when objects B and C both inherit from A and then object D
inherits from both B and C, leading previous systems to inherit A twice [91].
InterState addresses the diamond problem by detecting duplicate prototypes and
only inheriting them once. If there are conflicts among prototypes (i.e. two
prototypes set the same field for the same state), InterState gives precedence to the
first (leftmost) prototype.

Figure 4.14 An object that inherits from both draggable and selectable behaviors. Note that the
definitions for the color property are inherited from draggable ('red') and selectable
('blue').

Finally, prototypes, like every other property, can have different values in
different states, and can even be computed by constraints, allowing the prototypes of
any given object to depend on its current state. This dynamic inheritance provides a
declarative way for interface elements to modify their behavior based on the
interface state [156]. For instance, programmers can declaratively change an SVG
object from a rectangle to a circle by changing its prototype, rather than
imperatively removing and creating objects. Section 4.10.5 below contains a deeper
discussion of how InterState prevents inheritance conflicts for dynamic prototypes.

4.6.2 Copies & Templating
Often, developers need a list of similar items to display and do not want to declare a
display for every object in that list, either because it is too tedious or because that list
of items will be computed at runtime. InterState handles this by adding an optional
copies field to ordinary objects. When copies is set to either an array or a
number, its parent object then creates a set of items rather than a single item. When

prototypes undefined
0
0
'black'fill

y
x

owndraggable

undefined
fill
prototypes

'blue'

ownselectable

'blue'

prototypes

0

[(selectable),(drag..

0x
y

fill 'blue'

draggablemy_selectable_draggable selectable

[selectable,drag

own

Copies:

Add Field

Copies:

Add Field

Copies:

Add Fieldnot_selected selected

mouse.out(this)
mouse.over(this)

not_dragging dragging

mouse.up
mouse.down(this)

x
y

'black'

mouse.x
mouse.y
'red'

'blue'

not_selected selected

mouse.out(this)
mouse.over(this)

0
0

not_dragging dragging

mouse.up
mouse.down(this)

x
y

'black'
mouse.x
mouse.y

'red'

0
0

Chapter 4: InterState / Behavior Reuse

85

the value of copies changes (either dynamically or through user edits), the list is
updated with respect to added, moved, and removed items instead of recreating the
entire list. For every item, InterState sets two variables: my_copy, which carries the
value for a particular item (e.g. 'Jane', 'Sue') and copy_num, which carries the
index for a particular item (e.g. 0, 1).

Figure 4.15 An object with multiple copies; copies is set to ['Jane', 'Sue']. Every copy has two
properties: my_copy, which is set to that copy's item (here, either 'Jane' or 'Sue') and
copy_num, which is set to that copy's index. Here, we are looking at the first copy (index 0).

This mechanism can also be used to create dynamically updating lists of views. For
example, suppose there is a color palette that shows a tiny swatch for a set of colors
that a user has set as favorites. The list of favorite colors is stored in the favorites
variable as hex values (e.g. ['0x900', '0x333']). When users click “add
favorite”, a new element is pushed onto that list and when they click “remove
favorite”, an element is removed. The developer wants to specify only once how to
display every swatch, by using the color_disp prototype, and by expressing that a
copy of it should be created for every element in the favorites list.

person_display [0]
['Jane', 'Sue']Copies:

copy_num

Add Field

my_copy
1

'Jane'
copy 1 of 2

copy_num
'Sue'

0
...

Chapter 4: InterState / Behavior Reuse

86

Figure 4.16 Two InterState objects (favs_panel and color_disp) that create a dynamically changing
display for a dynamic list of favorite colors. Annotations are in gold boxes. This code stores a
list of favorites under favs_panel.favorites. When a user clicks on any color
(represented favs_panel’s transition diagram as mouse.click(color), that color is added
to the list of favorites (by setting favorites to favorites.push(color) in the color click
transition). Because color_disp’s copies field is set to favorites, new copies of
color_disp are added and removed as favorites changes, automatically adding and
removing visual elements from the screen.

They can set copies (displayed under color_disp[0] in Figure 4.16) as a
constraint to favorites and the InterState runtime environment creates an
instance of color_disp for every element in the favorites array (updated
automatically). color_disp can then constrain its fill property to be my_copy,
so that every instance has the appropriate color. This functionality is analogous to
list views9 in data-binding libraries and maps in Amulet [99] that allow programmers
to specify a template display and to specify the number of instances they want. This
example is illustrated in Figure 4.16.

Note that the copies’ prototypes fields can be computed by a constraint that can
depend on each one’s my_copy field. For instance, in a directory viewer application,
copies could be set to the contents of the directory. Then, every item could have a
constraint that computes the prototype field to inherit from folder_view if
my_copy is a folder and from file_view if my_copy is a file.

9 http://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.listview.aspx

owncolor_disp[0]
Copies:

Add Field

favorites

prototypes
'0x33
(rect

'0x900'
copy_num
my_copy

'0x900'

10
(rectangle

'0x33
copy 1 of 3

fill
...

svg.rectangle
my_copy

>color_disp

undefined
favorites
prototypes

['0x900’,

ownfavs_panel
Copies:

Add Field idle

mouse.click(color)

[] favorites.push(color)

...

color_disp

when the user clicks a color
add it to the list of favorites

create one copy of color_disp
for every element in favorites

Chapter 4: InterState / InterState Editor

87

4.7 InterState Editor

Because the primary goal of most user interfaces is to be usable, it is also important
that developers can immediately use and evaluate their application as they create it,
which has been called reflection in action [143]. To enable reflection-in-action, I
implemented a live visual editor. This means that changes in the editor are
immediately reflected in the running application and that user events in the running
application are shown in the editor [152]. To better help developers understand the
current state of their running application, InterState’s live editor also shows the
current state and field values.

4.7.1 Live Development
Previous research has shown how live programming can improve the experience of
both novice and professional programmers [43,92]. I decided that it was important
to have a live development environment for three reasons, described below.

First, by making the result of changes immediately visible, live development
environments help bridge the gulf of evaluation [119]—a significant barrier for new
developers [79]. Another important aspect of most live development environments is
that the developer always has a running program10. One great aspect of spreadsheet
programming, for instance, is that when the user makes a mistake in a particular
cell’s formula, the entire spreadsheet does not stop working [20,98]. Similarly,
InterState allows errors to be “localized”: cells with errors only prevent the parts of
the program from running that depend on those cells.

Second, liveness can enable the user to quickly evaluate the design. Although
syntactic errors can sometimes be made immediately visible in edit-compile-run
environments, live programming allows both syntactic and semantic errors to become
immediately apparent by enabling developers to immediately test their code. This is
particularly important because reflection-in-action – stepping back and evaluating
their design as developers are in the process of creating it – is a crucial part of the
design process [143]. Previous research [101] has shown that designers are more
satisfied with their tools for designing an application’s look than with those for
designing an application’s behavior. While sketches and drawing applications allow
designers to quickly evaluate the look of their application during the design process,
InterState is designed to be one of the first tools to allow them to quickly evaluate the
feel of their application as well.

Finally, liveness makes quick experimentation possible. Experimentation is a crucial
part of the design process and one that is not well supported by today’s development
environments [40]. Again, it is relatively easy to experiment with different
application looks with sketches, drawing programs, etc. However, it is more difficult

10 This is not necessarily inherent to live development environments but because of the

implementation requirements of live development environments, it is common.

Chapter 4: InterState / InterState Editor

88

to change or experiment with the feel of the application. For example, imagine that
the designer wants to tweak the scrolling “friction” to find a suitable value. With
InterState’s live development, this parameter can be iteratively modified to see the
result, versus in a conventional environment where the user would have to re-run the
entire program and re-enter the program state where this parameter is relevant.

4.7.2 Design Challenges of a Live Environment
There are many human-centric questions about what developers would want the
system to do in certain situations. For example, what if the program enters a state
and the entire source specifying how the program should behave in that state is then
deleted? For instance, suppose I create an icon with a “selected” state that highlights
the icon after it has been clicked. What if I then delete our specification of what
should happen in that “selected” state? How should our running application
respond? Some viable possibilities are:

• To put the icon back in the last valid state it had before the selected state.

• To keep the icon “as-is” until the developer resets the state machine (which
can be done by right-clicking the state machine and selecting the
appropriate context menu item) or refreshes the page.

• To detect that an in-use state has been deleted and automatically reset either
the whole application or reset the state of that particular icon.

All of these possibilities can be considered “valid” in some sense. InterState uses the
second option because it is conceptually the simplest and most predictable for users.

I also want to insure that there is no difference between a program executing live
and a program that executes later. There are some questions about timing and when
certain cells should be executed. For instance, suppose a cell has the value
random(), which returns a random number. When should that random number be
generated? Only when the user first enters the cell’s value? Only when that value is
used? Current spreadsheets reevaluate the random() formula unpredictably
whenever the sheet is reevaluated. My implementation evaluates the call to
random() only when the user first enters the cell’s value, so a program executing
live in the development environment behaves the same way as it would if it went
through compile-edit-run loop, where the cell would be evaluated exactly once when
the cell’s value is first evaluated.

Finally, the fact that the finite state machines used by InterState are imperative
presents another design challenge. Sometimes, it is important to be able to keep track
of how an object got into a certain state. This is so that the live environment
evaluates constraint values as if the developer re-compiled and re-ran their program.
For example, if a developer edits a property’s value for a given transition after that
transition has executed, the property’s value would ideally backtrack to evaluate as if
that value were set before the transition was executed. To balance this need with

Chapter 4: InterState / Laboratory User Evaluations

89

performance and memory concerns (tracking past states can be computationally
expensive), InterState only backtracks property values when that property’s value is
undefined and the user defines a value on its start transition, as I anecdotally found
that this covers most of the issues of this type. All other edits on transitions require
the user to reset or otherwise arrange for the transition to fire again.

4.7.3 Error Reporting & Debugging
One of the barriers to the adoption of constraint systems has been the difficulty of
understanding and fixing bugs in constraint specifications [98]. When there is a bug
in a constraint method, many constraint systems will halt program execution and
present a cryptic error message [99,106]. InterState’s runtime was designed to
enable programmers to always have a running application, like in spreadsheet
programming, where constraint errors do not halt updates of other constraints
[20,98]. InterState achieves this by “localizing” errors: constraints with errors only
prevent the parts of the program from running that depend on those constraints. A
constraint that fails has the value undefined and any constraint that depends on
that field will also have the value undefined. In the editor, errors are displayed
next to the problematic constraint expression (see Figure 4.17).

Figure 4.17 Syntax and runtime errors are highlighted in the editor but do not prevent the program from
running. Fields with errors and other fields that depend on them are given the value
undefined.

Constraints are also challenging to debug in imperative languages because of their
declarative nature [98]. Breakpoints in imperative languages are of limited use
because they can freeze the program while the constraint solver is in an inconsistent
state (i.e. in the middle of code maintaining a dependency). InterState’s editor makes
constraint debugging easier by allowing programmers to always see the current
values calculated by constraints, and to set breakpoints that halt its constraint solver
in a consistent state just before a constraint is reevaluated. Breakpoints can also be
set on transitions or states so programmers can see what relationships are being
maintained at any point in their program in the InterState editor. Developers can
add or remove breakpoints by right-clicking a transition or state and selecting the
appropriate action in the context menu.

4.8 Laboratory User Evaluations

Given the design goals of InterState, I hypothesized that programmers could more
easily understand and modify user interface code with InterState compared to event-
callback code.

undefinedx
(square)prototypes

other_shape.x+5

Error: Could not find field 'other_shape'

Chapter 4: InterState / Laboratory User Evaluations

90

4.8.1 Method
To evaluate this hypothesis, I conducted a comparative laboratory study with 20
programmers (ages 19-41) with at least one semester of programming experience (in
any language). None of the participants had prior exposure to InterState.
Participants were sequentially given two interactive behaviors; one implemented in
JavaScript using the RaphaelJS drawing and event-handler library (called JS) and
another implemented with InterState (called IST).

For one behavior (called B1), participants were given code for a standard drag and
drop behavior and were asked to implement the drag-lock behavior described in
section 4.3. For the other behavior (called B2), participants were given code for an
image carousel that displayed a large “featured” image and a series of thumbnails.
The featured image changes when a thumbnail is clicked or auto-advanced after a
timeout. I asked participants to change display features of the thumbnails, the auto-
advance interval, and to add a progress bar below the featured thumbnail to indicate
the auto-advance interval. To control for learning effects and differences in task
difficulty, every task was counterbalanced, creating a total of four participant groups
(B1JS/B2IST; B1IST/B2JS; B2JS/B1IST; and B2IST/B1JS). Participants were given the
same task description regardless of implementation language.

 B1: Drag Lock B2: Img. Carousel

JS Lines of Code 35 (+ 12) 60 (+ 17)
Callbacks 3 (+ 1) 2 (+ 0)

IST

Cells 11 (+ 2) 33 (+ 4)
Objects 1 (+ 0) 2 (+ 1)
Properties 7 (+ 0) 22 (+ 4)
States 2 (+ 1) 3 (+ 0)
Transitions 2 (+ 2) 6 (+ 0)

Table 4.1 The relative sizes of the user study’s two behaviors and the minimum size of modifications
required for the tasks. (Note that these numbers represent the minimum number of changes,
rather than the number of changes made by participants.)

To make our comparison as fair as possible, I started with third-party code for the
JavaScript implementations and simplified them by reducing boilerplate and adding
descriptive variable names that were consistent with those used in the InterState
implementations. I also used a “live” JavaScript editor (JSBin) that immediately re-
evaluates JavaScript snippets when the source changes. Finally, participants were
given tutorials and reference sheets for JavaScript and InterState.

4.8.2 Results
Participants were able to implement the drag lock task significantly faster with
InterState—taking less than half the time (JavaScript: 19.5±13.6 min, InterState:
8.0±6.8 min, two-tailed heteroscedastic Student’s t-test p < 0.05). Although
relatively few lines of code were required, reasoning about callbacks’ timing in the

Chapter 4: InterState / Laboratory User Evaluations

91

JavaScript task proved challenging for many users, and many participants used
console logs to help them understand their interface’s state.

Figure 4.18 The relative times (in minutes) across 20 participants to complete tasks in JavaScript (JS)
and InterState (IST). Every participant performed one task in InterState and one task in
JavaScript, meaning that for every one of the four bars in this chart, N=10 (overall N=20). The
error bars represent the standard deviation from the mean. Smaller values are better.

Participants also completed the image carousel task significantly faster with
InterState, again in about half the time (JavaScript: 28.3±7.6 min, InterState:
14.7±5.5 min, p < 0.01). For this task, participants added an indicator for the timer.
Participants in both implementations used one of two strategies for this: either
creating an indicator for each thumbnail or creating one indicator that follows the
featured thumbnail. Both implementations already had a property that tracked the
number of milliseconds before the featured image auto-advanced, which the
programmers could utilize. Most JavaScript participants missed this variable while
most InterState participants found it, apparently by observing how its value changed
over time using the visual editor.

4.8.3 Discussion
Most participants felt comfortable with InterState’s visual notation, calling it
“intuitive” and “clean”. Nearly every user cited InterState’s ability to display the
current application state and live property values as one of the most useful aspects of
the editor. This helped many users quickly debug and deduce the meaning and roles
of properties.

Our evaluation also pointed to several ways to improve InterState, some of which
are already reflected in the current design as described above. For example, I added
the ability to jump from an on-screen object in the runtime to its representation in
the editor as a result of observing the difficulty several participants had finding
objects. Additionally, the ability to “pin” objects in the editor was suggested by a
participant. Both of these features were added after this study.

The most common conceptual errors participants made in InterState were due to
InterState’s representation of copies. For example, some participants were not sure
whether edits to an object with multiple copies changed every copy or just one, a
distinction that the editor could make clearer. Some participants also had difficulty

0

10

20

30

40

B1: Drag Lock B2: Img. Carousel

JS

IST
time taken

(minutes)

Chapter 4: InterState / Scalability and Evaluation

92

reasoning about the interaction between state machines in different copies. In the
image carousel example, when a user clicks a thumbnail, that thumbnail should
become selected and the previously selected thumbnail should become deselected.
The problems participants faced when working with multiple copies may indicate a
potential breakdown of the visibility principle—by only showing one copy at a time,
InterState’s representation of state machines does not make it clear how user events
can affect multiple state machines.

4.9 Scalability and Evaluation

I designed InterState to be “scalable” in three senses of the word. Application
scalability refers to InterState’s ability to scale to implement even complex GUIS.
Performance scalability refers to InterState’s ability to deal with large numbers of
components. Editor scalability concerns the ability of the InterState editor to keep
source code readable, understandable, and navigable even as applications become
more complex.

4.9.1 Application Complexity
To scale in terms of application complexity, InterState starts by incorporating the
inheritance and templating mechanisms described in section 4.6 above. These
mechanisms make writing complex applications more practical, by enabling code re-
use. Many applications also require complexity in back-end code. For instance, a
mailbox application might need to communicate with a server over IMAP to retrieve
e-mail messages. Thus, InterState includes mechanisms for communicating with
back-end code written in other languages, allowing programmers to connect a front-
end written in InterState with a back-end written in another language. The
mechanisms for communicating with back-end code are discussed in section 4.10.4
below.

To illustrate InterState’s ability to scale to complex applications, I also implemented
a number of example applications, including:

• A music player and playlist manager that allows users to create and edit
playlists. This example takes advantage of InterState’s ability to call
JavaScript functions to play music with the HTML5 audio API. This example
is representative of behaviors that include many interconnected components;
for example, the state of the playlist view depends on which playlist is
selected, whether the user is currently playing a song, the current selected
song, and the current playing song.

• A version of the classic game “breakout” includes bonuses and power-ups.
This example also interfaces with Box2D, a third-party physics engine, for
collision detection and reactions. This example is representative of behaviors
that have many events but few states; for example, the ball in the breakout
game only has two states but different events for when it hits any of the three

Chapter 4: InterState / Scalability and Evaluation

93

walls, the paddle, a block, or goes out of bounds. Figure 4.10 shows the state
machine for the behavior of the ball.

• A touchscreen map that allows users to pan and zoom a map image using
touch and accelerometer events on touchscreen devices. This example
illustrates InterState’s ability to express behaviors using multiple input
modalities.

These examples are representative of behaviors with large numbers of
interconnected components (music player), large event spaces (breakout), and large
state spaces (touchscreen map).

4.9.2 Performance
We conducted a series of performance tests to evaluate InterState’s ability to scale
for behaviors involving large numbers of objects. These tests were performed in
Safari 7.0 on a 2.3 GHz Intel i7 Macintosh with 16 GB of RAM. I ran three tests and
measured the delay between changing an attribute value in InterState’s runtime
model and when that change was reflected in the runtime output.

Figure 4.19 Benchmark results. In the first test, N is the length of the prototypes chain. In the second, N
is the number of children. In the third, N is the number of prototypes.

In the first test, I created an object named obj whose prototype chain is N objects
long, as in:

obj.prototypes = proto1
proto1.prototypes = proto2
…
proto(N-1).prototypes = protoN

We then measured the latency between changing protoN and the runtime updating
its DOM output for obj. In the second test, I measured the same latency for an
object with N prototypes, as in: obj.prototypes = [proto1, …, protoN]. In
the third test, I created an object with N copies and measured the time it took for a
change to affect the runtime’s DOM output for every copy.

0 500 1000
0

20

40

60

80

100

0 20 40 60 0 500 1000 1500 2000 2500

non-instantaneous (> 100 milliseconds)
N=58 N=1,200N=2,400

prototype distance # of children# of prototypes

d
e
la

y
(m

ill
is

e
c
o

n
d

s)

Chapter 4: InterState / Implementation

94

For each test, I measured the highest value of N for which a change was perceived to
be instantaneous (100 milliseconds). I found that performance scaled linearly in all
tests. The first test indicated that a prototype chain of 58 objects could be handled
instantaneously. By contrast, the longest prototype chain I have ever found useful is
four classes long, and in the implementation of the Eclipse IDE in Java the longest
inheritance chain is only nine classes long. The second test indicated that an object
could have about 2,400 prototypes before changes have any visible delay. This is far
more than necessary in real-world interfaces, since the longest I have found useful is
five. The third test indicated that 1,200 simultaneous changes to DOM attributes
would appear instantaneous. By contrast, InterState’s constraint solver, ConstraintJS
[126], could handle about 2,000 simultaneous changes in the same testing
environment, which indicates that the InterState runtime only adds a 40% overhead.
Much of this overhead comes from parsing and interpreting constraints, which is
done in the runtime (rather than natively) to enable InterState’s dynamic scoping. As
our results indicate, InterState can scale up to real-world interfaces with respect to
performance. It is also important to note that a developer can implement any
performance-critical operations natively and reference them in InterState.

4.9.3 Editor Scalability
InterState’s editor includes a number of features to allow programmers to navigate
and understand complex behaviors. I described some of these techniques—such as
pinning, and links to navigate between InterState objects—in section 4.5 above.

Additionally, InterState’s visual notation for state machines is able to convey
behaviors using less space than textual code. For instance, the image carousel from
the user study required about 60 lines of JavaScript. In InterState, the same behavior
required two objects (with three states and six transitions total) and 33 constraints
across 22 properties. With the same font size, the InterState implementation
required 30% less display space despite conveying more information (e.g. inherited
properties and current property values). This is primarily because InterState’s visual
notation reduces the verbosity needed to express states and establish constraints.

4.10 Implementation

InterState is built using HTML and JavaScript along with the ConstraintJS
constraint solver (see chapter 3). InterState also uses the esprima.org ECMAScript
parser to generate constraints from expressions written in cells.

4.10.1 A Fully Dynamic System
One challenge in implementing InterState was to create a fully dynamic prototype
system. In InterState objects, any number of things might affect a particular object’s
property value, errors, etc. For instance, suppose I create a cell whose value is A.x.
Among the things that might change the value of this cell would be:

Chapter 4: InterState / Implementation

95

• The developer edits the cell’s expression
• An A closer in scope appears
• A is a dynamic property (whose value is constrained to some other object)

and the value of that property changes
• Object A changes its value for x, because either

o A changed state and x’s value changed
o A.x was inherited but it changes to now be a normal (non-

inherited) field
o A.x was a normal (non-inherited) field but is now inherited
o The definition for A.x changes
o The value of A.x changes (with no change in definition)

Very early prototypes of InterState (before I built ConstraintJS) used event-listeners
to try to propagate updates. However, I found that in an event-based
implementation, it was prohibitively difficult to correctly update field values and
remain efficient, in part due to the myriad ways that field values could change.

4.10.2 Pulled and Pushed Constraints
The fact that ConstraintJS uses pulled constraints (which evaluate only when the
constraint’s value is requested) instead of pushed constraints (which evaluate as soon
as a constraint’s value may have changed) has important performance implications11.
For instance, when a cell that is not currently being used changes its value, no
resources are dedicated to re-evaluating the constraint (also known as lazy
evaluation). This can be helpful in situations where large or computationally
expensive portions are disabled.

However, there are some instances where InterState needs constraint variables to
behave like push constraints. Event listeners, for instance, must be updated as soon
as variable references and values change. Suppose one finite state machine has a
transition whose event is mouse.dblclick(selected_item), meaning the
transition will fire when selected_item is double clicked. The event listener needs
to be updated as soon as selected_item changes (listening to every item and
determining later on if it was selected_item would be prohibitively inefficient).
To enable this, I added an extension to ConstraintJS that allows some constraints to
behave like pushed constraints, as described in section 3.6.2.

4.10.3 Contextual and Basic Objects

Definitions and Values

InterState’s inheritance mechanism focuses on inheriting definitions, rather than values.
For example, in Figure 4.13, the definition of square.width is inherited (width <=
height) by my_square. Conceptually, this is because any square should have equal
width and height, regardless of its dimensions.

11 Previous literature often refers to pushed constraints as eager constraints and pulled

constraints as demand constraints.

Chapter 4: InterState / Implementation

96

When the definition of square.width changes, the definition for the width field of
any object that inherits from square should also automatically change. One way of
conceptualizing InterState’s inheritance mechanism is that definitions might appear in
multiple contexts. In InterState, this is implemented by creating one definition for
height and a context-specific constraint for every place in the containment hierarchy
in which the definition is used. In Figure 4.13, the definition of square.width
appears in two contexts: in square and in my_square. Definitions might also involve
multiple levels of containers. For instance, a scroll bar widget might include separate
containers for its handle, trough, and arrows; each of which might contain several
layers of graphics.

The definition/value split is reflected in InterState’s implementation. Internally (not
visible to users), InterState maintains two separate hierarchies: “basic” objects, which
correspond to definitions, and “contextual” objects, which correspond to values.
Basic objects are the internal representations that define content and structure.
Contextual objects are the editor-visible representations in which the values for every
field are computed based on the content of a basic object and a context in which it
exists. Whereas the basic object hierarchy can be modified by developer edits, the
contextual object hierarchy is automatically generated by the InterState runtime,
based on the basic object hierarchy. Table 4.2 provides an overview of the
differences between contextual and basic objects.

 Basic Object Contextual Object

Tracks Fields’ definitions Fields’ values
Modified by Developer edits Automatically generated by the

InterState runtime
Referenced by The runtime, when generating

the contextual object tree
The runtime, when generating the
DOM tree and the editor when
displaying current values

Table 4.2 A comparison of the features of basic objects and contextual objects. Basic objects are
responsible for tracking the definitions that are declared by developers. Contextual objects
are responsible for tracking the values that are used in the runtime. The contextual object
hierarchy is automatically generated based on the basic object hierarchy.

Table 4.3 provides more concrete detail on how contextual and basic objects store
the definitions and values for various object types. Note that all of the fields for basic
objects are oriented towards tracking the definitions of various fields while the fields
for contextual objects are oriented towards tracking the current values of fields.

Chapter 4: InterState / Implementation

97

 Basic Object Fields Contextual Object Fields

Cell • String
• Syntax errors

• Current Value
• Runtime errors

Object • Sub-fields (non-inherited only)
• Prototypes (definition)
• Copies (definition)
• Attachment types (see 4.10.4)
• State machine (basic)

• Sub-fields (direct and inherited)
• Prototypes (computed value)
• Copies (computed)
• Attachment instances (see 4.10.4)
• State machine (contextual)

State • Sub-states (basic)
• Outgoing transitions (basic)

• Active sub-states (contextual)
• Outgoing transitions (contextual)

Transition • Event (definition)
• From state (basic)
• To state (basic)

• Event (computed)
• From state (computed)
• To state (computed)

Table 4.3 A non-exhaustive list comparing the fields of basic and contextual objects. The fields of
basic objects are oriented towards tracking definitions, whereas the fields of contextual
objects are oriented towards tracking values.

Context Pointers

Every contextual object contains a list of every parent in its containment hierarchy,
starting with the root (sketch). When an object field is referenced, the InterState
runtime will iterate through that list (up the contextual object’s lineage) until it finds
a match for a field name. In the example shown in Figure 4.13, square’s definition
for height (equal to width) appears in two separate contexts: square and
my_square (because it inherits from square). As a result of the different contexts
for square.height and my_square.height, each field’s lookup for the value of
width returns a different object (square.width in square and
my_square.width in my_square), resulting different values for both fields (15 for
square.height and 20 for my_square.height).

Contextual pointers are also used to implement the “copies” mechanism. When
working with a specific copy of an object, that copy is specified within the contextual
object pointer. However, the example below will omit copies for simplicity.

Example Basic and Contextual Hierarchies

To illustrate how basic and contextual objects work, consider the example shown in
Figure 4.13. In this example, the definition of the meaning of width, (a cell whose
definition is height) should vary by context. A representation of the basic object
structure is shown in Figure 4.20. Note that there is no field for
my_square.height, a field that will be created in the contextual object tree after
the InterState runtime determines that my_square inherits from square, which
includes a field for height.

Chapter 4: InterState / Implementation

98

Figure 4.20 A representation of the basic object structure for the objects shown in Figure 4.13. The basic
object tree is a mutable tree that gets modified when the developer performs an edit on their
program. This model contains three objects (sketch, square, and my_square) and five cells
(sq_protos, sq_width, sq_height, mysq_protos, and mysq_width). Note there is no field
for my_square.height, the inherited field that only exists in the contextual object tree shown
in Figure 4.21. There is also no slot for values, which are computed in the contextual object
tree because the value of a given variable depends on its computation context. This model
makes two simplifying assumptions. First, it omits the state machines of square and
my_square (which would each have one start state). Second, it gives human-readable names
to objects (sq_protos, sq_width, etc.) whereas in the InterState runtime, objects’ names
only exist in their container object’s field name.

The contextual object tree that the InterState runtime creates from this basic object
tree is shown in Figure 4.21.

Figure 4.21 The contextual object tree for the basic object tree shown in Figure 4.20. Unlike the basic
object tree, the contextual object tree is computed by the InterState runtime from the basic
object tree. As the basic object tree is updated, the InterState runtime automatically updates
its contextual object tree. This tree bears some resemblance to the tree in Figure 4.20, but
with a few notable differences. First, every contextual cell contains a computed value, which
is not present in the basic object tree. Second, every contextual dict and contextual cell

square:
my_square:

sketch
dict

prototypes:
width:
height:

square
dict

prototypes:
width:

my_square
dict

expression: 10+5
sq_width

cell

expression: width
sq_height

cell

expression: 20
mysq_width

cell

expression: (none)
sq_protos

cell

expression: square
mysq_protos

cell

square:
my_square:

basic object: sketch
context: [sketch]

c_sketch
contextual dict

prototypes:
width:
height:

basic object:
square
context:
[sketch, square]

c_square
contextual dict

prototypes:
width:
height (inherited):

basic object:
my_square
context:
[sketch,my_square]

c_my_square
contextual dict

c_sq_protos

expression (from sq_protos): (none)

basic object:
sq_protos
context:
[sketch, square, sq_protos]

computed_value: null

contextual cell

c_sq_width

expression (from sq_width): 10+5

basic object:
sq_width
context:
[sketch, square, sq_width]

computed_value: 15

contextual cell

c_sq_height

expression (from sq_height): width

basic object:
sq_height
context:
[sketch, square, sq_height]

computed_value: 15

contextual cell

c_mysq_protos

expression (from mysq_protos): square

basic object:
mysq_protos
context:
[sketch, my_square, mysq_protos]

computed_value: c_square

contextual cell

c_mysq_width

expression (from mysq_width): 20

basic object:
mysq_width
context:
[sketch, my_square, mysq_width]

computed_value: 20

contextual cell

c_mysq_height

expression (from sq_height): width

basic object:
sq_height
context:
[sketch, my_square, sq_height]

computed_value: 20

contextual cell

Chapter 4: InterState / Implementation

99

contains a context that defines how values are evaluated. For example, although both
c_sq_height and c_mysq_height are cells whose expression is width, their computed
values (15 and 20 respectively) are different because they are evaluated in different contexts.

For simplicity, Figure 4.20 and Figure 4.21 omit the basic and contextual objects for
the state machines of square and my_square. In reality, both objects would have
basic and contextual states. The basic state machines for square and my_square
would contain one (start) state. The contextual state machine for c_my_square
would contain two state machines (its own state machine and one from square), each
with one state. The contextual and basic object hierarchies would include one more
object between every dict and cell to define the cell for every state in the dict’s state
machine (as defined in Figure 4.13, this state machine would only have a start state).

Lazy vs. Active Creation of the Contextual Object Hierarchy

Early versions of InterState created the contextual object hierarchy in an
opportunistic (“lazy”) fashion. When the runtime requested a field, it would first
determine if that field should exist in the hierarchy (if there is any field with the
specified name in the appropriate scope). If it should exist in the hierarchy, the
InterState runtime would create the correct contextual object and cache it for future
references. For example, in Figure 4.14, the contextual object for
my_square.width would not be created until it was referenced.

However, the lazy evaluation model breaks down for state machine transition events.
This is because transition events need to add the proper event listeners in advance of
user events. If contextual transition events were created lazily, user events that might
determine the current state of a state machine would not be fired (the same problem
as described in 4.10.2 above). Thus, InterState contextual objects automatically
generate and update their full contextual object tree. Internally, InterState uses
ConstraintJS’s eager evaluation features (introduced in 3.6.2 above) to perform these
updates (as opposed to the pulled constraints used in most of InterState’s
implementation).

The specification of when contextual objects are added and removed from the
contextual object hierarchy can have practical implications for developers. For
example, consider an object that has two copies where the second copy is in state X,
which is not the start state. If the copies constraint changes so that the object has one
copy and at a later time switches back to specify that there are two copies, it is
unclear if the second copy should then be in the start state (as if it were just created)
or state X (as if it were the copy that was temporarily removed when there was one
copy). Currently, InterState uses the former convention, initiating new copies of an
object in the starting state (and analogously for inherited state machines throughout
prototype changes). However, this is primarily due to concerns about memory usage
when storing information about arbitrary numbers of removed copies.

Chapter 4: InterState / Implementation

100

4.10.4 Object Attachments
Although InterState objects can refer to JavaScript variables, enabling developers to
create new input and output mechanisms for InterState requires allowing JavaScript
objects to work with the contextual object hierarchy. For example, adding output
mechanisms to create DOM and SVG objects for every object in the contextual
object hierarchy which inherits from dom.node or a shape in the svg parent object
required creating an internal “attachment” system for InterState.

InterState attachments are JavaScript objects that work with InterState’s inheritance
mechanism, so that a new attachment instance is created for every object that inherits
from an object with an attachment. Attachments can reference InterState objects’
fields as inputs (for example, to allow InterState fields to control the display
properties of an SVG node) and outputs as fields in the InterState object (for
example, to allow a physics engine to communicate its output back to InterState
elements). For example, the DOM attachment, which is used by dom.node and any
objects that inherit from the dom.node object (every DOM element in an InterState
application), references inputs like the tag name or style attributes to create and
update a DOM element. Table 4.4 provides a more detailed overview of all of the
built-in attachment types in InterState.

Attachment
Type:

Outputs Inputs

DOM DOM element
(automatically added to
DOM tree in the
runtime)

• Tag name
• Style attributes
• DOM attributes
• Children

SVG SVG element
(automatically added to
DOM tree in the
runtime)

• Tag name
• Style attributes (fill, stroke, etc.)

DOM Event (none; referenced by
transition)

• Event type (mousedown, mouseup,
keydown, etc.)

• Event targets (references DOM and SVG
attachments)

• preventDefault (whether to call
event.preventDefault when the
transition runs)

Timer Event (none; referenced by
transition)

• delay (milliseconds)

Touch (see
Chapter 6)

• (x, y)
• (startX, startY),
• (endx, endY)
• radius
• startRadius
• endRadius
• rotation
• endRotation

• downInside
• downOutside
• numFingers
• maxRadius
• maxTouchInterval
• greedy

Chapter 4: InterState / Implementation

101

• scale
• endScale

Table 4.4 The inputs and outputs of several attachment types in InterState. Attachments create
JavaScript objects that can be inherited within the context of InterState’s standard
inheritance mechanism.

Many new output and input mechanisms can be added to InterState by
implementing them in InterState’s attachment mechanism.

4.10.5 Avoiding Inheritance Conflicts
An InterState object’s prototypes can vary by state. Although this enables greater
expressiveness for InterState developers by allowing them to specify dynamic
prototypes, it has the potential to introduce ambiguities. Preventing conflicts
required several changes to how the InterState runtime evaluates the prototypes
field, relative to any other field. First, prototype values cannot be set on inherited
states (note how in Figure 4.13, mySquare.prototypes does not have a value for
its inherited state). This is because enabling this would lead to circular evaluations
where the inherited state machines that are created would depend on the prototypes
but the prototype’s value would depend on which inherited state machines were
created.

Another way in which the prototypes field is different from other fields is that
prototypes are multi-level, meaning that if C.prototypes <= B and
B.prototypes <= A then C will inherit from both B and A (B is given precedence
in case of conflicts in inherited fields). Prototypes, however, are additive: an object
should inherit from not only its immediate prototypes, but also the objects that its
prototype inherits from, etc. This is in contrast to the “horizontal” way that
InterState combines other property values, like the object in Figure 4.14. This
difference in evaluation is to match the way that inheritance normally works (if
mySquare inherits from square and square inherits from rectangle, most
programmers would likely expect mySquare to also inherit from rectangle).

Third, when evaluating multi-level prototypes (for example, C.prototypes <= B
and B.prototypes <= A), all prototype cells are evaluated in the context of the
inheritee (C’s prototypes field evaluates B and then A using C’s contextual pointer).
To see why this is advantageous, suppose I had a treeView object that determines
that it should inherit from fileView if this.object is a file and folderView if
this.object is a folder. Thus, in treeView.prototypes is a constraint that
depends on this.object. When an object, which we’ll call myObjectView,
inherits from treeView, it would want its display to depend on its own object field,
rather than the object field of its prototype (treeView). Thus, when prototype
values are evaluated, they are evaluated in the context of the inheriting object
(myObjectView in this case).

Chapter 4: InterState / Conclusion

102

4.10.6 InterState Editor
The InterState editor uses ConstraintJS templates to implement its display and
interactions internally. Communication between the InterState editor and runtime
windows is done through a wrapper layer using the HTML channel messaging API.
The InterState editor uses asynchronous constraints to track the variable states and
values in the runtime window. The editor sends edit commands to the runtime
window through the same wrapper layer. InterState objects can also be serialized
and use the HTML local storage API to save and load InterState programs across
sessions.

4.11 Conclusion

InterState shows how innovations in the execution model, combined with a visual
notation and live editor, can work together to enable programmers to express
interactive behaviors concisely and naturally. InterState also addresses many of the
previously identified issues of programming with state machines and constraints and
shows the value of putting these ideas together into a single cohesive programming
framework. A laboratory evaluation of the InterState editor and primitives also
showed that it is effective in helping developers understand and write user interface
behaviors.

103

5 Defining Custom Event Types

When writing custom user interface behaviors, developers often need to create,
abstract, and re-use custom event types. Re-usable widgets often expose higher-level
events than the built-in mouse and keyboard events—a scrollbar widget will produce
scroll events rather than mouse press events. Developers might also define custom
event types independent of widgets—Chapter 6 will describe examples of custom
multi-touch gestures that developers might want to define and re-use. Unlike the
previous two chapters, which have focused on fully featured development tools, this
chapter will focus on a particular aspect of InterState: its event system, which allows
developers to define, abstract, re-use, and manage conflicts amongst custom event
types. InterState’s event system helps manage event conflicts by including a state
machine for events that differentiates between event requests and confirmations, as
section 5.1 will discuss. Further, it allows developers to define and abstract custom
event types in a way that leverages InterState’s inheritance mechanism described in
section 4.6.

5.1 Managing Event Conflicts

In large applications with multiple event types, a single user input might cause
multiple events to fire. Event conflicts occur when these events should be mutually
exclusive, meaning that one or more events must override the others. Many of the
challenges of managing conflicts between event types arrive in touchscreen
development, where conflicts between gestures are more common. Although many
of the challenges of handling touchscreen gestures will be described in further detail
in the next chapter, this chapter will focus on some of the challenges of dealing with
conflicting events.

Chapter 5: Defining Custom Event Types / Improving Custom Events

104

InterState’s event architecture manages event conflicts by generalizing a common
mechanism that is used for touchscreen development: introducing optional delays
and groupings for events [77,89]. For example, if a menu item performs one action if
it is single clicked and a different action if it is double clicked, developers would need
to introduce a timer delay before verifying the single click (on touchscreens, this
behavior is often seen to differentiate between presses and press-hold gestures).
Typically, when a user performs a double click, the event recognizer will fire two
single click events before firing a double click event. If a developer needs to
differentiate between single and double click events, they must manually add a timer
to wait to see if there will be a double click event, before recognizing either single
click event.

A number of gesture recognizers use similar delays for a limited set of pre-built
gestures. For example, most touchscreen gesture recognizers will delay before firing a
single tap event if the application is also interested in a multi-tap event. However, as
this chapter will describe, including a general mechanism for allowing events to be
overridden and delayed (to check for conflicts) can help developers write custom
gestures. Particularly, providing a general mechanism can be helpful when an
interactive behavior needs to provide a user with immediate visual feedback before
an event is confirmed.

InterState’s event mechanism’s contribution is to allow developers to handle many
types of conflicts by differentiating between event firing requests and confirmations
and by allowing developers to define event groupings and delays. This event
mechanism requires no extra work on the part of developers in the simple case
(where there are no conflicts) but ramps up to handle conflicts by including the
notions of event requests, confirmations, blocking, and cancellation. In this chapter, I will
show how these features allow developers to better manage potential conflicts
between gestures.

5.2 Improving Custom Events

In most event-callback frameworks, developers can create custom events through an
emit method. For example, JavaScript allows developers to create new Event objects,
set arbitrary fields, and fire these custom events so that any event listeners that are
interested in that event (as determined by the Event.type field) will fire. However,
this mechanism requires developers to carefully modularize their event type in order
to enable re-use. Early versions of InterState used a similar mechanism, allowing
objects to emit custom events through an emit method, but it was subject to the
same problems as JavaScript’s custom event emission methods: it was difficult to
properly abstract away and re-use common events. In this chapter, I will introduce
an event mechanism that allows developers to create custom events. When
combined with InterState’s mechanisms for behavior inheritance, this event model
allows developers to easily create customizable and re-usable custom events.

Chapter 5: Defining Custom Event Types / Event Infrastructure

105

One thing to note, however, is that developers can only create InterState event types
that are combinations of built-in event types, as opposed to event types that use
custom sensors or other input devices that the InterState runtime does not currently
support. As section 4.10.4 (Object Attachments) describes, developers can write
JavaScript to enable any input event type that is exposed by the browser to be used
in InterState.

5.3 Event Infrastructure

One of the design goals of InterState’s event infrastructure was to allow developers to
define custom events that can be used in the same way as built-in events. I started by
defining an event InterState object that every built-in event in InterState inherits
from. Developers can then create new event types by inheriting from the event
object (using InterState’s inheritance mechanism described in section 4.6.1 above).
This event InterState object has a built-in state machine (illustrated in Figure 5.1)
that helps developers manage conflicts between event types by differentiating
between requested and fired events. Developers can then re-use and parameterize
their custom event types by inheriting from the objects defining those events, using
InterState’s standard inheritance mechanism.

5.3.1 Managing Event Conflicts
One of the most common ways to resolve ambiguities in two potentially conflicting
events is by adding a short delay before firing an event. If this delay is long enough to
be noticeable, the interface should also give intermediate feedback for a single tap
during the delay period. Implementing this method of conflict resolution,
particularly while giving users intermediate feedback, is a challenging
implementation task because of all the interactions between timeouts, event listeners,
and any intermediate feedback mechanisms.

InterState builds a mechanism for conflict resolution into its core event model, which
allows developers to use these conflict resolution tools for built-in and custom events.
This mechanism abstracts away many of the challenges of dealing with conflicting
behaviors. InterState’s event conflict mechanism works by generalizing a common
mechanism for resolving gesture conflicts: introducing optional firing delays and
priorities.

InterState’s event conflict resolution mechanism works by differentiating between
requested and confirmed event firings. Every object that inherits from the InterState
event prototype (using InterState’s normal inheritance mechanism) has four atomic
sub-events: requested, confirmed, cancelled, and blocked. These sub-events
start by differentiating between event firing requests and confirmations (the first two
sub-events). When event fire requests are not confirmed, it is because they were
either cancelled (for example, if the interface changes state mid-gesture) or blocked
by an event with a higher priority. The four atomic sub-events thus cover every
outcome a user event might have. As soon as an event requests to be fired (by calling

Chapter 5: Defining Custom Event Types / Event Infrastructure

106

the event prototype’s built-in fire() method), a requested sub-event fires.
Thus, developers can specify intermediate feedback after the event is requested but
before it is confirmed by depending upon the requested sub-event. The
confirmed sub-event fires when InterState determines there were no event
conflicts, as determined by event priorities. By default, if a transition does not specify
a sub-event (like all of the transition events in Chapter 4), the transition fires when
the confirmed sub-event fires.

In order to ensure that developers do not have to do extra work when there are no
event conflicts, by default every event has no firing delay and a default priority level,
so that they behave normally; meaning that the event is confirmed immediately after
the event requests to fire (so there is no distinction between event fire requests and
confirmations). Event priorities represent a simple way to deal with many types of
conflicts between InterState events: if an event with a higher priority fires, then any
lower-priority requested events are blocked. When event priorities are not
sufficient— for example, if a gesture should be cancelled if the interface changes
state—developers can also use their own conflict resolution mechanisms. In
InterState’s event system, developers can specify that an event should be cancelled
any time after it has been requested (but before it has been confirmed). In a larger
interface, event priorities might alsof be grouped by event type or target widget.
Thus, InterState events can also specify that they belong to a given event group
where priorities only apply within that group.

The full state diagram for requested events in InterState is shown in Figure 5.1.
Every InterState event (objects that inherit from the event prototype) have the sub-
states in Figure 5.1. All of the states (idle, pending fire, and pending block) and
transitions for InterState events are visible, so that developers can reference sub-
events (such as when an event is cancelled or blocked) in transitions.

Chapter 5: Defining Custom Event Types / Event Infrastructure

107

Figure 5.1 A state machine showing the various states of an event with priority p. Every event can be in
three states: idle, pending fire, and pending block. By default, every event is in the idle state.
When the event requests to fire (a), through the fire method, it enters the pending fire state.
After enough time (specified by the timeout parameter) or if the event has no timeout
parameter, then the event’s firing is confirmed (b). If the event firing is cancelled (through the
cancel method) before the timeout interval passes, then the event is cancelled (c). If another
event in the same group with higher priority is requested before the timeout interval passes,
then the event moves to the pending block stage (g). If all of the events with a higher priority
are cancelled, then the event will return to the pending fire state (f). If any other event with a
higher priority fires, then the event is blocked (d). If another event is still pending fire when
the event’s timeout interval passes, then the event is also blocked (e).

5.3.2 Event Parameterization
InterState’s event model also works well with its re-use mechanism to allow
developers to create re-usable events in a consistent way. To illustrate how this
works, consider a mousedown event (mouse.down in InterState). The mouse down
event contains customizable arguments, such as the mousedown target and all of the
event parameters described above (delay, priority, etc.). When a developer
creates a mouse.down(domObj) transition, they are simply creating an instance of
the mouse.down event that overrides the target field (to domObj).

One of the benefits of this mechanism is that developers can define parameterizable
events in the same fashion as the built-in events. For example, a developer might
define an InterState object myGesture that inherits from event and is

timeout
CONFIRMED

event with priority > p confirmed
BLOCKED

every pending event priority > p canceled

any event with priority > p requested

fire requested
REQUESTED

cancel
CANCELLED

timeout
BLOCKED

Pending
Fire

Idle

Pending
Block

a

b

c

f

g

e

d

Chapter 5: Defining Custom Event Types / Conclusion

108

parameterizable by numFingers. If myGesture’s state machine or any other field
depends on the numFingers property, then inherited instances of myGesture can
override its behavior by overriding the numFingers property, just as in the
mouse.down example. Further, the developer can use instances of myGesture as
transition events, just as they can for built-in events.

5.4 Conclusion

InterState’s event system aims to allow developers to define custom event types,
manage conflicts between events, and use these events in a manner that is consistent
with InterState’s built-in event types. InterState’s event architecture was also
intended to fit in with the rest of the InterState primitives defined in Chapter 4 by
using a state-based representation of every event and by allowing developers to
parameterize events in a way that is consistent with InterState’s inheritance
mechanism. Taken as a whole, the goal of InterState’s event architecture is to make
it easier for developers to abstract and re-use custom events.

109

6 Multi-Touch Primitives

This chapter focuses on a particular GUI application area: multi-touch and touch
gesture interfaces. Multi-touch-enabled touchscreens are quickly overtaking mouse
and keyboard interfaces to become the most common type of GUI application. A
number of applications that were originally intended for the “desktop” (mouse and
keyboard) are being re-designed and re-architected to work better in a touchscreen
environment. The primary contributions of this chapter are “touch clusters” and
“crossing events”: two primitives that abstract away several challenging aspects of
writing multi-touch behaviors. These two primitives will be introduced in section 6.3
below. Throughout this chapter, I will refer to mouse-keyboard behaviors as desktop
behaviors. Although the primitives described in this chapter were implemented in
the context of the InterState development environment, they are generalizable
beyond InterState.

6.1 Multi-Touch Challenges

As the previous chapters described, ConstraintJS and InterState can both build
multi-touch applications. Both tools expose the event types that are provided by the
browser runtime and most browsers expose low-level touch events. More specifically,
a typical browser runtime will expose three different touch events: touchStart,
touchMove, and touchEnd. These events are analogous to mouseDown,
mouseMove, and mouseUp in mouse-based interfaces. However, multi-touch
behaviors are often significantly more difficult to program compared to mouse-
keyboard interactive behaviors for a number of reasons, described next.

Chapter 6: Multi-Touch Primitives / Multi-Touch Challenges

110

6.1.1 Larger State Space
One of the primary reasons that programming multi-touch interactions is difficult is
because the state-space for typical multi-touch interactions is larger than for mouse-
keyboard interactions. Multi-touch gestures, by definition, typically involve multiple
fingers. Although most multi-touch gestures involve two fingers, a number of widely
adopted multi-touch gestures use up to four fingers. As a result, multi-touch code
often needs to track the state of GUI widgets and the state of the gestures.

Although mouse-keyboard (desktop) interactive behaviors sometimes need to track
gesture state to some extent [48], no widely used desktop gesture involves multiple
mouse buttons. This means that developers typically only have to account for a few
mouse states and a limited number of possible states for their interactive behavior. In
fact, Amulet and Garnet’s interactor model defined a three-state state machine for
every interactor, which was sufficient for most interactive behaviors on the desktop
[106].

Further, because many touchscreen devices are smaller than the fully featured
displays and keyboards that some desktop environments are designed for, space is
more often at a premium. Multi-touch applications designed for mobile phone
screens often need to invent ways to deal with the lack of screen real estate and the
problem of potential occlusion by fingers over the application interface. This often
means hiding and showing interface components depending on the interface’s state.

6.1.2 Determining Touch Targets
Another factor that increases the number of states that a particular multi-touch
gesture needs is that event targets in multi-touch applications are typically harder to
determine than in desktop applications. Typically baked into the event-callback
development style is that events have a single intended target element, which can be
determined immediately.

However, in touchscreen applications this is not true for two reasons. The first is
known as the “fat finger” problem. Unlike desktop applications, where the mouse
pointer has specific x and y coordinates, on a touchscreen, the finger typically covers
an area. When the user presses their finger, that area might cover multiple possible
targets. Still, most touchscreen frameworks will reduce finger presses to a single x, y
coordinate at the center of a finger’s area. Currently, the most common way of
dealing with the fat finger problem seems to be to increase the size of typical
touchscreen target elements.

Developers face another difficulty in determining a finger’s target: multi-touch
gestures often must wait for other events or a timeout before determining the
intended target of a touch gesture, as the previous chapter discusses. This difficulty is
more subtle, but potentially more difficult to deal with than the fat finger problem.
In a typical desktop application, when the user presses their mouse curser on a
particular element, their subsequent interactions (until they release the mouse

Chapter 6: Multi-Touch Primitives / Motivating Example

111

button) typically only involve that element. If the mouse leaves that element before
the user releases the mouse (or the user presses ESC), then that operation can be
cancelled. Thus, this interaction can be handled entirely within the context of that
widget’s code, which, after the mouse presses down inside of its borders, will typically
switch states when the mouse enters and leaves its borders.

Imagine the same widget in a touchscreen application, however. Suppose a button
exists in the context of a larger pane. If a user begins to perform a pinch-and-zoom
gesture (whose target is the larger pane), they might begin by putting one finger
down on the button. After some small delay (most applications will handle the case
where all of the fingers involved in a pinch-and-zoom gesture do not necessarily
touch exactly simultaneously), a second finger is pressed. In other words, the first
button cannot determine that it was the desired target of the first finger until either
that finger is released while over the button (which should result in a button press) or
a second finger press occurs (which would result in a pinch-to-zoom). Analogous
difficulties occur with swipe gestures and multi-finger gestures.

6.1.3 Richer Gesture Features
Although not necessarily inherent to touchscreen gestures, multi-touch gestures
typically involve a richer set of features for than most mouse-keyboard gestures.
Whereas the trajectory and velocity of a pointer rarely matters in desktop
environments, the trajectory and velocity of the finger on a touchscreen often
determines which gesture is being performed. Currently, most 2D scrollable
interfaces determine which direction the user is scrolling (horizontally, vertically, or
both) by the initial path that the finger takes after being pressed.

Another dimension that seems to matter more in multi-touch applications than in
desktop applications is timing. Desktop applications rarely perform different actions
based on how long the user is holding down a particular mouse button (with the
exceptions of multi-click and tooltips that appear when the mouse is idle after a
timeout). However, this is common in multi-touch applications. Press-and-hold, for
example, is a common gesture for bringing up context menus in touchscreen
applications. For swipe gestures, the speed of the swipe is important for determining
how fast the contents start scrolling.

6.2 Motivating Example

Currently, most touchscreen development frameworks require developers to define
custom multi-touch gestures event listeners for low-level events: when a touch starts,
moves, or ends. However, in a rich multi-finger gesture, it can be difficult for
developers to translate these low-level events into higher-level features. To illustrate,
suppose a developer is defining a simple two-finger press event. They start out with
code to listen for two or more fingers down and call a function
onTwoFingersDown, which will then be referenced in a larger gesture:

Chapter 6: Multi-Touch Primitives / Motivating Example

112

var numFingersDown = 0;

window.addEventListener("touchstart", onTouchStart);
window.addEventListener("touchend", onTouchEnd);
window.addEventListener("touchcancel", onTouchEnd);

function onTouchStart(event) {
 var changedTouches = event.changedTouches,
 oldNumFingersDown = numFingersDown;

 numFingersDown += changedTouches.length;

 if(numFingersDown >= 2 && oldNumFingersDown < 2) {
 onTwoFingersDown();
 }
}
function onTouchEnd(event) {
 var changedTouches = event.changedTouches;
 numFingersDown -= changedTouches.length;
}

However, the developer quickly realizes that although this function does call
onTwoFingersDown, it also fires when the user places two fingers down in slow
succession. The developer decides that both fingers should be placed down within
one second of each other in order to count as a two-finger press. From here, the code
to classify a two finger press gets significantly more complex, requiring that the
developer tracks the time that every finger goes down to determine whether their
event should fire:

var numFingersDown = 0,
 fingerDownTimes = {},
 maxTouchInterval = 1000;

window.addEventListener("touchstart", onTouchStart);
window.addEventListener("touchend", onTouchEnd);
window.addEventListener("touchcancel", onTouchEnd);

function onTouchStart(event) {
 var changedTouches = event.changedTouches,
 oldNumFingersDown = numFingersDown;

 numFingersDown += changedTouches.length;

 for(var i = 0; i<changedTouches.length; i++) {
 var touch = changedTouches[i];
 fingerDownTimes[touch.identifier] = getCurrentTime();
 }
 if(numFingersDown >= 2 && oldNumFingersDown < 2) {
 var everyTouchWasInTime = true;

 for(var touch_id in fingerDownTimes) {
 var time_down = fingerDownTimes[touch_id];
 if(getCurrentTime() - time_down >
maxTouchInterval){
 everyTouchWasInTime = false;

Chapter 6: Multi-Touch Primitives / Integrating Multi-Touch with InterState

113

 break;
 }
 }

 if(everyTouchWasInTime) {
 onTwoFingersDown();
 }
 }

}
function onTouchEnd(event) {
 var changedTouches = event.changedTouches;
 numFingersDown -= changedTouches.length;
 for(var i = 0; i<changedTouches.length; i++) {
 var touch = changedTouches[i];
 delete fingerDownTimes[touch.identifier];
 }
}

Further code would be needed to allow users to perform multiple two-finger gestures
(right now, if the user presses four fingers, only one two-finger press registers), to
specify any distance constraints between the two fingers (right now, the two fingers
could be on opposite edges of the screen). Further, if the two finger push is part of a
larger gesture, then the developer might also need to write code to track the
movement of the two fingers, which involves writing code to aggregate touchMove
events while ensuring that neither of the fingers is released.

6.3 Integrating Multi-Touch with InterState

The primary design goal of InterState’s multi-touch extensions was to allow
developers to quickly specify feature-rich touch events and abstract away as many of
the low-level details as practical. I started with pilot studies where I asked four
developers to define (on paper) the state machines for various multi-touch gestures
and define any high-level events they found helpful in order to do so. Through these
pilot studies, I found two areas where multi-touch development tools can help
developers by exposing higher-level touch-events. First, when a multi-touch gesture
involves multiple fingers moving in synchrony (such as in a two-finger tap where
both fingers will be pressed and released around the same time and in the same
area), participants in my pilot studies naturally grouped these two fingers into a
single touch event that summarized the information of both fingers. This is not
possible in current multi-touch development frameworks, so to explore ways to allow
developers to declare multi-finger touch events in InterState, I designed and
implemented touch clusters. Touch clusters are InterState objects that summarize
information about a given set of fingers. Section 6.3.1 will detail touch clusters.
Second, as I will further describe in section 6.3.2, multi-touch gestures often
reference the path or direction that a finger (or set of fingers) take. However, it can
be difficult to extract a higher-level path from the series of “touch move” events that
nearly every multi-touch framework uses. Thus, InterState introduces crossing events as

Chapter 6: Multi-Touch Primitives / Integrating Multi-Touch with InterState

114

a way to help developers define multi-touch gestures that reference the path or
direction that fingers move.

6.3.1 Touch Clusters
InterState’s touch clusters allow developers to abstract away many of the
implementation details that are challenging to handle in other systems when
programming touchscreen gestures. Touch clusters are richer summaries of multi-
finger gestures than the standard touchstart, touchmove, and touchend events
currently enable. Touch clusters let developers work with touch events that involve
any number of fingers (including one) moving in synchrony.

The two-finger touch example in the previous section showed how difficult even
simple multi-finger touch classification can be. Touch clusters allow developers to
specify that they want events to fire when a given number of fingers are pressed in a
given area. The developer can then treat this set of touches as a single cluster, which
has a position (at the center of all the touches), rotation (if the touch cluster involves
more than one touch), and scale (again, if the touch cluster involves more than one
touch). Touch clusters aim to abstract away the most common parameters of multi-
touch gestures, including the number of fingers, how close (in position and in time)
the fingers must be, and where they can be.

Although the details that touch clusters abstract away are intended to be features
that developers rarely care about, there are still situations in which these minutiae
can be important. For example, a developer might be interested in the position of
one specific finger involved in a multi-finger touch event. Developers can do this by
specifying a separate non-greedy one-finger cluster for the particular touch they are
interested in.

Greedy and Non-Greedy Touch Clusters

Although touch clusters can be effective in summarizing touch events that involve
multiple fingers moving in synchrony, they also introduce potential ambiguities. For
example, suppose a developer defines one three-finger touch cluster (anywhere on
the screen), and three one-finger touch clusters (for different places on the screen). By
default, when the user presses three fingers down in the target areas for the three
one-finger clusters, all four event clusters will fire, as shown in Figure 6.1.

Chapter 6: Multi-Touch Primitives / Integrating Multi-Touch with InterState

115

Figure 6.1 The default, “non-greedy” behavior for touch clusters is that every touch cluster can claim
the same fingers. For instance, suppose a developer defines one three-finger touch cluster
and three one-finger touch clusters across different elements in an interface. With non-
greedy behavior, when the user presses three fingers down, all four touch cluster activation
events would fire.

In Figure 6.1, all four touch clusters would fire. However, this is not always the
desired interaction between touch clusters. Thus, another design consideration for
touch clusters was how they should interact with each other. Touch clusters allow
developers to customize this behavior with a “greedy” field that specifies whether a
given touch cluster should allow other touch clusters to use the same fingers it uses.
An example of this greedy behavior is illustrated in Figure 6.2.

Figure 6.2 Like in Figure 6.1, here the developer has defined one three-finger touch cluster and three
one-finger touch clusters. However, the developer has specified that the three-finger touch
cluster should be “greedy”, so that other touch clusters should not fire with any of the
touches used. In this case, when the user presses three fingers down, only the three-finger
touch cluster will fire.

The “greedy” property can be used in conjunction with the event delay feature to
resolve many of the common conflicts between multi-finger gestures. The delay
feature allows touch clusters to delay before confirming the event and wait for
another touch cluster to register. In InterState’s current implementation, these touch
clusters are greedy relative to all other touch clusters (without respect to the groups
described in the previous chapter).

Chapter 6: Multi-Touch Primitives / Integrating Multi-Touch with InterState

116

Settable Parameters

The full set of parameters that a developer can use to customize a touch cluster is
listed below:

• downInside: elements or arbitrary drawn shapes that every finger of the
touch cluster must be down inside of, which can be thought of as the event
target (even if it is not a visible interface element). The default value for this
is false, meaning the touch event will fire regardless of where on the screen
the user presses.

• downOutside: elements or arbitrary drawn shapes that every finger of the
touch cluster must be down outside of. The default value for this is false,
meaning the touch event will fire regardless of where on the screen the user
presses.

• numFingers: the number of fingers that must be pressed in order to
activate this touch cluster. This field allows developers to define one-finger
and multi-finger touch clusters. The default value for this is 1.

• maxRadius: the maximum distance between individual fingers (note that
this is independent of downInside). This field allows developers to declare
that touch events that are far apart distance-wise should be considered
distinct. The default value for this is false, meaning that if numFingers is
greater than 1, those fingers can be any distance apart and the event will
fire.

• maxTouchInterval: The maximum time between the first and last
element of this touch cluster. This field allows developers to declare that
touch events that are far apart time-wise should be considered distinct. The
default value for this is false, meaning that if numFingers is greater than
1, there is no limit to how spread out (time-wise) the user’s touches can be.

• greedy: whether or not to “claim” a touch, as described above.
• cross: a path crossing event (explained in the next section of this chapter).

The numFingers parameter for touch events define the minimum number of
simultaneous touches a user must press for that touch event to register. When the
user presses more than that specified number, the touch cluster only uses the first
N=numFingers touches. Touch clusters can also be combined with the priorities and
delays described in Chapter 5 to allow a developer to define a touch cluster that only
fires when the user has exactly N fingers down, for example so that a 4-finger tap does
not trigger a 3-finger cluster. The brushes panel example described in section 6.4.2
below illustrates how to resolve potential conflicts like this.

Outputs

Touch clusters summarize multiple fingers in the context of one object, allowing
developers to write simple constraints and events that depend on many of the most
relevant properties of the group of fingers. A touch cluster’s position is defined as the

Chapter 6: Multi-Touch Primitives / Integrating Multi-Touch with InterState

117

average of every finger involved in the touch cluster. Every touch cluster also
includes other outputs, listed below:

• startX, startY: where the touch cluster started on the screen (the location
of the first finger to go down).

• x, y: when a touch cluster is active, the location of the cluster’s centroid
(average location of all of the fingers in that touch cluster).

• endX, endY: after the user releases any of the fingers involved in a touch
cluster, these parameters are set.

• scale, endScale: the scale is measured as the average distance (in
percentage) from every finger to the cluster centroid, relative to where they
started.

• rotation, endRotation: the rotation (in radians) is measured as the
change in the average angular offset (around the centroid) of every touch.

6.3.2 Path Crossing Events
As discussed earlier in this chapter, many multi-touch gestures depend upon the path
that touches take (see [69,77,147] and the examples described in section 6.4 below).
For example, many touchscreen scrolling interfaces determine if a user’s finger is
moving vertically, horizontally, or diagonally to determine which direction to scroll
in. Implementing these behaviors using only touch move events can be difficult,
particularly if the behavior involves multiple fingers. In fact, many multi-touch
classifiers use machine learning to abstract away these details [89,90,164].

InterState instead allows developers to define crossing events that fire when a touch
cluster (describe above) moves across a path that the developer specifies. Similar
ideas have been explored in the context of end-user interfaces [1] and a less general
version for prototyping interactions [76]. However, InterState’s crossing gestures are
more expressive.

First, InterState’s crossing events allow developers to use custom, dynamic paths.
Enabling these paths to be dynamic allows developers to define events relative to
other interface elements or touch event locations. For example, in determining if a
user is swiping left or right with two fingers, the developer can define a two-finger
touch cluster and define (hidden) lines immediately to the left and right of where that
finger starts. If the touch cluster crosses either of those lines, a state machine can
change state depending on the swipe direction. A developer can also specify that a
press and hold gesture should be aborted if the user moves their finger too far. They
can define “too far” by drawing a circle around where a touch cluster starts and
transitioning the gesture back to the default state if the user’s finger crosses that
circle.

InterState’s path crossing events also allow developers to specify the minimum and
maximum speeds that a user’s finger must have for that crossing event to fire. For
example, a crossing event defining swipe gesture might require that a user’s finger is
travelling with sufficient velocity to register. By default, both the minimum and

Chapter 6: Multi-Touch Primitives / Touch Gesture Examples

118

maximum speed parameters are false, meaning that the crossing event will register
at any speed.

Finally, by integrating these crossing events into InterState’s state machines,
InterState allows them to be used in the context of a larger multi-touch gesture. This
leverages state machines’ ability to track an interface’s state to allow crossing gestures
to be enabled and disabled by state.

6.4 Touch Gesture Examples

In order to better illustrate how the touch primitives presented by InterState can be
used to create custom touch gestures, this section describes the implementation of
three example gestures. For each of these gestures, I will begin with a diagram of the
gesture’s behavior and describe its implementation graphically and with InterState
objects.

6.4.1 Nudgeable Numerical Selectors
“Nudgable” numerical selectors augment standard numerical text entry on
touchscreen phones and tablets by allowing a user to nudge a numerical input to the
left or right to increment or decrement the value. As usual, users can still tap the
numerical input to invoke the numerical keyboard. An illustration of the mechanics
of this widget is shown in Figure 6.3.

Chapter 6: Multi-Touch Primitives / Touch Gesture Examples

119

Figure 6.3 In most multi-touch devices, when a user taps a numeric input field, a numeric keypad is
invoked. In this example, I augment that interaction to allow a user’s finger to also “nudge”
the numeric slider left or right to select a number slightly lower or higher than the current
value. Implemented with InterState’s touch extensions, this example uses path crossing
events to determine if the user’s finger is moving horizontally or tapping the widget.

Using InterState’s touch primitives, a developer can implement this example by
defining two lines immediately to the left and right of a touch cluster inside of the
numerical input (and optionally defining them as hidden so they are not visible in the
user interface). If the user’s finger crosses either of these lines, the widget enters
“nudging” mode and sets a constraint so that the incrementing value depends on
how far the finger has moved from its original location. My implementation of this
widget uses three states, as shown below:

Chapter 6: Multi-Touch Primitives / Touch Gesture Examples

120

Here, the touchEvent object represents a touch cluster inside of the numerical
selector. The crossEvent fires when the touchEvent moves horizontally (and
enters sliding mode). When the numerical selector enters sliding mode, every 100
milliseconds (the timeout(100) self-transition), the value increments based on how
far the touch is from the slider’s original x position.

6.4.2 Determining Panel Behavior by the Number of Fingers
I also implemented the multi-touch gesture illustrated in Figure 6.4. This example,
based on a drawing application, allows users to drag multiple panels from the bottom
of the screen. Users can use different numbers of fingers to select which panel they
invoke. For example, a one finger swipe from the bottom might invoke panel of
different brush sizes whereas a two finger swipe from the bottom might invoke a
color selection panel.

a one-finger swipe
from the bottom brings

up the brush menu

a two-finger swipe
from the bottom brings

up the color menu

Chapter 6: Multi-Touch Primitives / Touch Gesture Examples

121

Figure 6.4 In this example, the user can swipe one finger up from the bottom of a touchscreen to invoke
a brushes menu or they can swipe two fingers from the bottom of the screen to invoke a
colors menu. If the user swipes up, the menu is docked (stays in place after the user
releases). If the user swipes down, the menu hides. While the user is swiping, the menu
follows the finger. InterState uses the event conflict management system described in the
previous chapter to differentiate between one-finger and two-finger swipes.

One challenge of implementing this example in most touch toolkits is differentiating
between one and two finger swipes. If the developer does not account for conflicts
when the user performs a two-finger swipe from the bottom of the screen, both
panels would appear. When implemented with InterState’s touch primitives,
however, this conflict is easily resolved. The one-finger touch event has a delay of
100 milliseconds to wait to see if a second finger goes down before firing, and the
two-finger touch event is greedy to prevent both events from firing at once:

After either of these touch events fires, the selected panel enters “dragging” mode
where it follows the activated touch cluster. A crossing event determines whether the
panel will be docked or visible after the user lifts their finger. The state machine for
the brushes panel is shown below (the colors panel’s state machine is analogous):

6.4.3 A Multi-Finger Gesture for Undo and Redo
This example implements a three-finger gesture to allow users to easily undo or redo
on a tablet (or more generally, navigate backwards or forwards through some
dimension). Currently, the most common interaction technique for undo/redo in
multi-touch devices is through standard buttons or by shaking the whole device.
Some applications also allow a user to shake the device or swipe from the left edge to
undo an edit.

As a useful global shortcut to undo or redo changes, I implemented the gesture
illustrated in Figure 6.5 using InterState’s touch primitives. In this gesture, the user
presses two fingers down (assumed to be the middle and ring finger) and can then
press to the left of those two fingers to undo. Pressing on the right side of those
fingers will instead redo the last change.

Chapter 6: Multi-Touch Primitives / Conclusion

122

Figure 6.5 This example represents an undo/redo (or more generally, back/forward) mechanism for
tablet applications. The user first presses down two fingers (in the diagram shown, the index
and ring fingers) and presses a third to the left to undo or a third finger to the right to redo.
To prevent conflicts with panning and scrolling gestures, this undo/redo gesture also cancels
if the two finger centroid moves or scales past a low threshold.

This example can be implemented by first creating a greedy two-finger touch cluster
to detect the first touch event. The undo and redo pressable areas can then constrain
their position to the left and right of that two-finger touch cluster:

I then define an undo event that fires when the user presses a third finger inside the
left rectangle and an analogous redo event for the right rectangle.

6.5 Conclusion

Although these multi-touch primitives are implemented in InterState, they could also
be implemented in the context of imperative multi-touch development frameworks.
Touch clusters and path crossing events can be represented as parameterizable

the user presses
two fingers down

the user taps on the
right side to redo

the user taps on the
left side to undo

Chapter 6: Multi-Touch Primitives / Conclusion

123

objects in any general-purpose language. Although many of the features of touch
clusters and path crossing events benefitted from being implemented in the context
of a constraint-enabled language, they could be translated into event-callback
systems by firing events when computed attributes of the touch cluster change or
when the path crossing event fires.

Taken as a whole, InterState’s multi-touch development primitives abstract away
many of the details that developers rarely care about when writing multi-touch
gestures to enable higher-level events than most multi-touch development
frameworks. For example, when a gesture involves two fingers moving in synchrony,
the developer does not need to specify the minutia of determining which finger came
down first or every location they moved before determining which direction they are
swiping. InterState’s touch primitives also aim to help developers manage many of
the common types of conflicts that occur in multi-touch development.

124

7 Limitations and Future Work

ConstraintJS and InterState both focus on a specific domains and specific intended
audiences. This chapter discusses a number of related research areas and feature
improvements we have considered for ConstraintJS, InterState, and related tools.

7.1 Scope

This section further describes the scope of both tools and considerations for how the
ideas behind both tools might apply in other domains and across audiences.

7.1.1 Application Areas
The combination of states and constraints that ConstraintJS and InterState use as
their computational model was designed for defining user interface code, rather than
general-purpose code. I believe that standard imperative languages are often more
understandable for computational-oriented code (code where the primary goal is to
compute a value). For example, a developer might not want to implement a sorting
algorithm in InterState’s state-constraint primitives, but they might want to reference
it to sort a list in the context of a sorted UI list. It is important to be able to connect
this computational-oriented code with user interface code correctly, which is why
both ConstraintJS and InterState include mechanisms for communicating with code
written in computational-oriented languages.

Similarly, ConstraintJS and InterState work best with stateful applications, where an
application’s appearance and behavior depends upon its state. I believe the event-
callback paradigm can be more effective when 1) an interface is not stateful and 2)
the effect of most user actions is to update property values rather than change state.
In effect most of the problems with event-callback code described in this dissertation
apply when callbacks have to track and maintain a consistent state. Although this is

Chapter 7: Limitations and Future Work / Scope

125

the case in most graphical user interfaces, there is one particular class of non-state
oriented interfaces that I have encountered: video games. In video games, the effect
of user input (such as button presses or joystick movement) is often to increment the
position of a sprite or perform some other action rather than changing the state of
the game. As the InterState implementation of Breakout (described in section 4.9.1
above) shows, InterState can implement such behaviors. However, Breakout
involved a number of self-transitions that updated variable states (for example, when
the user presses the left arrow, move the paddle to the left). Although InterState’s
visual notation is capable of handling large numbers of self-transitions like this (as
Figure 4.10 shows), it is not yet optimized for doing so.

7.1.2 Touchscreen Drawing Gestures
Chapter 6 describes InterState features to help developers create custom multi-touch
gestures. However, most of the aspects those features are intended to help developers
deal with the timings of multi-touch gestures. They do not, however, deal with
“drawing” gestures where users draw a letter or shape in order to perform an action.
Such gestures are usually created and classified using machine learning algorithms
from examples rather than requiring that developers program gesture classifiers by
hand [90,164]. Although drawing gestures have become less prevalent in
touchscreen applications, they are becoming increasingly popular in 3D motion
sensing devices. Future versions of InterState could investigate ways to support such
drawing gestures. One way to incorporate these types of gestures would be to create
an attachment (see section 4.10.4 above) that allows developers to create these
gestures by demonstration and incorporate a gesture recognizer.

7.1.3 Input and Output Mechanisms
ConstraintJS works with any of the event types that are exposed by the browser
runtime in which it is executing. If that runtime exposes stylus events, for instance,
developers can write transitions that reference stylus events. However, event
conventions or library APIs that are designed for imperative contexts do not always
translate well to declarative environments. For example, Chapter 6 described
primitives for expressing touchscreen gestures in InterState. Without these
primitives, developers could express touchscreen gestures with touchStart,
touchMove, and touchEnd events but the state machines for expressing multi-
touch gesture would quickly grow unwieldy and difficult to understand. Avoiding
this required creating primitives to concisely express higher-level touchscreen events
using fewer transitions and states. Another benefit of building such primitives was
that the editor and runtime environment could also display information to help
developers debug their multi-touch gestures. The same principles might apply in
many other input and event domains, including body or around-device gestures.

Conversely, InterState’s features can also be adapted for different output mediums.
Although we have only fully implemented mechanisms for creating SVG and DOM
objects with InterState primitives, I have conducted preliminary experiments to
explore creating 3D renderings (using a WebGL-enabled canvas) and HTML canvas

Chapter 7: Limitations and Future Work / Tools for Non-Developers

126

drawings. As is the case with alternate event types, designing for different output
mediums requires carefully exploiting API mechanisms that were intended for
imperative environments into a declarative APIs.

7.2 Tools for Non-Developers

The laboratory studies I have conducted with InterState have focused on users with
some development experience. Specifically, I recruited participants who had taken at
least one collegiate-level programming course. Although this bar is low relative to
other tools for writing custom GUI behaviors, it still excludes many end-users who
might benefit from GUI development tools, including many interaction designers
and graphic designers. However, some of the ideas behind InterState might
eventually allow users with no programming experience, or with some spreadsheet
familiarity to create custom interactive behaviors. In order to further lower the bar
and allow more non-developers to write GUI code with InterState, there are several
immediate difficulties to address.

7.2.1 Constraint Syntax
One of the first areas to address is the syntax for expressing constraints, which
InterState uses for cells, transition events, and objects’ copies field. First, I found
that in pilot studies, participants often omitted quotation marks when expressing a
string literal constraint. This was common when specifying colors (mistakenly
entering yellow instead of "yellow"; the former expression represents a constraint
to the value of a field named “yellow.” It was also common when specifying the
values for text fields (for example, the text content of a DOM node). For the studies
described in section 4.8 above, the InterState learning materials included this
distinction and participants were able to quickly correct their constraint expressions
due to instantaneous error reporting (see 4.7.3 above).

Still, it would be best to address this error in the editor’s paradigm itself rather than
in documentation materials. One potential way to address it would be to add
features to the editor that would infer a developer’s intent (either based on constraint
values or on the semantics of the field). Another would be to treat constraints that
reference non-existent fields (yellow in the previous example) as string literals.
Alternatively, this issue could be mitigated by incorporating direct manipulation
features (see section 7.8 below) to allow users to express these constraints by directly
modifying objects’ colors and text in the runtime window.

Second, although the current syntax for expressing constraints in InterState is
natural for mathematical expressions, such as width*2 or mouse.x - offset_x,
it could be improved for many kinds of complex expressions. In particular,
constraint expressions that reference other fields can be unintuitive for non-
developers. For example, consider the constraint expression: other_obj[this.
prop_name], which evaluates to the value of the field in other_obj whose name is
the value of this.prop_name. Writing this expression requires understanding the

Chapter 7: Limitations and Future Work / Pre-Supplied Widgets

127

idea of dynamically specified fields (how other_obj[this.prop_name] is entirely
different than other_obj.this.prop_name) and a careful consideration of
scoping rules. It also requires knowing the correct syntactic conventions (periods and
square brackets) and knowing when to properly close square brackets (how
other_obj[this.prop_name] is also entirely different than other_obj.this[
prop_name]). Analogous issues exist with function call expressions. It is possible
that the commonalities in how non-programmers describe such expressions could
help guide the design of a more beginner-friendly syntax [132]. The InterState
editor could also help developers write and understand constraint expressions
through auto-complete features (see section 7.7.1 below), by highlighting referenced
fields as developers enter constraint values, and by allowing developers to point to
the fields they want to reference.

7.2.2 Expressing States and Transitions
In pilot studies, participants who were not familiar with state machines also faced a
significant learning barrier: first in understanding the nature of states, transitions,
and events; then in correctly specifying objects’ state machines. Again, there is
potential for the InterState editor to help non-developers specify state machines and
understand the flow of events through an application. In particular, one way
InterState’s editor might help non-developers author and understand state machines
is by allowing them to author state machines by demonstrating the events and
transitions to which their interactive applications should react. Such an approach
might help non-developers correctly structure their state machines and correctly
author transition event constraints, which are subject to the challenges described in
the previous sub-section.

7.3 Pre-Supplied Widgets

As Chapter 1 describes, one way to address the problem of simplifying the
development of interactive behaviors is to simply provide pre-built widgets.
However, InterState and ConstraintJS are intended to explore ways to simplify the
behaviors when such pre-built widgets are not available. For this reason, the focus of
this dissertation work has been to provide primitives for writing interactive behaviors
from scratch, rather than exploring the space of pre-built widgets.

In practice, providing such a widget library would be a crucial factor in how quickly
new developers can write InterState code. Ideally, developers would be able to easily
incorporate pre-built widgets, such as scroll bars and buttons, into their code and
modify the implementation of these widgets to customize their behavior. Such
widgets could be called clear box widgets. In contrast with the black box widgets
provided by most interface builders, which can be re-used but not easily modified.
As a starting point, I have implemented re-usable widgets for buttons, radio buttons,
checkboxes, lists, and text inputs.

Chapter 7: Limitations and Future Work / Debugging Tools

128

7.4 Debugging Tools

Although this dissertation places more emphasis on the development primitives than
the tools for debugging these primitives, this emphasis does not reflect the relative
importance of the two. Debugging is a crucial part of any development process and
the debugging tools available to a developer can greatly influence the quality of their
resulting code. The designs for debugging tools for ConstraintJS and InterState
would likely look quite different, to reflect the particular challenges of debugging
interpreted imperative code and live declarative code.

7.4.1 Debugging ConstraintJS Code
Perhaps the most difficult aspect of ConstraintJS to debug is the dependency graph.
ConstraintJS relies upon the dependency graph, which indicates dependencies
between constraints, to determine the minimal set of constraints whose values must
be invalidated. This, in turn, determines whether values need to be recomputed, if
change listeners should be called, and when to update a template’s output. However,
because it is automatically generated and maintained, it can be difficult for
developers to understand the dependency graph, how it changes over time, and how
it affects their running program. For example, in the code segment described “A
Note on Non-Constraint Variables” section above, a developer might need to debug
and understand why changing should_compute does not update
my_constraint. A snapshot of the constraint network might help them understand
why (in this case, because should_compute was not a constrainable variable).

As the ConstraintJS chapter discusses, however, library size is an important
consideration for JavaScript libraries. Thus, tools to help developers understand and
debug the dependency graph would ideally be created outside of the core
ConstraintJS library. In writing applications on top of ConstraintJS, the most
common types of difficulties I encountered dealt with determining why paths
between constraint nodes in the dependency graph existed or did not exist. Thus, it
might not be necessary for debugging tools to give users a complete overview of the
complete dependency graph, but only the most relevant parts.

7.4.2 Debugging InterState Code
The InterState editor includes some features for debugging: displaying field values,
highlighting state changes, and breakpoints on transitions. However, there are still
several aspects of InterState that have proven difficult for users to understand or
debug. First, field references can be difficult to understand and debug; understanding
the way field expressions in constraint expressions can navigate up the constraint
hierarchy. Also, future versions of InterState could also help developers better
understand its internal event mechanism (described in Chapter 5 above), for
example, by providing an overview of events that are fired, overridden, and blocked.

Chapter 7: Limitations and Future Work / Animations

129

7.5 Animations

Animation is an important part of many user interfaces. Many of the designers who
participated in the workshops and studies that motivated ConstraintJS and Interstate
expressed a desire for highly nuanced, carefully timed animations [129]. Although
ConstraintJS and InterState both include mechanisms for animating visual changes
in objects, they still do not provide mechanisms that make it easy to carefully control
animation paths and timings. Previous work has shown that constraints provide an
easy and natural way to express animations [29,100].

Additionally, the visual layout of InterState might eventually provide a natural way
to express animations. Because InterState represents visual properties as rows, future
versions could enable a “timeline view”, as found in Adobe Flash Builder and related
tools. Such a timeline view would represent animations as horizontal bars that can
be delayed, shortened or extended by manipulating those bars.

7.6 Annotations

Annotations are important for developers and designers alike. Designers often
annotate prototypes to communicate design rationales or important aspects of their
designs [40]. Developers also annotate (or comment) their code in order to facilitate
understanding and re-use. InterState, however, does not currently include a
mechanism for annotating objects in its visual notation. In fact, few visual
development environments have considered how annotations or comments could be
integrated into visual languages. Among those that do are LabView [114], which
displays comments as 2D boxes in their visual editor and a number of spreadsheet
tools, which allow comments to be placed on individual cells. However, adding
support for annotation could facilitate learning and help developers re-use and
customize other developers’ widgets and interactive behaviors.

One interesting possibility for visual editors is the possibility for interactive annotations. I
have explored interactive annotations in previous work [125]. The idea is that in
addition to simply providing a widget, an example creator might be able to provide
interactive documentation to help other developers customize their example widget.
For example, interactive documentation for a touchscreen gesture widget might
visually illustrate specific features of that widget and allow developers to customize
the touchscreen widget in the context of that interactive documentation.

7.7 InterState Editor Feature Extensions

I have also considered a number of features that might improve the InterState
editor. Some of these features (such as auto-complete) are relatively straightforward
engineering challenges while others propose more fundamental changes to the way
that the editor displays InterState code.

Chapter 7: Limitations and Future Work / InterState Editor Feature Extensions

130

7.7.1 Auto-complete
One of the features participants in the InterState laboratory study requested in post-
study surveys was autocomplete. Autocomplete may help reduce some of the
syntactic challenges non-developers face when using InterState, as described in
section 7.2 above. It also helps developers quickly determine which field names are
valid without needing to fully navigate to other InterState objects.

7.7.2 Integration with Imperative and Textual Code
InterState allows developers to write imperative code by writing custom functions as
cell values (as discussed in section 4.4.3 above). These methods are primarily
intended to enable constraint expressions that involve more computation than can
be expressed in a single expression. Still, there might be better ways to incorporate
standard imperative JavaScript with InterState’s execution model. When the timing
of the method call matters (such as when the method includes side-effects), future
versions of InterState could make it easier for developers to specify and understand
when these methods are called by the InterState runtime.

The InterState editor could also make it easier to incorporate InterState objects in
the context of a larger imperative codebases when an interface involves significant
amounts of imperative code. This might also be useful in helping developers create
applications that involve input and output devices that InterState does not yet
support. As mentioned in section 4.10.4, when creating new input and output
models, a developer would need to use “attachments” as part of the InterState
runtime. Future versions of InterState might allow developers to add new output and
input types in the context of the InterState editor.

7.7.3 Supporting the “Push” Model
In InterState’s programming model, the only way for developers to set a field’s value
is by entering a constraint for that field for a particular state or transition (so values
are always “pulled” to the current cell). In contrast, event-callback code allows
developers to set any field’s value in any callback (which contributes to the spaghetti-
code problem). For instance, suppose clicking on a button called button should set
the field my_obj.is_pressed to true. Doing this in InterState would require that
either my_obj’s state machine includes a transition for when button is pushed or
that the field my_obj.is_pressed references another object whose value changes
to true when button is pressed. Event-callback code would allow developers to set
my_obj.is_pressed in an event listener for button.

In InterState’s initial pilot studies, some participants had trouble understanding how
to use InterState’s convention. One way to rectify this without losing the benefits of
InterState’s model (that every possible value for a field is visible in a row) is by
adding editor features that allow developers to set fields in other objects. This could be
done by enabling the editor to show the rows for objects under the transition
diagram of a different object. In the previous paragraph’s example, this would mean

Chapter 7: Limitations and Future Work / Direct Manipulation

131

allowing a developer to edit the row that defines the value of my_obj.is_pressed
while looking at the state machine for the button object in the editor. Although this
convention would not increase the expressiveness of InterState’s state constraint
paradigm (because state machine transitions can refer to other objects, which is
functionally equivalent) it might make it easier to express events that affect different
objects. This convention can be implemented as a “convenience view” in the editor
that does not change InterState’s internal program model while still allowing
developers to work in a style where they can set values anywhere.

7.7.4 State Machine Sharing
Another feature that I have found in writing applications using InterState that might
be useful would be the ability to more easily reference other objects’ state machines.
For example, for behaviors that involve multiple parts in a hierarchy, child objects
might be able to share state machines with their parent objects (the actual state
machine rather than a copy, as is used in inherited state machines). Although sharing
state machines amongst InterState objects is currently supported by the InterState
runtime, the editor currently does not have any technique for allowing developers to
make use of it. This is because sharing state machines between objects might be a
source of confusion. Just like the techniques described in the previous sub-section for
supporting the “push” model for setting field values, this feature might be made
visible in the editor while preserving InterState’s current runtime model.

7.8 Direct Manipulation

InterState is situated somewhere between traditional development tools (IDEs) and
design tools (sketching applications). One reason that design tools are considered
more learnable and accessible for non-developers is that they enable direct
manipulation. Designers can create elements by drawing them, move elements by
dragging them, change their dimensions by resizing them visually, etc. By contrast,
in InterState, as in most coding tools, developers move objects by changing the
expressions in the fields that control their positions, resize them by changing the
expressions in their dimension fields, etc. Development tools like Self [145] have
touted directness as a way to lower the barriers to allow non-developers to write
code.

I have conducted preliminary investigations into better supporting direct
manipulation in InterState. CMU undergraduate student Sukhada Kulkarni helped
write an experimental version of the InterState editor that allows developers to enter
a “design mode” in the runtime and edit the constraints that control graphical
objects’ displays directly. Future versions of InterState could also allow designers to
write constraints through demonstration [107] by inferring constraints.

Another way to better enable non-programmers to create interfaces with InterState
would be to integrate InterState with creative tools like Photoshop. This way,
designers could specify an interface’s appearance with Photoshop and its behavior with

Chapter 7: Limitations and Future Work / Better Support for Exploration

132

InterState. I have conducted preliminary investigations into this idea, with an early-
stage mockup tool that integrates with Photoshop [124].

7.9 Better Support for Exploration

Exploration is a crucial part of the design process. Generally speaking, one way to
better support exploration is by making changes easier to undo than the standard
undo/redo mechanism that InterState’s editor currently uses. This way, developers
can try an experimental feature and revert their changes if the experimental feature
does not work. It is even possible that knowing that they will have a way to recover
from errors will make developers more likely to try experimental features and
perhaps even increase their creativity. Previous research has explored how to better
support exploration in the context of textual code [46,167].

7.10 Referencing Web Services in InterState

Although ConstraintJS contains several mechanisms that make it easy to
communicate with Web services, such features are mostly missing in InterState.
Currently, the only way to communicate with a third-party Web service in InterState
is to create a ConstraintJS object in JavaScript and then reference it in an InterState
field. However, other research [25] has shown how spreadsheet models can
reference Web services. These ideas could be incorporated into a future version of
InterState to allow developers to easily read Web streams in the graphical
applications.

7.11 Conclusion

There are many promising areas for future work in ConstraintJS and InterState.
Both tools are promising initial explorations for how development tools can
incorporate states and constraints to improve user interface programming. There is
still potential future work to make these primitives more understandable, to better
integrate with existing paradigms, and to extend it for new application areas.

133

8 Conclusion

In all, this dissertation contributes a framework for defining interactive behaviors by
combining constraints and states; evidence that this framework can help developers
define interactive behaviors in imperative code; a JavaScript library (ConstraintJS),
visual notation, and live editor (InterState) for this framework; evidence that the live
editor’s representation of interactive behaviors is more understandable than event-
callback code; and extensions to the state constraint framework for defining multi
touch gestures and custom events.

This dissertation illustrated how combining states and constraints can lower the
barriers to creating custom interactive applications by addressing many of the
difficulties developers have while creating interactive software. In particular, the state
constraint framework can help developers maintain nuanced and complex
relationships in user interface code by increasing the expressiveness of the types of
constraints developers can declare.

ConstraintJS, the first tool to enable this state constraint framework, can be included
in any JavaScript application without browser modifications and it can interoperate
with other JavaScript libraries. By integrating constraints and FSMs, ConstraintJS
can help simplify the development of interactive behaviors. In fact, many interactive
behaviors can be built entirely as a combination of FSMs and constraints, which can
both be specified declaratively, without extra JavaScript code. ConstraintJS
information is available at http://cjs.from.so/.

InterState builds on the state constraint framework by introducing a visual notation,
live editor, and mechanisms for behavior reuse: behavior inheritance and
templating. The comparative laboratory study described in section 4.8 also showed
that InterState and its visual notation are effective in helping developers write and
understand interactive behaviors relative to traditional event-callback code.

Chapter 8: Conclusion

134

InterState shows how innovations in the execution model, combined with a visual
notation and live editor, can work together to express many custom interactive
behaviors without writing imperative code. InterState also introduces an event
architecture that allows developers to create and re-use events and define custom
multi-touch gestures. InterState also shows the value of putting these ideas together
into a single cohesive programming framework. InterState information is available at
http://interstate.from.so/. Finally, the example applications and scalability analysis
described in section 4.9 and the example applications built with InterState’s multi-
touch gesture extensions (describe in section 6.4) show how InterState and its
implementation of the state constraint framework can scale to implement nuanced
and complex interactive behaviors.

Taken as a whole, this dissertation represents an effort to improve the fundamental
development primitives for writing custom interactive behaviors. As I discussed in
the Introduction, many tools have addressed the challenge of making interactive
behaviors easier to create by providing widgets—pre-built customizable behaviors.
Pre-built widgets are an important part of the solution to making developing
interactive behaviors more accessible. However, pre-built widgets do not represent
the whole solution because inevitably, widget creators will never be able to anticipate
all of the behaviors or dimensions of customization that developers might want.
Thus, it is important to also make their underlying representations understandable
and customizable. I hope that the state constraint framework introduced in this
dissertation represents a step towards a more understandable representation.
Although I incorporated the state constraint framework into two tools (ConstraintJS
and InterState), the development framework is more general than the specific tools
that use it. Ultimately, I hope that ConstraintJS, InterState, and other tools that use
the state constraint framework represent a step towards enabling more users to
create and customize user interfaces.

135

9 References

1. Accot, J. and Zhai, S. More than dotting the i’s — Foundations for crossing-based
interfaces. CHI, 1 (2002), 73.

2. Adams, S. MetaMethods: The MVC Paradigm. HOOPLA, (1988).

3. Adobe. Adobe Flex. http://www.adobe.com/products/flex.html.

4. Appert, C. and Beaudouin-Lafon, M. SwingStates: Adding state machines to Java
and the Swing toolkit. Software: Practice and Experience 38, 11 (2008), 1149–1182.

5. Ashkenas, J. Backbone. http://documentcloud.github.com/backbone/.

6. Badros, G.J., Marriott, K., Borning, A., and Stuckey, P. Constraint Cascading Style
Sheets for the Web. UIST, (1999), 73–82.

7. Barboni, E., Bastide, R., Lacaze, X., et al. Petri Net Centered versus User Centered
Petri Nets Tools. (1996), 1–9.

8. Barth, P.S. An object-oriented approach to graphical interfaces. ACM Transactions on
Graphics 5, 2 (1986), 142–172.

9. Beaudouin-Lafon, M. User Interface Management Systems: Present and Future.
(1999), 42–58.

10. Beaudoux, O., Clavreul, M., Blouin, A., et al. Specifying and Running Rich
Graphical Components with Loa. EICS, (2012), 169–178.

Chapter 9: References

136

11. Beaudoux, O., Clavreul, M., and Blouin, A. Binding orthogonal views for user
interface design. Proceedings of the 1st Workshop on View-Based, Aspect-Oriented and
Orthographic Software Modelling - VAO ’13, (2013), 1–5.

12. Benson, E., Zhang, A., and Karger, D. Spreadsheet-Driven Web Applications.
UIST, (2014), 97–106.

13. Bharat, K. and Hudson, S. Supporting Distributed, Concurrent, One-Way
Constraints in User Interface Applications. UIST, (1995), 121–132.

14. Blanch, R., Beaudouin-lafon, M., and Futurs, I. Programming Rich Interactions
using the Hierarchical State Machine Toolkit. AVI, (2006), 51–58.

15. Borning, A., Freeman-Benson, B., and Wilson, M. Constraint hierarchies. Lisp and
Symbolic Computation 5, (1992), 223–270.

16. Borning, A. The Programming Language Aspects of ThingLab, a Constraint-
Oriented Simulation Laboratory. ACM Transactions on Programming Languages and
Systems 3, 4 (1981), 353–387.

17. Bostock, M., Ogievetsky, V., and Heer, J. D3: Data-Driven Documents. TVCG 17,
12 (2011), 2301–2309.

18. Brandt, J., Guo, P., Lewenstein, J., Dontcheva, M., and Klemmer, S. Two Studies of
Opportunistic Programming: Interleaving Web Foraging, Learning, and Writing
Code. ACM Conference on Human Factors in Computing Systems, (2009), 1589–1598.

19. Burckhardt, S., Fahndrich, M., de Halleux, P., et al. It’s Alive! Continuous Feedback
in UI Programming. SIGPLAN 48, 6 (2013), 95–104.

20. Burnett, M., Atwood, J., Djang, R.W., Gottfried, H., Reichwein, J., and Yang, S.
Forms/3: A First-Order Visual Language to Explore the Boundaries of the
Spreadsheet Paradigm. Functional Programming 11, 2 (2001), 155–206.

21. Burnett, M., Atwood, J., and Welch, Z. Implementing level 4 liveness in declarative
visual programming languages. VL/HCC, (1998), 1–9.

22. Burnett, M., Chekka, S., and Pandey, R. FAR: An End-User Language to Support
Cottage E-Services. HCC, (2001), 195–202.

23. Buxton, W., Lamb, M.R., Sherman, D., and Smith, K.C. Towards a comprehensive
User Interface Management System. Computer Graphics 17, (1983), 35–42.

24. Chang, K.S. and Myers, B. A Spreadsheet Model for Handling Streaming Data.
CHI, (2015).

Chapter 9: References

137

25. Chang, K.S.-P. and Myers, B. Creating Interactive Web Data Applications with
Spreadsheets. UIST, (2014), 87–96.

26. Chang, K.S.-P. and Myers, B. A Spreadsheet Model For Using Web Service Data.
VL/HCC, (2014), 169–176.

27. Conversy, S., Barboni, E., Navarre, D., and Palanque, P. Improving modularity of
interactive software with the MDPC architecture. In Engineering Interactive Systems.
2008, 321–338.

28. Czaplicki, E. Elm: Concurrent FRP for Functional GUIs. 2012.

29. Duisberg, R.A. Animation Using Temporal Constraints: An Overview of the
Animus System. Human-Computer Interaction 3, 3 (1987), 275–307.

30. Elliott, C. and Hudak, P. Functional reactive animation. SIGPLAN 32, 8 (1997), 263–
273.

31. Epstein, D. and LaLonde, W.R. A smalltalk window system based on constraints.
ACM SIGPLAN Notices 23, (1988), 83–94.

32. Feyock, S. Transition diagram-based CAI / HELP systems. (1977), 399–413.

33. Frank, M.R. Model-Based User Interface Design By Demonstration and By
Interview. 1995.

34. Freeman-Benson, B. Kaleidoscope: Mixing Objects, Constraints, and Imperative
Programming. OOPSLA, (1990), 77–88.

35. Friedman, D. and Wise, D. The Impact of Applicative Programming on Multiprocessing.
1976.

36. Gibbon, D., Gut, U., Hell, B., and Looks, K. A computational model of arm
gestures in conversation. Interspeech, (2003).

37. Google. AngularJS. http://angularjs.org.

38. Green, M. The University of Alberta user interface management system. SIGGRAPH
Comput. Graph. 19, 3 (1985), 205–213.

39. Green, M. A Survey of Three Dialogue Models. ACM Transactions on Graphics 5, 3
(1987), 244–275.

40. Grigoreanu, V., Fernandez, R., Inkpen, K., and Robertson, G. What designers
want: Needs of interactive application designers. VL/HCC, (2009), 139–146.

Chapter 9: References

138

41. Grijincu, D. and Nacenta, M. User-defined Interface Gestures : Dataset and
Analysis. ITS, (2014), 25–34.

42. Grossman, T. and Balakrishnan, R. The Bubble Cursor: Enhancing Target
Acquisition by Dynamic Resizing of the Cursor’s Activation Area. CHI, (2005), 281–
290.

43. Hancock, C.M. Real-Time Programming and the Big Ideas of Computational
Literacy. 2003.

44. Harel, D. Statecharts: A Visual Formalism for Complex Systems. Science of Computer
Programming 8, 3 (1987), 231–274.

45. Harel, D. Statecharts in the Making: A Personal Account. 2007.

46. Hartmann, B., Yu, L., Allison, A., Yang, Y., and Klemmer, S. Design as
Exploration: Creating Interface Alternatives through Parallel Authoring and
Runtime Tuning. Proceedings of the 21st annual ACM symposium on User interface software
and technology - UIST ’08, (2008), 91.

47. Henderson, A. The Trillium user interface design environment. ACM SIGCHI
Bulletin 17, 1986, 221–227.

48. Henry, T., Hudson, S., and Newell, G. Integrating gesture and snapping into a user
interface toolkit. UIST, (1990), 112–122.

49. Hill, R., Brinck, T., Rohall, S., Patterson, J., and Wilner, W. The Rendezvous
architecture and language for constructing multiuser applications. ACM Transactions
on Computer-Human Interaction 1, 2 (1994), 81–125.

50. Hill, R. Supporting Concurrency, Communication, and Synchronization in Human-
Computer Sassafras UIMS. Graphics 5, 3 (1987), 179–210.

51. Hill, R. A 2-D Graphics System for Multi-User Interactive Graphics Based on
Objects and Constraints. (2011), 317–321.

52. Hils, D.D. Visual languages and computing survey: Data flow visual programming
languages. Journal of Visual Languages & Computing 3, 1 (1992), 69–101.

53. Hoare, C. a. R. An axiomatic basis for computer programming. Communications of the
ACM 12, 10 (1969), 576–580.

54. Hoste, L. and Signer, B. Criteria, Challenges and Opportunities for Gesture
Programming Languages. International Workshop on Engineering Gestures for Multimodal
Interfaces (EGMI), (2014), 22–29.

Chapter 9: References

139

55. Hudson, S. and King, R. A generator of direct manipulation office systems. ACM
Transactions on Information Systems 4, 2 (1986), 132–163.

56. Hudson, S. and Mankoff, J. Extensible Input Handling in the subArctic Toolkit.
CHI, (2005), 381–390.

57. Hudson, S. and Mohamed, S. Interactive specification of flexible user interface
displays. ACM Transactions on Information Systems 8, 3 (1990), 269–288.

58. Hudson, S. and Newell, G. Probabilistic State Machines: Dialog Management for
Inputs with Uncertainty. UIST, (1992), 199–208.

59. Hudson, S. and Smith, I. Supporting dynamic downloadable appearances in an
extensible user interface toolkit. UIST, (1997), 159–168.

60. Hudson, S. Incremental attribute evaluation: a flexible algorithm for lazy update.
ACM Transactions on Programming Languages and Systems 13, 3 (1991), 315–341.

61. Hudson, S. User Interface Specification Using an Enhanced Spreadsheet Model.
ACM Transactions on Graphics 13, 3 (1994), 209–239.

62. Huizing, C., Gerth, R., and de Roever, W.P. Modelling Statecharts Behavior in a
Fully Abstract Way. CAAP ’88: 13th Colloquium on Trees in Algebra and Programming 299,
April (1988), 271–294.

63. Jacob, R.J.K. A State Transition Diagram Language for Visual Programming.
Computer 18, 8 (1985), 51–59.

64. Jacob, R.J.K. A visual language for non-WIMP user interfaces. Proceedings 1996 IEEE
Symposium on Visual Languages, (1996).

65. jQuery Foundation. jQuery. http://jquery.com.

66. jQuery Foundation. jQuery UI. http://jqueryui.com.

67. jQuery Foundation. Sizzle. http://sizzlejs.com.

68. Kammer, D., Franke, I., Steinhauf, J., and Kirchner, M. The Eleventh Finger:
Levels of Manipulation in Multi-touch Interaction. August (2011), 24–26.

69. Kammer, D., Keck, M., and Groh, R. Towards a Periodic Table of Gestural
Interaction. EGMI, (2014).

70. Kammer, D., Wojdziak, J., Keck, M., Groh, R., and Taranko, S. Towards a
Formalization of Multi-touch Gestures. ITS, ACM Press (2010), 49–58.

Chapter 9: References

140

71. Karsenty, S., Weikart, C., and Landay, J. Inferring Graphical Constraints with
Rockit. 89791.

72. Kasik, D. A User Interface Management System. SIGGRAPH, (1982), 99–106.

73. Katz, Y. and Dale, T. Ember. http://emberjs.com/.

74. Katz, Y. Handlebars.JS. http://handlebarsjs.com/.

75. Khandkar, S.H. and Maurer, F. A domain specific language to define gestures for
multi-touch applications. Proceedings of the 10th Workshop on Domain-Specific Modeling -
DSM ’10, (2010), 1.

76. Kim, J. and Nam, T. EventHurdle: Supporting Designers’ Exploratory Interaction
Prototyping with Gesture- Based Sensors. CHI, (2013), 267–276.

77. Kin, K., Hartmann, B., DeRose, T., and Agrawala, M. Proton: Multitouch Gestures
as Regular Expressions. CHI, (2012), 2885–2894.

78. Kin, K., Hartmann, B., DeRose, T., and Agrawala, M. Proton++: A Customizable
Declarative Multitouch Framework. UIST, (2012), 477–486.

79. Ko, A., Myers, B., and Aung, H.H. Six Learning Barriers in End-User
Programming. VL/HCC, (2004), 199–206.

80. Kosbie, D., Zanden, V., Myers, B., and Giuse, D. Automatic Graphical Output
Management. 1990.

81. Kr, J., Kurz, J., Karrer, T., and Borchers, J. How Live Coding Affects Developers’
Coding Behavior. 1.

82. Krasner, G.E. and Pope, S.T. A Cookbook for Using the Model- View-Controller
User Interface Paradigm in Smalltalk-80. Joop Journal Of Object Oriented Programming 1,
(1988), 26–49.

83. Lecoanet, P., Lemort, A., Mertz, C., et al. Revisiting Visual Interface Programming:
Creating GUI Tools for Designers and Programmers. UIST, (2004), 267–276.

84. Lecolinet, E. A molecular architecture for creating advanced GUIs. UIST, ACM
Press (2003), 135–144.

85. Letondal, C., Chatty, S., Phillips, W.G., and André, F. Usability requirements for
interaction-oriented development tools. PPIG, (2010), 12–26.

86. Lewis, C. NoPumpG : Creating Interactive Graphics With Spreadsheet Machinery. Boulder,
CO, 1987.

Chapter 9: References

141

87. Li, Y., Hong, J., and Landay, J. Topiar: A Tool for Prototyping Location-Enhanced
Applications. Proceedings of the 17th annual ACM symposium on User interface software and
technology 6, (2004), 217–226.

88. Lieberman, H. Using Prototynical Obiects to Implement Shared Behavior in Obiect
Oriented Systems. OOPSLA, (1986), 214–223.

89. Lü, H., Fogarty, J., and Li, Y. Gesture Script: Recognizing Gestures and their
Structure using Rendering Scripts and Interactively Trained Parts. CHI, (2014),
1685–1694.

90. Lü, H. and Li, Y. Gesture Coder: A Tool for Programming Multi-Touch Gestures
by Demonstration. CHI, (2012), 2875–2884.

91. Malayeri, D. and Aldrich, J. CZ : Multiple Inheritance Without Diamonds. OOPSLA,
(2009), 21–40.

92. Maloney, J.H., Loop, I., and Smith, R.B. Directness and Liveness in the Morphic
User Interface Construction Environment. UIST, 1995, 21–28.

93. McCormack, J. and Asente, P. An overview of the X toolkit. Proceedings of the 1st
annual ACM SIGGRAPH symposium on User Interface Software - UIST ’88, (1988), 46–55.

94. Meyerovich, L., Guha, A., and Baskin, J. Flapjax: A Programming Language for
Ajax Applications. OOPSLA, (2009), 1–20.

95. Microsoft Open Technologies. Rx. http://rx.codeplex.com/.

96. Myers, B., Borison, E., Ferrency, A., et al. The Amulet v3.0 Reference Manual. 1,
(1997).

97. Myers, B. and Buxton, W. Creating highly-interactive and graphical user interfaces
by demonstration. SIGGRAPH, (1986), 249–258.

98. Myers, B., Hudson, S., and Pausch, R. Past, Present, and Future of User Interface
Software Tools. TOCHI 7, 1 (2000), 3–28.

99. Myers, B., Mcdaniel, R., Miller, R., et al. The Amulet Environment: New Models
for Effective User Interface Software Development. IEEE TSE 23, 6 (1997), 347–
365.

100. Myers, B., Miller, R., McDaniel, R., and Ferrency, A. Easily Adding Animations to
Interfaces Using Constraints. UIST, (1996), 119–128.

101. Myers, B., Park, S.Y., Nakano, Y., Mueller, G., and Ko, A. How Designers Design
and Program Interactive Behaviors. VL/HCC, (2008), 177–184.

Chapter 9: References

142

102. Myers, B., Zanden, B. Vander, and Dannenberg, R. Creating graphical interactive
application objects by demonstration. UIST, (1989), 95–104.

103. Myers, B. Defining and Editing Constraints Graphically by Treating Constraints as
Objects. 1–8.

104. Myers, B. Creating dynamic interaction techniques by demonstration. ACM SIGCHI
Bulletin 17, (1986), 271–278.

105. Myers, B. The Garnet user interface development environment : a proposal. (1988).

106. Myers, B. Garnet: Comprehensive Support for Graphical, Highly Interactive User
Interfaces. Computer 23, 11 (1990), 71 – 85.

107. Myers, B. Creating user interfaces using programming by example, visual
programming, and constraints. ACM Transactions on Programming Languages and Systems
12, 2 (1990), 143–177.

108. Myers, B. Taxonomies of Visual Programming and P rogram Visualization. Visual
Languages and Computing 1, 1 (1990), 97–123.

109. Myers, B. A new model for handling input. ACM Transactions on Information Systems 8,
3 (1990), 289–320.

110. Myers, B. Separating Application Code from Toolkits: Eliminating the Spaghetti of
Callbacks. UIST, (1991), 211–220.

111. Myers, B. Graphical Techniques In a Spreadsheet for Specifying User Interfaces.
CHI, (1991), 243–249.

112. Myers, B. Challenges of HCI Design and Implementation. Interactions 1, 1 (1994),
73–83.

113. Nacenta, M., Kamber, Y., Qiang, Y., and Kristensson, P.O. Memorability of Pre-
designed and User-defined Gesture Sets. CHI, ACM Press (2013), 1099–1108.

114. National Instruments. LabView. http://www.ni.com/labview/.

115. Navarre, D., Palanque, P., Ladry, J.-F., and Barboni, E. ICOs: A Model-Based User
Interface Description Technique dedicated to Interactive Systems Addressing
Usability, Reliability and Scalability. TOCHI 16, 4 (2009), 1–56.

116. Nelson, G. Juno, a constraint-based graphics system. ACM SIGGRAPH Computer
Graphics 19, 3 (1985), 235–243.

Chapter 9: References

143

117. Newman, W.M. A System for Interactive Graphical Programming. IEEE Transactions
on Computers C-17, (1968).

118. Nielsen, J. Usability Engineering. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1993.

119. Norman, D. The Design of Everyday Things. Doubleday, New York, New York, USA,
1988.

120. Olsen, D.R. and Dempsey, E.P. SYNGRAPH: A Graphical User Interface
Generator. Computer Graphics 17, 3 (1983), 43–50.

121. Olsen, D.R. User Interface Management Systems: Models and Algorithms. Morgan
Kaufmann, San Mateo, CA, 1992.

122. Olsen Jr., D. Propositional Production Systems for Dialog Description. CHI, (1990),
57–63.

123. Olsen, Jr., D. and Allan, K. Creating interactive techniques by symbolically solving
geometric constraints. UIST, (1990), 102–107.

124. Oney, S., Barton, J., Myers, B., Lau, T., and Nichols, J. Playbook: revision control
and comparison for interactive mockups. In End-User Development. Springer, 2011,
295–300.

125. Oney, S. and Brandt, J. Codelets: linking interactive documentation and example
code in the editor. CHI, (2012), 2697–2706.

126. Oney, S., Myers, B., and Brandt, J. ConstraintJS: Programming Interactive
Behaviors for the Web by Integrating Constraints and States. UIST, (2012), 229–
238.

127. Oney, S., Myers, B., and Brandt, J. Euclase: A Live Development Environment with
Constraints and FSMs. ICSE LIVE Workshop, (2013).

128. Oney, S., Myers, B., and Brandt, J. InterState: A Language and Environment for
Expressing Interface Behavior. UIST, (2014), 263–272.

129. Ozenc, F.K., Kim, M., Zimmerman, J., Oney, S., and Myers, B. How to support
designers in getting hold of the immaterial material of software. CHI, (2010), 2513–
2522.

130. Paananen, J. Bacon.js. http://baconjs.github.io.

131. Pane, J., Myers, B., and Miller, L. Using HCI Techniques to Design a More Usable
Programming System. HCC, (2002), 198–206.

Chapter 9: References

144

132. Park, S.Y., Myers, B., and Ko, A. Designers’ Natural Descriptions of Interactive
Behaviors. VL/HCC, (2008), 185–188.

133. Parnas, D.L. On the Use of Transition Diagrams in the Design of a User Interface
for an Interactive Computer System. Proceedings of the ACM Conference, (1969), 379–
385.

134. Paterno, F. An object-oriented approach to the design of graphical user interface
systems. (1992).

135. Resig, W. Petri Nets: An Introduction. Springer, Berlin, 1985.

136. Rubine, D.H. The Automatic Recognition of Gestures. 1991.

137. Samek, M. Who Moved My State? Dr. Dobb’s Journal, 2003.

138. Sanderson, S. KnockoutJS. http://knockoutjs.com/.

139. Sannella, M. and Borning, A. Multi-Garnet: Integrating Multi-Way Constraints with
Garnet. UW Technical Report, (1992).

140. Sannella, M., Maloney, J., and Freeman-Benson, B. Multi‐way versus one‐way
constraints in user interfaces: Experience with the deltablue algorithm. Software--
Practice and Experience 23, 5 (1993), 529–566.

141. Sannella, M. SkyBlue: A Multi-Way Local Propagation Constraint Solver for User
Interface Construction. UIST, (1994), 137–146.

142. Scholliers, C., Hoste, L., Signer, B., and Meuter, W. De. Midas : A Declarative
Multi-Touch Interaction Framework. TEI, (2011), 49–56.

143. Schön. The Reflective Practitioner. Temple Smith, London, England, 1983.

144. Schwarz, J., Mankoff, J., and Hudson, S. Monte Carlo Methods for Managing
Interactive State , Action and Feedback Under Uncertainty. UIST, (2011), 235–244.

145. Smith, R.B. and Ungar, D. Programming as an Experience : The Inspiration for
Self. Atlantic 112, (1995), 303–330.

146. Snell, J.L. Ahead-of-time debugging, or programming not in the dark. Proceedings
Eighth IEEE International Workshop on Software Technology and Engineering Practice
incorporating Computer Aided Software Engineering, (1997), 288–293.

147. Spano, L.D., Cisternino, A., Paternò, F., and Fenu, G. GestIT: A Declarative and
Compositional Framework for Multiplatform Gesture Definition. EICS, (2013), 187–
196.

Chapter 9: References

145

148. Stoughton, a. Fully Abstract Models of Programming Languages. (1988).

149. Sussman, G.J. and Steele, G.L. Constraints - a Language for Expressing Almost-
Hierarchical Descriptions. Artificial Intelligence 14, 1980, 1–39.

150. Sutherland, I.E. Sketchpad: A Man-Machine Graphical Communication System.
Afips Conference Proceedings, 1963.

151. Tanimoto, S.L. VIVA: A visual language for image processing. Journal of Visual
Languages & Computing 1, (1990), 127–139.

152. Tanimoto, S.L. A perspective on the evolution of live programming. 2013 1st
International Workshop on Live Programming, LIVE 2013 - Proceedings, (2013), 31–34.

153. Thoma, J. and Green, M. Graphical Input Interaction Technique (GIIT). January
(1983).

154. Travers, M. Recursive Interfaces for Reactive Objects. CHI, (1986), 379–385.

155. Tzvetinov, N. ProAct.js. http://proactjs.github.io/.

156. Ungar, D., Chambers, C., Chang, B.-W., and Hölzle, U. Organizing programs
without classes. Lisp and Symbolic Computation 4, 3 (1991), 223–242.

157. Victor, B. Tangle. http://worrydream.com/Tangle/.

158. Vlissides, J.M. and Linton, M. a. Unidraw: a framework for building domain-specific
graphical editors. ACM Transactions on Information Systems 8, (1990), 237–268.

159. Wasserman, A.I. Extending State Transition Diagrams for the Specification of
Human-Computer Interaction. IEEE Transactions on Software Engineering SE-11, 8
(1985).

160. Wellner, P.D. Statemaster: A UIMS based on statechart for prototyping and target
implementation. ACM SIGCHI Bulletin 20, May (1989), 177–182.

161. Wilcox, E., Atwood, J., Burnett, M., Cadiz, J., and Cook, C. Does Continuous
Visual Feedback Aid Debugging in Direct-Manipulation Programming Systems?
Proceedings of the SIGCHI conference on Human factors in computing systems CHI 97 8, (1997),
258–265.

162. Wingrave, C. and Bowman, D. Tiered developer-centric representations for 3D
interfaces: Concept-Oriented design in Chasm. VR, IEEE (2008), 193–200.

Chapter 9: References

146

163. Wingrave, C., Laviola Jr, J., and Bowman, D. A natural, tiered and executable
UIDL for 3D user interfaces based on Concept-Oriented Design. TOCHI 16, 4
(2009), 21.

164. Wobbrock, J., Hall, M.G., and Wilson, A. Gestures without Libraries, Toolkits or
Training: A $1 Recognizer for User Interface Prototypes. UIST, (2007), 159–168.

165. World Wide Web Consortium. XQuery. http://www.w3.org/TR/xquery-30/.

166. Van Wyk, C.J. A High-Level Language for Specifying Pictures. ACM Transactions on
Graphics 1, 2 (1982), 163–182.

167. Yoon, Y. and Myers, B. Supporting Selective Undo in a Code Editor. ICSE, (2015).

168. Zanden, B. Vander, Myers, B., Giuse, D., and Szekely, P. Integrating Pointer
Variables into One-Way Constraint Models. TOCHI 1, 2 (1994), 161–213.

169. Zanden, B. Vander and Myers, B. Demonstrational and Constraint-Based
Techniques for Pictorially Specifying Application Objects and Behaviors. 2, 4
(1995), 308–356.

170. Zanden, B. Vander, Richard, H., Myers, B., et al. Lessons Learned About One-
Way, Dataflow Constraints in the Garnet and Amulet Graphical Toolkits. TOPLAS
23, 6 (2001), 776–796.

171. Zanden, B. Vander. Constraint Grammars - A New Model for Specifying Graphical
Applications. .

172. Zhang, K. Visual Languages and Applications. Springer, 2007.

147

148

Appendix A ConstraintJS Tutorial

This appendix contains the current official ConstraintJS Tutorial (as of Spring 2015).

A.1 Introduction

ConstraintJS is a JavaScript library for creating constraints — relationships between
variables that are declared once and automatically maintained. An example of a simple
constraint is: y is always x + 1. Setting var y = x + 1 in standard JavaScript
won't work because as soon as x changes, y would be invalid:

var x = 2,
 y = x + 1;

// ...

x = 20;
// y is no longer === x + 1

With ConstraintJS, this relationship would be expressed by declaring x as a constraint
variable and declaring var y = x.add(1):

var x = cjs(2),
 y = x.add(1); // y <= x+1

// ...

x.set(20);
// y.get() === 21

Now, whenever x changes, y's value automatically updates with it. ConstraintJS
allows constraints to be declared between variables, DOM attributes, CSS
properties, and more.

Appendix A: ConstraintJS Tutorial / Using ConstraintJS

149

A.2 Using ConstraintJS

ConstraintJS works in both client-side browser JavaScript (e.g. Chrome, IE, &
Firefox) and server-side JavaScript (e.g. Node.JS). It can be integrated into any
codebase; your code could use 99% standard JavaScript and a single ConstraintJS
constraint.

The easiest way to get started using ConstraintJS is to download and unzip the latest
package.

Client-Side (Browser):

<script src="/PATH/TO/cjs.min.js"
type="text/javascript"></script>

Server-Side (Node.JS): Use NPM to install the 'constraintjs' package:

npm install constraintjs;

Then, in your code:

var cjs = require('constraintjs');

A.2.1 The cjs Object
All of ConstraintJS's functionality is accessed through the global cjs object.
cjs.noConflict() restores the previous value of cjs and returns the ConstraintJS
object. This can be useful if there is a naming conflict.

var ConstraintJS = cjs.noConflict();

Places all of the ConstraintJS functionality into ConstraintJS variable and
resets cjs to its previous value.

A.3 Constraint Variables

ConstraintJS relies on constraint variables—small wrappers around regular JavaScript
objects that allow constraints to be added to them. Any JavaScript object or widget
can be turned into a constraint variable using the cjs.constraint function. For
example:

var x = cjs.constraint(1); // x <= 1

Creates x, a constraint variable whose value is 1. .get() fetches the value of a
constrainable variable and .set(value) sets its value:

x.get(); // = 1

Appendix A: ConstraintJS Tutorial / Constraint Variables

150

x.set(2); // x <= 2
x.get(); // = 2

Dynamically computed variables can be created by passing a function as the
parameter:

var y = cjs.constraint(function() {
 return x.get() + 1; // y <= x + 1
});
x.get(); // = 2
y.get(); // = 3
x.set(9); // x <= 9
y.get(); // = 10

A.3.1 Variable Modifiers
Constrainable variables also have several built-in utility methods to create new
dependent variables. For instance, the declaration of y above may seem cumbersome
but the same thing can be achieved with:

y = x.add(1); // y <= x + 1

In this case, .add() is a built-in function that creates a new constraint variable.
Other built-in functions include:

• .add(...) — take the sum
• .sub(...) — take the difference
• .mul(...) — take the product
• .div(...) — take the quotient
• .or(...args) — Returns the first truthy value in the

array [this].concat(args) or `false
• .and(...args) — Returns the last value in the

array [this].concat(args) if every value is truthy. Otherwise,
returns false.

• .eq(...) — returns if the constraint variable == x
• .eqStrict(x) — returns if the constraint variable === x
• .gt(x) — returns if the constraint variable > x
• .ge(x) — returns if the constraint variable >= x
• .lt(x) — returns if the constraint variable < x
• .le(x) — returns if the constraint variable <= x
• .round() — rounds the constraint variable to the nearest integer
• .sin() — returns Math.sin(this)

For a full list of modifier functions, see the cjs.Constraint API docs.

Appendix A: ConstraintJS Tutorial / ConstraintJS Internals

151

A.4 ConstraintJS Internals

ConstraintJS automatically detects and manages dependencies between constraint
variables.

For instance, if y is declared as:

y = x.add(1); // y <= x + 1

Then a dependency from x to y is established, which is illustrated conceptually with an
arrow from x to y:

Figure A.1 y depends on x (think of x's value as flowing to y)

This dependency lets ConstraintJS know that whenever x changes, y should also
change. When we call:

x.set(9)

y and any other variables that depend on x are marked as invalid, which means that
their values needs to be recomputed:

Figure A.2 y is invalidated after x changes

The .invalidate() function can be used to manually invalidate a variable
(.set()automatically invalidates its value).

ConstraintJS uses a "pull model" for constraints, meaning that y is only recomputed
when its value is requested; not as soon as it is invalidated. When y's value is valid,
ConstraintJS caches its value so that it is not recomputed unnecessarily. To illustrate,
consider the following snippet of code, where although x's value changes three
times,y's value is only recomputed twice:

var y = cjs.constraint(function() {
 console.log("recomputing y");
 return x.get() + 1; // y <= x + 1
});

xy

xy
(invalid)

Appendix A: ConstraintJS Tutorial / DOM Bindings

152

x.get(); // = 2
y.get(); // = 3, "recomputing y" printed
y.get(); // = 3, nothing printed
x.set(9); // x <= 9
x.set(10); // x <= 10
x.set(11); // x <= 11
y.get(); // = 12, "recomputing y" printed

A.5 DOM Bindings

Constraint variables alone aren't useful until they are connected with some form of
output. Usually, this will be in the form of a DOM binding to keep DOM properties in
sync with variable values. There are several ways to create DOM bindings:

• .bindAttr(attr_name,value) — set any attribute of the DOM obj.

• .bindChildren(value) — set the child nodes of a DOM obj. value may
be an array.

• .bindClass(value) — set the class name of a DOM object

• .bindCSS(attr_name,value) — set a CSS attribute of the DOM obj.

• .bindText(value) — set the text value of a DOM obj.

• .bindValue(text) — set the value of a text input obj.

For example, suppose we have a DOM element named my_elem (my_elem can be
a DOM element, a NodeList, a JavaScript array, a ConstraintJS array, or a jQuery
object):

var bg_color = cjs.constraint("red");
var binding = cjs.bindCSS(my_elem, bg_color);
// my_elem has a red background

bg_color.set("blue");
// my_elem now has a blue background

Here, binding is a binding object. This binding object has several operations to
modify how it works:

• .pause() — pauses the binding, can be resumed with:

• .resume() — resume a paused binding

• .destroy() — remove the binding

• .throttle(ms) — require at least ms milliseconds between updates to the
DOM attribute

Appendix A: ConstraintJS Tutorial / Detecting Variable Changes

153

A.5.1 Input Value Constraints
Related to bindings are input value constraints. Input value constraints are constraints
whose values are bound to the value of an <input>
element. cjs.inputValue(elem) creates an input value constraint. For instance,
suppose my_input_elem is an <input> element.

var input_val = cjs.inputValue(my_input_elem);

The above code creates a constraint called input_val whose value is constrained
to the value of my_input_elem.

A.6 Detecting Variable Changes

A.6.1 onChange
When constraints affect some non-DOM property (e.g. RaphaelJS objects or SVG
objects), a more general mechanism can be used. .onChange(callback), for
instance, specifies to call callback whenever a constraint's value is invalidated (see
the ConstraintJS Internals section for a discussion on invalidation). callback can
then perform any necessary updates.

var c = cjs.constraint(1);
c.onChange(function(new_val, old_val) {
 console.log("was :" + old_val +", now: " + new_val);
});
// (console) was: null, now: 1
c.set(2);
// (console) was: 1, now: 2

.onChange(callback) hooks can be removed with
the .offChange(callback) function.

A.6.2 liven
cjs.liven(func) automatically calls func whenever any constraints
that func fetches are invalidated. For instance:

var x = cjs.constraint(0),
 y = cjs.constraint(0);
var live_fn = cjs.liven(function() {
 var x_val = x.get(),
 y_val = y.get();

 some_other_library.setPosition(x_val, y_val);
});

The above snippet will automatically call
some_other_library.setPosition whenever x or y changes.

Appendix A: ConstraintJS Tutorial / Array and Map Constraints

154

A.7 Array and Map Constraints

So far, all of the constraint variables we have discussed have been simple objects
(constructed using cjs.constraint(). However, constraint variables can also be
arrays or objects (maps).

A.7.1 Arrays
cjs.array(arr) creates an Array constraint, which adds a constraint wrapper to
all of the standard Array.prototype methods, including .pop(), .push(), etc.

It also includes the special methods:

• .length() to get the array's length

• .item(index) to get the item at index

• .item(index, val) to set the item at index to val

• .itemConstraint(index) to create a constraint whose value is always
the array's value at index

• .toArray() converts this array to a JavaScript array

Example:

var arr = cjs.array({
 value: [1,2,3]
 });
arr.push(4);
arr.length(); // 4
arr.toArray(); // [1,2,3,4]

A.7.2 Maps
cjs.map(obj) creates a map constraint, which adds a constraint wrapper to a
standard object with key/value pairs. It contains a number of methods, including:

• .clear() to clear every key/value pair

• .keys() to fetch an array of keys

• .values() to fetch an array of values

• .forEach(callback) to loop through every key/value pair

• .has(key) to check if key is a key in the object

Appendix A: ConstraintJS Tutorial / States and FSMs

155

• .item(key) to get the value associated with key key

• .item(key, val) to set the value associated with key key to value

• .remove(key) to unset the value for key key

• .size() to get the number of entries

• .toObject() to convert the map to a JavaScript object

Example:

var m = cjs.map({
 value: {x: 1, y: 2}
 });
m.item('x'); // 1
m.item('z', 3);
m.keys(); // ['x','y','z']

A.8 States and FSMs

Many applications are state-oriented — appearing and behaving differently in
different states. ConstraintJS includes a syntax for creating finite-state machines
(FSMs) to make creating these applications
easier. cjs.fsm(...state_names) creates a new FSM:

var my_fsm = cjs.fsm();

A.8.1 Adding States
.addState(state_name) adds a state to the FSM:

my_fsm.addState("idle");

.addState returns the original FSM (my_fsm in the above
example.).startsAt(state_name) specifies the initial state of the FSM.

my_fsm.startsAt("idle");

A.8.2 Transition Events
Transition events—or events on which transitions occur—are created with the
cjs.on(event_name, dom_element) function. event_name is a standard
JavaScript DOM event and dom_element is the DOM element to which that event
is occurring. For example:

cjs.on("mousedown", my_div)

Appendix A: ConstraintJS Tutorial / States and FSMs

156

A.8.3 Guards
.guard(condition_func) specifies the conditions on which the transition event
may occur. For example: cjs.on("mousedown",
my_div).guard(function(event) { return false;}) would never fire
because the guard always returns false.

Transition events are functions that accept a parameter to perform the transition,
allowing custom transition events to be created. For example:

cjs.on("mousedown", my_div)

is equivalent to:

function(do_transition) {
 my_div.addEventListener("mousedown", do_transition);
}

A.8.4 Switching States & Adding Transitions
Although states may be set manually with .setState(state_name), the
encouraged way of transitioning between states is with transitions — pre-defined
state changes that take place after some event. fsm.addTransition(event,
to_state) adds a transition from the last state added to to_state (string) when
the event transition event (described above) occurs:

var my_fsm = cjs.fsm()
 .add_state("idle");

my_fsm.addTransition(cjs.on("mouseover", block_a));

.addTransition returns the original FSM (my_fsm in the above example.)

A.8.5 Chaining
ConstraintJS's FSM syntax is designed to support "chaining," a convention in
JavaScript where an object property performs an operation on that object and
returns the object back. For instance:

var my_fsm = cjs.fsm()
 .addState("idle")
 .addTransition(cjs.on("mouseover", block_a),
"myhover")
 .addState("myhover")
 .addTransition(cjs.on("mouseout", block_a),
"idle")
 .startsAt("idle");

Appendix A: ConstraintJS Tutorial / Templates

157

A.8.6 FSM Constraints
Constraint variables may depend on FSMs. To create an FSM-dependent
constraint, pass the FSM as the first parameter to cjs.inFSM(fsm, values) and
an object with states and their values as the second parameter:

var color = cjs.inFSM(my_fsm, {
 idle: "black",
 myhover: "yellow"
 });

A.9 Templates

ConstraintJS also allows HTML templates to be declared in the syntax of
Handlebars.JS with values that update with the constraint variables. Templates are
created with cjs.createTemplate(templ, context). It has two
parameters: templ is the template code as either a String or a DOM element
(<script type="template/cjs"></script>); context is the set of variables
to use as the environment. If no context is passed in,
cjs.createTemplate() returns a function that may be called to generate a
template. cjs.createTemplate() otherwise returns a DOM element that may be
added anywhere in the page.

<script id="greeting" type="template/cjs">
 <div>Hello {{firstname}} {{lastname}}</div>
</script>
//...
var fn = cjs("Mary"),
 ln = cjs("Parker");
cjs.createTemplate("#greeting", {firstname: fn, lastname:
ln});

Templates can be destroyed with cjs.destroyTemplate(elem), paused with
cjs.pauseTemplate(elem), and resumed with cjs.resumeTemplate(elem)

A.10 Template Syntax

ConstraintJS templates use Handlebars.

A.10.1 Basics
ConstraintJS templates take standard HTML and add some features

A.10.2 Constraints
Unary handlebars can contain expressions.

<h1>{{title}}</h1>

Appendix A: ConstraintJS Tutorial / Template Syntax

158

<p> {{subtext.toUpperCase()+"!"}}</p>

called with { title: cjs('hello'), subtext: 'world'}:

<h1>hello</h1>
<p> WORLD!</p>

A.10.3 Literals
If the tags in a node should be treated as HTML, use triple braces: {{{
literal_val }}}.

<h1>{{title}}</h1>
<p>{{{subtext}}}</p>

called with { title: cjs('hello'), subtext:

'steel</strong city'}:

<h1>hello</h1>
<p>steel city</p>

A.10.4 Comments

{{! comments will be ignored in the output}}

A.10.5 Constraint output
To call my_func on event (event-name), give any targets the attribute:

data-cjs-on-(event-name)=my_func

For example:

<div data-cjs-on-click=update_obj />

Will call update_obj (a property of the template's context when this div is clicked.

To add the value of an input element to the template's context, use the
property data-cjs-out:

<input data-cjs-out=user_name /> <h1>Hello, {{user_name}}</h1>

A.10.6 Loops
To create an object for every item in an array or object, you can use
the {{#each}} block helper. {{this}} refers to the current item
and @key and @index refer to the keys for arrays and objects respectively.

{{#each obj_name}}
 {{@key}}: {{this}}

Appendix A: ConstraintJS Tutorial / Template Syntax

159

{{/each}}

{{#each arr_name}}
 {{@index}}: {{this}}
{{/each}}

If the length of the array is zero (or the object has no keys) then
an {{#else}} block can be used:

{{#each arr_name}}
 {{@index}}: {{this}
 {{#else}}
 No items!
{{/each}}

A.10.7 Conditions
The {{#if}} block helper can vary the content of a template depending on some
condition. This block helper can have any number of sub-conditions with the related
{{#elif}} and {{#else}} tags.

{{#if cond1}}
 Cond content
{{#elif other_cond}}
 other_cond content
{{#else}}
 else content
{{/if}}

The opposite of an {{#if}} block is {{#unless}}:

{{#unless logged_in}} Not logged in! {{/unless}

A.10.8 State
The {{#fsm}} block helper can vary the content of a template depending on an
FSM state

{{#fsm my_fsm}}
 {{#state1}}
 State1 content
 {{#state2}}
 State2 content
 {{#state3}}
 State3 content
{{/fsm}}

A.10.9 With helper
The {{#with}} block helper changes the context in which constraints are
evaluated.

{{#with obj}}

Appendix A: ConstraintJS TutorialConstraintJS Tutorial / Template Syntax

160

 Value: {{x}}
{{/with}}

when called with { obj: {x: 1} } results in Value: 1

A.10.10 Partials
Partials allow templates to be nested.

var my_temp = cjs.createTemplate(...);
3cjs.registerPartial('my_template', my_temp);

Then, in any other template,

{{>my_template context}}

Nests a copy of my_template in context.

161

Appendix B ConstraintJS API

cjs(...)

cjs is ConstraintJS's only visible object; every other method an property is a property of cjs.
The cjs object itself can also be called to create a constraint object.

cjs(value, options)

value object A map of initial values

options object A set of options to control how the array
constraint is evaluated

Returns cjs.ArrayConstraint A new array constraint

cjs(node)

node dom The DOM node whose value to follow

Returns cjs.Binding A constraint whose value is the current
value of the input

cjs(value, options)

value object A map of initial values

options object A set of options to control how the map
constraint is evaluated

Returns cjs.MapConstraint A new map constraint

Appendix B: ConstraintJS API

162

cjs(value, options)

value object The constraint's value

options object A set of options to control how the
constraint is evaluated

Returns cjs.Constraint A new constraint

Example:

Creating an array constraint

var cjs_arr = cjs([1,2,3]);
 cjs_arr.item(0); // 1

Creating an input value constraint

var inp_elem = document.getElementById('myTextInput'),
 cjs_val = cjs(inp_elem);

Creating a map constraint

var cobj_obj = cjs({ foo: 1 });
cobj.get('foo'); // 1
cobj.put('bar', 2);
cobj.get('bar') // 2

Creating an empty constraint

var x = cjs(),
 y = cjs(1),
 z = cjs(function() {
 return y.get() + 1;
 });
x.get(); // undefined
y.get(); // 1
z.get(); // 2

With options

var yes_lit = cjs(function() { return 1; },
 { literal: true }),
 not_lit = cjs(function() { return 1; },
 { literal: false });
yes_lit.get(); // (function)
not_lit.get(); // 1

Appendix B: ConstraintJS API

163

cjs.array([options])

Create an array constraint

.array([options])

[options] Object A set of options to control how the array constraint is
evaluated

Returns cjs.ArrayConstraint A new array constraint object

Example:

var arr = cjs.array({ value: [1,2,3] });

cjs.arrayDiff(from_val, to_val,
[equality_check])

arrayDiff returns an object with attributes: removed, added, and moved. Every item in removed has
the format: {item, index} Every item in added has the format: {item, index} Every item
in moved has the format: {from_index, to_index} Every item in index_changed has the
format: {from_index, to_index}

When oldArray removes every item in removed, adds every item in added, and moves every item
in moved (in that order), it will result in an array that is equivalent to newArray. Note: this function is used
internally to determine how to keep DOM nodes in sync with an underlying model with the smallest
number of modifications to the DOM tree.

.arrayDiff(from_val, to_val, [equality_check])

from_val array[*] The 'former' array

to_val array[*] The 'new' array

[equality_check] function A function that checks for equality between items

Returns Object added, removed, and moved items

Example:

Taking the diff between old_array and new_array with the default equality check

var old_array = ['a','b','c'],
 new_array = ['c','b','d'],
 diff = cjs.arrayDiff(old_array, new_array);
// diff === {

Appendix B: ConstraintJS API

164

// added: [{ item: 'd', to: 2, to_item: 'd' }],
// removed: [{ from: 0, from_item: 'a' }],
// moved: [{ item: 'c',from: 2,insert_at: 0, move_from: 1,to: 0 }],
// index_changed: [{
// from: 2, from_item: 'c', item: 'c', to: 0, to_item: 'c' }]
// }

cjs.bindAttr(...)

Constrain a DOM node's attribute values

.bindAttr(element, values)

element dom The DOM element

values object An object whose key-value pairs are the attribute
names and values respectively

Returns Binding A binding object representing the link from constraints to
elements

.bindAttr(key, value)

key string The name of the attribute to constraint

value cjs.Constraint,string The value of this attribute

Returns Binding A binding object representing the link from constraints to
elements

Example:

If my_elem is an input element

var default_txt = cjs('enter name');
cjs.bindAttr(my_elem, 'placeholder', default_txt);

If my_elem is an input element

var default_txt = cjs('enter name'),
 name = cjs('my_name');

cjs.bindAttr(my_elem, {
 placeholder: default_txt,
 name: name
});

Appendix B: ConstraintJS API

165

cjs.bindCSS(...)

Constrain a DOM node's CSS style

.bindCSS(element, values)

element dom The DOM element

values object An object whose key-value pairs are the CSS property
names and values respectively

Returns Binding A binding object representing the link from constraints to
CSS styles

.bindCSS(key, value)

key string The name of the CSS attribute to constraint

value cjs.Constraint,string The value of this CSS attribute

Returns Binding A binding object representing the link from constraints to
elements

Example:

If my_elem is a dom element

var color = cjs('red'), left = cjs(0);
cjs.bindCSS(my_elem, {
 "background-color": color,
 left: left.add('px')
});

If my_elem is a dom element

var color = cjs('red');
cjs.bindCSS(my_elem, 'background-color', color);

cjs.bindChildren(element, ...elements)

Constrain a DOM node's children

.bindChildren(element, ...elements)

element dom The DOM element

...elements * The elements to use as the constraint. The binding

Appendix B: ConstraintJS API

166

automatically flattens them.

Returns Binding A binding object

Example:

If my_elem, child1, and child2 are dom elements

var nodes = cjs(child1, child2);
cjs.bindChildren(my_elem, nodes);

cjs.bindClass(element, ...values)

Constrain a DOM node's class names

.bindClass(element, ...values)

element dom The DOM element

...values * The list of classes the element should have. The binding
automatically flattens them.

Returns Binding A binding object

Example:

If my_elem is a dom element

var classes = cjs('class1 class2');
cjs.bindClass(my_elem, classes);

cjs.bindHTML(element, ...values)

Constrain a DOM node's HTML content

.bindHTML(element, ...values)

element dom The DOM element

...values * The desired html content

Returns Binding A binding object

Example:

If my_elem is a dom element

Appendix B: ConstraintJS API

167

var message = cjs('hello');
cjs.bindHTML(my_elem, message);

cjs.bindText(element, ...values)

Constrain a DOM node's text content

.bindText(element, ...values)

element dom The DOM element

...values * The desired text value

Returns Binding A binding object

Example:

If my_elem is a dom element

var message = cjs('hello');
cjs.bindText(my_elem, message);

cjs.bindValue(element, ...values)

Constrain a DOM node's value

.bindValue(element, ...values)

element dom The DOM element

...values * The value the element should have

Returns Binding A binding object

Example:

If my_elem is a text input element

var value = cjs('hello');
cjs.bindValue(my_elem, message);

cjs.constraint(value, [options])

Constraint constructor

.constraint(value, [options])

Appendix B: ConstraintJS API

168

value * The initial value of the constraint or a function to compute
its value

[options] Object A set of options to control how and when the constraint's
value is evaluated

Returns cjs.Constraint A new constraint object

cjs.createParsedConstraint(str,
context)

Parses a string and returns a constraint whose value represents the result of evaling that string

.createParsedConstraint(str, context)

str string The string to parse

context object The context in which to look for variables

Returns cjs.Cosntraint Whether the template was successfully resumed

Example:

Creating a parsed constraint x

var a = cjs(1);
var x = cjs.createParsedConstraint("a+b", { a: a, b: cjs(2) });
x.get(); // 3
a.set(2);
x.get(); // 4

cjs.createTemplate(template, [context],
[parent])

Create a new template. If context is specified, then this function returns a DOM node with the specified
template. Otherwise, it returns a function that can be called with context and [parent] to create a new
template.

ConstraintJS templates use a (Handlebars)[http://handlebarsjs.com/]. A template can be created
with cjs.createTemplate. The format is described below.

Basics

ConstraintJS templates take standard HTML and add some features

Appendix B: ConstraintJS API

169

Constraints

Unary handlebars can contain expressions.

<h1>{{title}}</h1>
<p>{{subtext.toUpperCase()+"!"}}</p>

called with { title: cjs('hello'), subtext: 'world'}:

<h1>hello</h1>
<p>WORLD!</p>

Literals

If the tags in a node should be treated as HTML, use triple braces: {{{ literal_val }}}. These literals
(triple braces) should be created immediately under a DOM node.

<h1>{{title}}</h1>
<p>{{{subtext}}}</p>

called with { title: cjs('hello'), subtext: 'steel</strong city'}:

<h1>hello</h1>
<p>steel city</p>

Comments

{{! comments will be ignored in the output}}

Constraint Output

To call my_func on event (event-name), give any targets the attribute:

data-cjs-on-(event-name)=my_func

For example:

<div data-cjs-on-click=update_obj />

Will call update_obj (a property of the template's context when this div is clicked.

To add the value of an input element to the template's context, use the property data-cjs-out:

<input data-cjs-out=user_name /> <h1>Hello, {{user_name}}</h1>

Block Helpers

Appendix B: ConstraintJS API

170

Loops

To create an object for every item in an array or object, you can use the {{#each}} block
helper. {{this}} refers to the current item and @key and @index refer to the keys for arrays and objects
respectively.

{{#each obj_name}}
 {{@key}}: {{this}}
{{/each}}

{{#each arr_name}}
 {{@index}}: {{this}}
{{/each}}

If the length of the array is zero (or the object has no keys) then an {{#else}} block can be used:

{{#each arr_name}}
 {{@index}}: {{this}
 {{#else}}
 No items!
{{/each}}

Conditions

The {{#if}} block helper can vary the content of a template depending on some condition. This block
helper can have any number of sub-conditions with the related {{#elif}} and {{#else}} tags.

{{#if cond1}}
 cond1 content
{{#elif other_cond}}
 other_cond content
{{#else}}
 else content
{{/if}}

The opposite of an {{#if}} block is {{#unless}}: {{#unless logged_in}} Not logged in! {{/unless}

State

The {{#fsm}} block helper can vary the content of a template depending on an FSM state

{{#fsm my_fsm}}
 {{#state1}}
 state1 content
 {{#state2}}
 state2 content
 {{#state3}}

Appendix B: ConstraintJS API

171

 state3 content
{{/fsm}}

With Helper

The {{#with}} block helper changes the context in which constraints are evaluated.

{{#with obj}}
 value: {{x}}
{{/with}}

when called with { obj: {x: 1} } results in Value: 1

Partials

Partials allow templates to be nested.

var my_temp = cjs.createTemplate(...);
cjs.registerPartial('my_template', my_temp);

Then, in any other template,

{{>my_template context}}

Nests a copy of my_template in context

.createTemplate(template, [context], [parent])

template string,dom the template as either a string or a script tag whose
contents are the template

[context] object Any number of target objects to listen to

[parent] dom The parent DOM node for the template

Returns function,dom An event that can be attached to

Example:

<script id='my_template' type='cjs/template'>
 {{x}}
</script>
var template_elem = document.getElementById('my_template');
var template = cjs.createTemplate(template_elem);
var element1 = template({x: 1});
var element2 = template({x: 2});
var element = cjs.createTemplate("{{x}}", {x: 1});

Appendix B: ConstraintJS API

172

cjs.destroyTemplate(node)

Destroy a template instance

.destroyTemplate(node)

node dom The dom node created by createTemplate

Returns boolean Whether the template was successfully removed

cjs.fsm(...state_names)

Create an FSM

.fsm(...state_names)

...state_names string An initial set of state names to add to the FSM

Returns FSM A new FSM

Example:

Creating a state machine with two states

var my_state = cjs.fsm("state1", "state2");

cjs.get(obj, [autoAddOutgoing=true])

Gets the value of an object regardless of if it's a constraint (standard, array, or map) or not.

.get(obj, [autoAddOutgoing=true])

obj * The object whose value to return

[autoAddOutgoing=true] boolean Whether to automatically add a dependency
from this constraint to ones that depend on it.

Returns * The value

Example:

var w = 1,
 x = cjs(2),
 y = cjs(['a','b']),
 z = cjs({c: 2});

Appendix B: ConstraintJS API

173

cjs.get(w); // 1
cjs.get(x); // 2
cjs.get(y); // ['a','b']
cjs.get(z); // {c: 2}

cjs.inFSM(fsm, values)

Create a new constraint whose value changes by state

.inFSM(fsm, values)

fsm cjs.FSM The finite-state machine to depend on

values Object Keys are the state specifications for the FSM, values are the
value for those specific states

Returns cjs.Constraint A new constraint object

Example:

var fsm = cjs.fsm("state1", "state2")
 .addTransition("state1", "state2", cjs.on("click"));
var x = cjs.inFSM(fsm, {
 state1: 'val1',
 state2: function() { return 'val2'; }
});

cjs.inputValue(inp)

Take an input element and create a constraint whose value is constrained to the value of that input element

.inputValue(inp)

inp dom The input element

Returns cjs.Constraint A constraint whose value is the input's value

Example:

If name_input is an input element

var name = cjs.inputValue(name_input),

cjs.isArrayConstraint(obj)

Appendix B: ConstraintJS API

174

Determine whether an object is an array constraint

.isArrayConstraint(obj)

obj * An object to check

Returns boolean true if obj is a cjs.ArrayConstraint, false otherwise

cjs.isConstraint(obj)

Determine whether an object is a constraint

.isConstraint(obj)

obj * An object to check

Returns boolean obj instanceof cjs.Constraint

cjs.isFSM(obj)

Determine whether an object is an FSM

.isFSM(obj)

obj * An object to check

Returns boolean true if obj is an FSM, false otherwise

cjs.isMapConstraint(obj)

Determine whether an object is a map constraint

.isMapConstraint(obj)

obj * An object to check

Returns boolean true if obj is a cjs.MapConstraint, false otherwise

cjs.liven(func, [options])

Memoize a function to avoid unnecessary re-evaluation. Its options are:

• context: The context in which func should be evaluated

Appendix B: ConstraintJS API

175

• run_on_create: Whether to run func immediately after creating the live function.
(default: true)

• pause_while_running: Whether to explicitly prevent this live function from being called
recursively (default: false)

• on_destroy: A function to call when destroy is called (default: false)

The return value of this method also has two functions:

• pause: Pause evaluation of the live function

• resume: Resume evaluation of the live function

• run: Run func if it's invalid

.liven(func, [options])

func function The function to make live

[options] object A set of options to control how liven works

Returns object An object with properties destroy, pause, resume, and run

Example:

var x_val = cjs(0);
var api_update = cjs.liven(function() {
 console.log('updating other x');
 other_api.setX(x_val);
}); // 'updating other x'
x_val.set(2); // 'updating other x'

cjs.map([options])

Create a map constraint

.map([options])

[options] Object A set of options to control how the map constraint is
evaluated

Returns cjs.MapConstraint A new map constraint object

Example:

Creating a map constraint

var map_obj = cjs.map({

Appendix B: ConstraintJS API

176

 value: { foo: 1 }
});
cobj.get('foo'); // 1
cobj.put('bar', 2);
cobj.get('bar') // 2

cjs.memoize(getter_fn, [options])

Memoize a function to avoid unnecessary re-evaluation. Its options are:

• hash: Create a unique value for each set of arguments (call with an argument array)

• equals: check if two sets of arguments are equal (call with two argument arrays)

• context: The context in which getter_fn should be evaluated

• literal_values: Whether values should be literal if they are functions

The return value of this method also has two functions:

• each: Iterate through every set of arguments and value that is memoized

• destroy: Clear the memoized values to clean up memory

.memoize(getter_fn, [options])

getter_fn function The function to memoize

[options] object A set of options to control how memoization works

Returns function The memoized function

Example:

var arr = cjs([3,2,1,4,5,10]),
 get_nth_largest = cjs.memoize(function(n) {
 console.log('recomputing');
 var sorted_arr = arr memoized fn.sort();
 return sorted_arr[ny];
 });
get_nth_largest(0); // logged: recomputing
get_nth_largest(0); // ulli (nothing logged because answer memoized)
arr.splice(0, 1); // N
get_nth_largest(0); // logged: recomputing

cjs.noConflict()

Restore the previous value of cjs

Appendix B: ConstraintJS API

177

.noConflict()

Returns object cjs

Example:

Renaming cjs to ninjaCJS

var ninjaCJS = cjs.noConflict();
var x = ninjaCJS(1);

cjs.on(event_type, ...targets=window)

Create a new event for use in a finite state machine transition

.on(event_type, ...targets=window)

event_type string the type of event to listen for (e.g. mousedown,
timeout)

...targets=window element,number Any number of target objects to listen to

Returns CJSEvent An event that can be attached to

Example:

When the window resizes

cjs.on("resize")

When the user clicks elem1 or elem2

cjs.on("click", elem1, elem2)

After 3 seconds

cjs.on("timeout", 3000)

cjs.pauseTemplate(node)

Pause dynamic updates to a template

.pauseTemplate(node)

node dom The dom node created by createTemplate

Appendix B: ConstraintJS API

178

Returns boolean Whether the template was successfully paused

cjs.registerCustomPartial(name,
options)

Register a custom partial that can be used in other templates

Options are (only createNode is mandatory):

• createNode(...): A function that returns a new dom node any time this partial is invoked
(called with the arguments passed into the partial)

• onAdd(dom_node): A function that is called when dom_node is added to the DOM tree

• onRemove(dom_node): A function that is called when dom_node is removed from the DOM tree

• pause(dom_node): A function that is called when the template has been paused (usually
with pauseTemplate)

• resume(dom_node): A function that is called when the template has been resumed (usually
with resumeTemplate)

• destroyNode(dom_node): A function that is called when the template has been destroyed
(usually withdestroyTemplate)

.registerCustomPartial(name, options)

name string The name that this partial can be referred to as

options Object The set of options (described in the description)

Returns cjs cjs

Example:

Registering a custom partial named my_custom_partial

cjs.registerCustomPartial('my_custom_partial', {
 createNode: function(context) {
 return document.createElement('span');
 },
 destroyNode: function(dom_node) {
 // something like: completely_destroy(dom_node);
 }
 onAdd: function(dom_node) {
 // something like: do_init(dom_node);
 },
 onRemove: function(dom_node) {

Appendix B: ConstraintJS API

179

 // something like: cleanup(dom_node);
 },
 pause: function(dom_node) {
 // something like: pause_bindings(dom_node);
 },
 resume: function(dom_node) {
 // something like: resume_bindings(dom_node);
 },
});

Then, in any other template,

{{>my_template context}}

Nests a copy of my_template in context

cjs.registerPartial(name, value)

Register a partial that can be used in other templates

.registerPartial(name, value)

name string The name that this partial can be referred to as

value Template The template

Returns cjs cjs

Example:

Registering a partial named my_temp

var my_temp = cjs.createTemplate(...);
cjs.registerPartial('my_template', my_temp);

Then, in any other template,

{{>my_template context}}

Nests a copy of my_template in context

cjs.removeDependency(...)

Remove the edge going from fromNode to toNode

cjs.resumeTemplate(node)

Appendix B: ConstraintJS API

180

Resume dynamic updates to a template

.resumeTemplate(node)

node dom The dom node created by createTemplate

Returns boolean Whether the template was successfully resumed

cjs.signal(...)

Tells the constraint solver it is ready to run any onChange listeners. Note that signal needs to be called
the same number of times as wait before the onChange listeners will run.

Example:

var x = cjs(1);
x.onChange(function() {
 console.log('x changed');
});
cjs.wait();
cjs.wait();
x.set(2);
x.set(3);
cjs.signal();
cjs.signal(); // output: x changed

cjs.toString()

Print out the name and version of ConstraintJS

.toString()

Returns string ConstraintJS v(version#)

cjs.unregisterPartial(name)

Unregister a partial for other templates

.unregisterPartial(name)

name string The name of the partial

Returns cjs cjs

Appendix B: ConstraintJS API

181

cjs.version

The version number of ConstraintJS

cjs.wait(...)

Tells the constraint solver to delay before running any onChange listeners

Note that signal needs to be called the same number of times as wait before the onChange listeners will
run.

Example:

var x = cjs(1);
x.onChange(function() {
 console.log('x changed');
});
cjs.wait();
x.set(2);
x.set(3);
cjs.signal(); // output: x changed

new cjs.ArrayConstraint([options])

Note: The preferred constructor for arrays is cjs.array

This class is meant to emulate standard arrays, but with constraints It contains many of the standard array
functions (push, pop, slice, etc) and makes them constraint-enabled.

x[1] = y[2] + z[3]

Is equivalent to:

x.item(1, y.item(2) + z.item(3))

Options:

• equals: the function to check if two values are equal, default: ===

• value: an array for the initial value of this constraint

.ArrayConstraint([options])

[options] Object A set of options to control how the array constraint is evaluated

Appendix B: ConstraintJS API

182

cjs.ArrayConstraint.BREAK

Any iterator in forEach can return this object to break out of its loop.

cjs.ArrayConstraint.prototype.concat(..
.values)

The concat() method returns a new array comprised of this array joined with other array(s) and/or value(s).

.concat(...values)

...values * Arrays and/or values to concatenate to the resulting array.

Returns array The concatenated array

Example:

var arr1 = cjs(['a','b','c']),
 arr2 = cjs(['x']);
arr1.concat(arr2); // ['a','b','c','x']

cjs.ArrayConstraint.prototype.destroy([
silent=false])

Clear this array and try to clean up any memory.

.destroy([silent=false])

[silent=false] boolean If set to true, avoids invalidating any dependent
constraints.

cjs.ArrayConstraint.prototype.every(fil
ter, thisArg)

Return true if filter against every item in my array is truthy

.every(filter, thisArg)

filter function The function to check against

thisArg * Object to use as this when executing filter.

Appendix B: ConstraintJS API

183

Returns boolean true if some item matches filter. false otherwise

Example:

var arr = cjs([2,4,6]);
arr.some(function(x) { return x%2===0; }); // true

cjs.ArrayConstraint.prototype.filter(ca
llback, [thisObject])

The filter() method creates a new array with all elements that pass the test implemented by the provided
function.

.filter(callback, [thisObject])

callback function Function to test each element of the array.

[thisObject] * Object to use as this when executing callback.

Returns array A filtered JavaScript array

cjs.ArrayConstraint.prototype.forEach(c
allback, thisArg)

The forEach() method executes a provided function once per array element.

.forEach(callback, thisArg)

callback function Function to execute for each element.

thisArg * Object to use as this when executing callback.

Returns cjs.ArrayConstraint this

Example:

var arr = cjs(['a','b','c']);
arr.forEach(function(val, i) {
 console.log(val);
 if(i === 1) {
 return cjs.ArrayConstraint.BREAK;
 }
}); // 'a' ... 'b'

Appendix B: ConstraintJS API

184

cjs.ArrayConstraint.prototype.indexOf(i
tem, [equality_check])

Returns the first index of item

.indexOf(item, [equality_check])

item * The item we are searching for

[equality_check] function How to check whether two objects are equal, defaults
to the option that was passed in)

Returns number The item's index or -1

Example:

var arr = cjs(['a','b','a']);
arr.indexOf('a'); // 0

cjs.ArrayConstraint.prototype.indexWher
e(filter, thisArg)

Returns the first item where calling filter is truthy

.indexWhere(filter, thisArg)

filter function The function to call on every item

thisArg * Object to use as this when executing callback.

Returns number The first index where calling filter is truthy or -1

Example:

var arr = cjs(['a','b','b']);
arr.indexWhere(function(val, i) {
 return val ==='b';
}); // 1

cjs.ArrayConstraint.prototype.item(...)

Convert my value to a standard JavaScript array

.item()

Appendix B: ConstraintJS API

185

Returns array A standard JavaScript array

.item(key)

key number The array index

Returns * The value at index key

.item(key, value)

key number The array index

value * The new value

Returns * value

Examples:

var arr = cjs([1,2,3]);
arr.item(); //[1,2,3]

var arr = cjs(['a','b']);
arr.item(0); //['a']

var arr = cjs(['a','b']);
arr.item(0,'x');
arr.toArray(); // ['x','b']

cjs.ArrayConstraint.prototype.itemConst
raint(key)

Return a constraint whose value is bound to my value for key

.itemConstraint(key)

key number,Constraint The array index

Returns Constraint A constraint whose value is this[key]

Example:

var arr = cjs(['a','b','c']);
var first_item = arr.itemConstraint(0);
first_item.get(); // 'a'
arr.item(0,'x');
first_item.get(); // 'x'

Appendix B: ConstraintJS API

186

cjs.ArrayConstraint.prototype.join([sep
arator=','])

The join() method joins all elements of an array into a string.

.join([separator=','])

[separator=','] string Specifies a string to separate each element of the array.
The separator is converted to a string if necessary. If
omitted, the array elements are separated with a comma.

Returns string The joined string

cjs.ArrayConstraint.prototype.lastIndex
Of(item, [equality_check])

Returns the last index of item

.lastIndexOf(item, [equality_check])

item * The item we are searching for

[equality_check] function How to check whether two objects are equal, defaults
to the option that was passed in)

Returns number The item's index or -1

Example:

var arr = cjs(['a','b','a']);
arr.indexOf('a'); // 2

cjs.ArrayConstraint.prototype.lastIndex
Where(filter, thisArg)

Returns the last item where calling filter is truthy

.lastIndexWhere(filter, thisArg)

filter function The function to call on every item

thisArg * Object to use as this when executing callback.

Appendix B: ConstraintJS API

187

Returns number The last index where calling filter is truthy or -1

Example:

var arr = cjs(['a','b','a']);
arr.lastIndexWhere(function(val, i) {
 return val ==='a';
}); // 2

cjs.ArrayConstraint.prototype.length()

Get the length of the array.

.length()

Returns number The length of the array

Example:

var arr = cjs(['a','b']);
arr.length(); // 2

cjs.ArrayConstraint.prototype.map(callb
ack, thisArg)

The map() method creates a new array (not array constraint) with the results of calling a provided function
on every element in this array.

.map(callback, thisArg)

callback function Function that produces an element of the new Array from an
element of the current one.

thisArg * Object to use as this when executing callback.

Returns array The result of calling callback on every element

Example:

var arr = cjs([1,2,3]);
arr.map(function(x) {
 return x+1;
}); // [2,3,4]

Appendix B: ConstraintJS API

188

cjs.ArrayConstraint.prototype.pop()

The pop() method removes the last element from an array and returns that element.

.pop()

Returns * The value that was popped off or undefined

Example:

var arr = cjs(['a','b']);
arr.pop(); // 'b'
arr.toArray(); // ['a']

cjs.ArrayConstraint.prototype.push(...e
lements)

The push() method mutates an array by appending the given elements and returning the new length of the
array.

.push(...elements)

...elements * The set of elements to append to the end of the array

Returns number The new length of the array

Example:

var arr = cjs(['a','b']);
arr.push('c','d'); // 4
arr.toArray(); // ['a','b','c','d']

cjs.ArrayConstraint.prototype.reverse()

The reverse() method reverses an array in place. The first array element becomes the last and the last
becomes the first.

.reverse()

Returns array A JavaScript array whose value is the reverse of mine

Appendix B: ConstraintJS API

189

cjs.ArrayConstraint.prototype.setEquali
tyCheck(equality_check)

Change the equality check; useful for indexOf

.setEqualityCheck(equality_check)

equality_check function A new function to check for equality between two
items in this array

Returns cjs.ArrayConstraint this

cjs.ArrayConstraint.prototype.setValue(
arr)

Replaces the whole array

.setValue(arr)

arr array The new value

Returns cjs.ArrayConstraint this

Example:

var arr = cjs([1,2,3]);
arr.toArray(); //[1,2,3]
arr.setValue(['a','b','c']);
arr.toArray(); //['a','b','c']

cjs.ArrayConstraint.prototype.shift()

The shift() method removes the first element from an array and returns that element. This method changes
the length of the array.

.shift()

Returns * The element that was removed

Example:

var arr = cjs(['a','b','c']);
arr.shift(); // 'a'
arr.toArray(); //['b','c']

Appendix B: ConstraintJS API

190

cjs.ArrayConstraint.prototype.slice([be
gin=0], [end=this.length])

The slice() method returns a portion of an array.

.slice([begin=0], [end=this.length])

[begin=0] number Zero-based index at which to begin extraction.

[end=this.length] number Zero-based index at which to end extraction. slice
extracts up to but not including end.

Returns array A JavaScript array

Example:

var arr = cjs(['a','b','c']);
arr.slice(1); // ['b','c']

cjs.ArrayConstraint.prototype.some(filt
er, thisArg)

Return true if filter against any item in my array is truthy

.some(filter, thisArg)

filter function The function to check against

thisArg * Object to use as this when executing filter.

Returns boolean true if some item matches filter. false otherwise

Example:

var arr = cjs([1,3,5]);
arr.some(function(x) {
 return x % 2 === 0;
}); // false

cjs.ArrayConstraint.prototype.sort([com
pareFunction])

The sort() method sorts the elements of an array in place and returns the array. The default sort order is
lexicographic (not numeric).

Appendix B: ConstraintJS API

191

.sort([compareFunction])

[compareFunction] function Specifies a function that defines the sort order. If
omitted, the array is sorted lexicographically (in
dictionary order) according to the string conversion
of each element.

Returns array A sorted JavaScript array

cjs.ArrayConstraint.prototype.splice(in
dex, howMany, ...elements)

The splice() method changes the content of an array, adding new elements while removing old elements.

.splice(index, howMany, ...elements)

index number Index at which to start changing the array. If greater than
the length of the array, no elements will be removed.

howMany number An integer indicating the number of old array elements to
remove. If howMany is 0, no elements are removed. In this
case, you should specify at least one new element. If
howMany is greater than the number of elements left in the
array starting at index, then all of the elements through the
end of the array will be deleted.

...elements * The elements to add to the array. If you don't specify any
elements, splice simply removes elements from the array.

Returns array.* An array containing the removed elements. If only one element
is removed, an array of one element is returned. If no elements
are removed, an empty array is returned.

Example:

var arr = cjs(['a', 'b', 'c']);
arr.splice(0, 2, 'x', 'y'); //['a','b']
arr.toArray(); // ['x','y','c']

cjs.ArrayConstraint.prototype.toArray()

Converts this array to a JavaScript array

.toArray()

Appendix B: ConstraintJS API

192

Returns array This object as a JavaScript array

Example:

var arr = cjs(['a','b']);
arr.toArray(); // ['a', 'b']

cjs.ArrayConstraint.prototype.toString(
)

The toString() method returns a string representing the specified array and its elements.

.toString()

Returns string A string representation of this array.

cjs.ArrayConstraint.prototype.unshift(.
..elements)

The unshift() method adds one or more elements to the beginning of an array and returns the new length of
the array.

.unshift(...elements)

...elements * The elements to be added

Returns number The new array length

Example:

var arr = cjs(['a','b','c']);
arr.unshift('x','y'); // 5
arr.toArray(); //['x','y','a','b','c']

new cjs.Binding(options)

A binding calls some arbitrary functions passed into options. It is responsible for keeping some aspect of a
DOM node in line with a constraint value. For example, it might keep an element's class name in sync with
a class_name constraint

.Binding(options)

Appendix B: ConstraintJS API

193

options object

cjs.Binding.prototype.destroy()

Stop updating the binding and try to clean up any memory

.destroy()

Returns undefined

cjs.Binding.prototype.pause()

Pause binding (no updates to the attribute until resume is called)

.pause()

Returns Binding this

cjs.Binding.prototype.resume()

Resume binding (after pause)

.resume()

Returns Binding this

cjs.Binding.prototype.throttle(min_dela
y)

Require at least min_delay milliseconds between setting the attribute

.throttle(min_delay)

min_delay number The minimum number of milliseconds between updates

Returns Binding this

new cjs.CJSEvent(...)

Appendix B: ConstraintJS API

194

Note: the preferred way to create this object is with the cjs.on function Creates an event that can be used
in a finite-state machine transition

cjs.CJSEvent.prototype._addTransition(t
ransition)

Add a transition to my list of transitions that this event is attached to

._addTransition(transition)

transition Transition The transition this event is attached to

cjs.CJSEvent.prototype._fire(...events)

When I fire, go through every transition I'm attached to and fire it then let any interested listeners know as
well

._fire(...events)

...events * Any number of events that will be passed to the transition

cjs.CJSEvent.prototype._removeTransitio
n(transition)

Remove a transition from my list of transitions

._removeTransition(transition)

transition Transition The transition this event is attached to

cjs.CJSEvent.prototype.guard([filter])

Create a transition that calls filter whenever it fires to ensure that it should fire

.guard([filter])

[filter] function Returns true if the event should fire and false otherwise

Returns CJSEvent A new event that only fires when filter returns a truthy value

Appendix B: ConstraintJS API

195

Example:

If the user clicks and ready is true

cjs.on("click").guard(function() {
 return ready === true;
});

new cjs.Constraint(value, [options])

Note: The preferred way to create a constraint is with the cjs.constraint function (lower-case
'c') cjs.Constraint is the constructor for the base constraint. Valid properties for options are:

• auto_add_outgoing_dependencies: allow the constraint solver to determine when things
depend on me. default: true

• auto_add_incoming_dependencies: allow the constraint solver to determine when things I
depend on things. default:true

• cache_value: whether or not to keep track of the current value. default: true

• check_on_nullify: when nullified, check if my value has actually changed (requires
immediately re-evaluating me).default: false

• context: if value is a function, the value of this, when that function is called. default: window

• equals: the function to check if two values are equal, default: ===

• literal: if value is a function, the value of the constraint should be the function itself (not its
return value). default:false

• run_on_add_listener: when onChange is called, whether or not immediately validate the
value. default: true

.Constraint(value, [options])

value * The initial value of the constraint or a function to compute its
value

[options] Object A set of options to control how and when the constraint's value
is evaluated:

cjs.Constraint.prototype.abs()

Absolute value constraint modifier

.abs()

Appendix B: ConstraintJS API

196

Returns number A constraint whose value is Math.abs(this.get())

Example:

x = c1.abs(); // x <- abs(c1)

cjs.Constraint.prototype.acos()

Arccosine

.acos()

Returns number A constraint whose value is Math.acos(this.get())

Example:

angle = r.div(x).acos();

cjs.Constraint.prototype.add(...args)

Addition constraint modifier

.add(...args)

...args number Any number of constraints or numbers

Returns number A constraint whose value is this.get() + args[0].get() +
args[1].get() + ...

Example:

x = y.add(1,2,z); // x <- y + 1 + 2 + z

The same method can also be used to add units to values

x = y.add("px"); // x <- ypx

cjs.Constraint.prototype.and(...args)

Returns the last value in the array [this].concat(args) if every value is truthy. Otherwise,
returns false. Every argument won't necessarily be evaluated. For instance:

x = cjs(false); cjs.get(x.and(a)) does not evaluate a

.and(...args)

Appendix B: ConstraintJS API

197

...args * Any number of constraints or values to pass the "and"
test

Returns cjs.Constraitnboolean,* A constraint whose value is false if this or any passed in
value is falsy. Otherwise, the last value passed in.

Example:

var x = c1.and(c2, c3, true);

cjs.Constraint.prototype.asin()

Arcsin

.asin()

Returns number A constraint whose value is Math.asin(this.get())

Example:

angle = r.div(y).asin();

cjs.Constraint.prototype.atan()

Arctan

.atan()

Returns number A constraint whose value is Math.atan(this.get())

Example:

angle = y.div(x).atan();

cjs.Constraint.prototype.atan2(x)

Arctan2

.atan2(x)

x number,cjs.Constraint

Returns number A constraint whose value
is Math.atan2(this.get()/x.get())

Appendix B: ConstraintJS API

198

Example:

angle = y.atan2(x);

cjs.Constraint.prototype.bitwiseNot()

Bitwise not operator

.bitwiseNot()

Returns number A constraint whose value is ~(this.get())

Example:

inverseBits = val.bitwiseNot();

cjs.Constraint.prototype.ceil()

Ceil

.ceil()

Returns number A constraint whose value is Math.ceil(this.get())

Example:

x = c1.ceil(); // x <- ceil(c1)

cjs.Constraint.prototype.cos()

Cosine

.cos()

Returns number A constraint whose value is Math.cos(this.get())

Example:

dx = r.mul(angle.cos());

cjs.Constraint.prototype.destroy([silen
t=false])

Appendix B: ConstraintJS API

199

Removes any dependent constraint, clears this constraints options, and removes every change listener. This
is useful for making sure no memory is deallocated

.destroy([silent=false])

[silent=false] boolean If set to true, avoids invalidating any dependent
constraints.

Returns cjs.Constraint this

Example:

var x = cjs(1);
x.destroy(); // ...x is no longer needed

cjs.Constraint.prototype.div(...args)

Division constraint modifier

.div(...args)

...args number Any number of constraints or numbers

Returns number A constraint whose value is this.get() / args[0].get() /
args[1].get() / ...

Example:

x = y.div(1, 2, z); // x <- y / 1 / 2 / z

cjs.Constraint.prototype.eq(other)

Equals unary operator

.eq(other)

other * A constraint or value to compare against

Returns boolean A constraint whose value is this.get() == other.get()

Example:

isNull = val.eq(null);

Appendix B: ConstraintJS API

200

cjs.Constraint.prototype.eqStrict(other
)

Strict equals operator

.eqStrict(other)

other * A constraint or value to compare against

Returns boolean A constraint whose value is this.get() === other.get()

Example:

isOne = val.eqStrict(1);

cjs.Constraint.prototype.exp()

Exp (E^x)

.exp()

Returns number A constraint whose value is Math.exp(this.get())

Example:

neg_1 = cjs(i*pi).exp();

cjs.Constraint.prototype.floor()

Floor

.floor()

Returns number A constraint whose value is Math.floor(this.get())

Example:

x = c1.floor(); // x <- floor(c1)

cjs.Constraint.prototype.get([autoAddOu
tgoing=true])

Appendix B: ConstraintJS API

201

Get the current value of this constraint. For computed constraints, if the constraint is invalid, its value will
be re-computed.

.get([autoAddOutgoing=true])

[autoAddOutgoing=true] boolean Whether to automatically add a dependency
from this constraint to ones that depend on it.

Returns * The current constraint value

Example:

var x = cjs(1);
x.get(); // 1

cjs.Constraint.prototype.iif(true_val,
other_val)

Inline if function: similar to the javascript a ? b : c expression

.iif(true_val, other_val)

true_val * The value to return if this is truthy

other_val * The value to return if this is falsy

Returns cjs.Constraint A constraint whose value is false if this or any passed in value
is falsy. Otherwise, the last value passed in.

Example:

var x = is_selected.iif(selected_val, nonselected_val);

cjs.Constraint.prototype.inFSM(fsm,
values)

Change this constraint's value in different states

.inFSM(fsm, values)

fsm cjs.FSM The finite-state machine to depend on

values Object Keys are the state specifications for the FSM, values are the
value for those specific states

Appendix B: ConstraintJS API

202

Returns cjs.Constraint this

Example:

var fsm = cjs.fsm("state1", "state2")
 .addTransition("state1", "state2",
 cjs.on("click"));

var x = cjs().inFSM(fsm, {
 state1: 'val1',
 state2: function() { return 'val2'; }
});

cjs.Constraint.prototype.instanceOf(oth
er)

Object instance check modifier

.instanceOf(other)

other * a constraint or value to compare against

Returns boolean a constraint whose value is this.get() instanceof other.get()

Example:

var valIsArray = val.instanceof(Array);

cjs.Constraint.prototype.invalidate()

Mark this constraint's value as invalid. This signals that the next time its value is fetched, it should be
recomputed, rather than returning the cached value.

An invalid constraint's value is only updated when it is next requested (for example, via .get()).

.invalidate()

Returns cjs.Constraint this

Example:

Tracking the window height var height = cjs(window.innerHeight); window.addEventListener("resize",
function() { height.invalidate(); });

cjs.Constraint.prototype.isValid()

Appendix B: ConstraintJS API

203

Find out if this constraint's value needs to be recomputed (i.e. whether it's invalid).

An invalid constraint's value is only updated when it is next requested (for example, via .get()).

.isValid()

Returns boolean true if this constraint's current value is valid. false otherwise.

Example:

var x = cjs(1),
 y = x.add(2);
y.get(); // 3
y.isValid(); // true
x.set(2);
y.isValid(); // false
y.get(); // 4
y.isValid(); //true

cjs.Constraint.prototype.log()

Natural Log (base e)

.log()

Returns number A constraint whose value is Math.log(this.get())

Example:

num_digits = num.max(2).log().div(Math.log(10)).ceil()

cjs.Constraint.prototype.max(...args)

Max

.max(...args)

...args number Any number of constraints or numbers

Returns number A constraint whose value is
the highest of this.get(), args[0].get(), args[1].get()...

Example:

val = val1.max(val2, val3);

Appendix B: ConstraintJS API

204

cjs.Constraint.prototype.min(...args)

Min

.min(...args)

...args number Any number of constraints or numbers

Returns number A constraint whose value is
the lowest of this.get(), args[0].get(), args[1].get()...

Example:

val = val1.min(val2, val3);

cjs.Constraint.prototype.mul(...args)

Multiplication constraint modifier

.mul(...args)

...args number Any number of constraints or numbers

Returns number A constraint whose value is this.get() * args[0].get() *
args[1].get() * ...

Example:

x = y.mul(1, 2, z); //x <- y * 1 * 2 * z

cjs.Constraint.prototype.neg()

Negative operator

.neg()

Returns number A constraint whose value is -(this.get())

Example:

neg_val = x.neg()

cjs.Constraint.prototype.neq(other)

Not equals operator

Appendix B: ConstraintJS API

205

.neq(other)

other * A constraint or value to compare against

Returns boolean A constraint whose value is this.get() != other.get()

Example:

notNull = val.neq(null)

cjs.Constraint.prototype.neqStrict(othe
r)

Not strict equals binary operator

.neqStrict(other)

other * A constraint or value to compare against

Returns boolean A constraint whose value is this.get() !== other.get()

Example:

notOne = val.neqStrict(1)

cjs.Constraint.prototype.not()

Not operator

.not()

Returns boolean A constraint whose value is !(this.get())

Example:

opposite = x.not();

cjs.Constraint.prototype.offChange(call
back, [thisArg])

Removes the first listener to callback that was created by onChange. thisArg is optional and if
specified, it only removes listeners within the same context. If thisArg is not specified, the first callback is
removed.

Appendix B: ConstraintJS API

206

.offChange(callback, [thisArg])

callback function

[thisArg] * If specified, only remove listeners that were added with this
context

Returns cjs.Constraint this

var x = cjs(1),
 callback = function (){};
x.onChange(callback);
// ...
x.offChange(callback);

cjs.Constraint.prototype.onChange(callb
ack, [thisArg=window], ...args)

Call callback as soon as this constraint's value is invalidated. Note that if the constraint's value is
invalidated multiple times,callback is only called once.

.onChange(callback, [thisArg=window], ...args)

callback function

[thisArg=window] * The context to use for callback

...args * The first args.length arguments to callback

Returns cjs.Constraint this

Example:

var x = cjs(1);
x.onChange(function() {
 console.log("x is " + x.get());
});
x.set(2); // x is 2

cjs.Constraint.prototype.or(...args)

Returns the first truthy value in the array [this].concat(args). If no value is truthy, returns false.
Every argument won't necessarily be evaluated. For instance:

y = cjs(true); cjs.get(y.or(b)) does not evaluate b

Appendix B: ConstraintJS API

207

.or(...args)

...args * Any number of constraints or values to pass the "or" test

Returns cjs.Constraint A constraitn whose value is the first truthy value or false if there
aren't any

Example:

var x = c1.or(c2, c3, false);

cjs.Constraint.prototype.pauseGetter(te
mporaryValue)

Signal that this constraint's value will be computed later. For instance, for asyncronous values.

.pauseGetter(temporaryValue)

temporaryValue * The temporary value to use for this node until it is
resumed

Returns cjs.Constraint this

cjs.Constraint.prototype.pos()

Coerce an object to a number

.pos()

Returns number A constraint whose value is +(this.get())

Example:

numeric_val = val.pos();

cjs.Constraint.prototype.pow(x)

Power

.pow(x)

x number The exponent

Returns number A constraint whose value is Math.pow(this.get(), x.get())

Appendix B: ConstraintJS API

208

Example:

d = dx.pow(2).add(dy.pow(2)).sqrt();

cjs.Constraint.prototype.prop(...args)

Property constraint modifier.

.prop(...args)

...args strings Any number of properties to fetch

Returns * A constraint whose value is this[args[0]][args[1]]...

Example:

w = x.prop("y", "z"); // means w <- x.y.z

cjs.Constraint.prototype.remove([silent
=false])

Removes every dependency to this node

.remove([silent=false])

[silent=false] boolean If set to true, avoids invalidating any dependent
constraints.

Returns cjs.Constraint this

cjs.Constraint.prototype.resumeGetter(v
alue)

Signal that this Constraint, which has been paused with pauseGetter now has a value.

.resumeGetter(value)

value * This node's value

Returns cjs.Constraint this

cjs.Constraint.prototype.round()

Appendix B: ConstraintJS API

209

Round

.round()

Returns number A constraint whose value is Math.round(this.get())

Example:

x = c1.round(); // x <- round(c1)

cjs.Constraint.prototype.set(value,
[options])

Change the current value of the constraint. Other constraints that depend on its value will be invalidated.

.set(value, [options])

value * The initial value of the constraint or a function to compute
its value

[options] Object A set of options to control how and when the constraint's
value is evaluated:

Returns cjs.Constraint this

Example:

var x = cjs(1);
x.get(); // 1
x.set(function () {
 return 2;
});
x.get(); // 2
x.set("c");
x.get(); // 'c'

cjs.Constraint.prototype.setOption(opti
ons)

Change how this constraint is computed (see Constraint options)

.setOption(options)

options Object An object with the options to change

Appendix B: ConstraintJS API

210

Returns cjs.Constraint this

Example:

var x = cjs(function() { return 1; });
x.get(); // 1
x.setOption({
 literal: true,
 auto_add_outgoing_dependencies: false
});
x.get(); // (function)

cjs.Constraint.prototype.sin()

Sine

.sin()

Returns number A constraint whose value is Math.sin(this.get())

Example:

dy = r.mul(angle.sin())

cjs.Constraint.prototype.sqrt()

Square root

.sqrt()

Returns number A constraint whose value is Math.sqrt(this.get())

Example:

x = c1.sqrt(); // x <- sqrt(c1)

cjs.Constraint.prototype.sub(...args)

Subtraction constraint modifier

.sub(...args)

...args number Any number of constraints or numbers

Returns number A constraint whose value is this.get() - args[0].get() -

Appendix B: ConstraintJS API

211

args[1].get() - ...

Example:

x = y.sub(1,2,z); // x <- y - 1 - 2 - z

cjs.Constraint.prototype.tan()

Tangent

.tan()

Returns number A constraint whose value is Math.tan(this.get())

Example:

dy = r.mul(angle.sin())

cjs.Constraint.prototype.toFloat()

Float conversion constraint modifier.

.toFloat()

Returns * A constraint whose value is parseFloat(this)

Example:

Given <input /> element inp_elem

var inp_val = cjs(inp_elem).toFloat();

cjs.Constraint.prototype.toInt()

Integer conversion constraint modifier.

.toInt()

Returns * A constrant whose value is parseInt(this)

Example:

Given <input /> element inp_elem

var inp_val = cjs(inp_elem).toInt();

Appendix B: ConstraintJS API

212

cjs.Constraint.prototype.typeOf(other)

Object type modifier

.typeOf(other)

other * a constraint or value to compare against

Returns * a constraint whose value is typeof this.get()

Example:

var valIsNumber = val.typeOf().eq('[object Number]');

new cjs.FSM(...state_names)

Note: The preferred way to create a FSM is through the cjs.fsm function This class represents a finite-
state machine to track the state of an interface or component

.FSM(...state_names)

...state_names string Any number of state names for the FSM to have

cjs.FSM.state

The name of this FSM's active state

Example:

var my_fsm = cjs.fsm("state1", "state2");
my_fsm.state.get(); // 'state1'

cjs.FSM.prototype._setState(state,
transition)

Changes the active state of this FSM. This function should, ideally, be called by a transition instead of
directly.

._setState(state, transition)

state State,string The state to transition to

transition Transition The transition that ran

Appendix B: ConstraintJS API

213

cjs.FSM.prototype.addState(...state_nam
es)

Create states and set the current "chain state" to that state

.addState(...state_names)

...state_names string Any number of state names to add. The last state becomes
the chain state

Returns FSM this

Example:

var fsm = cjs.fsm()
 .addState('state1')
 .addState('state2')
 .addTransition('state2', cjs.on('click'));

cjs.FSM.prototype.addTransition(...)

Add a transition between two states

.addTransition(to_state)

to_state string The name of the state the transition should
go to

Returns function A function that tells the transition to run

.addTransition(to_state, add_transition_fn)

to_state string The name of the state the transition should
go to

add_transition_fn CJSEvent,function A CJSEvent or a user-specified function for
adding the event listener

Returns FSM this

.addTransition(from_state, to_state)

from_state string The name of the state the transition should
come from

to_state string The name of the state the transition should

Appendix B: ConstraintJS API

214

go to

Returns function A function that tells the transition to run

.addTransition(from_state, to_state, add_transition_fn)

from_state string The name of the state the transition should
come from

to_state string The name of the state the transition should
go to

add_transition_fn CJSEvent,function A CJSEvent or a user-specified function for
adding the event listener

Returns FSM this

Examples:

var x = cjs.fsm();
x.addState("b")
 .addState("a");

var run_transition = x.addTransition("b"); //add transition from a to b
window.addEventListener("click", run_transition);
// run that transition when the window is clicked

var x = cjs.fsm();
x.addState("b")
 .addState("a")
 .addTransition("b", cjs.on('click'));
// add a transition from a to b that runs when the window is clicked

var x = cjs.fsm();
x.addState("b")
 .addState("a")
 .addTransition("b", function(run_transition) {
 window.addEventListener("click", run_transition);
 }); // add a transition from a to b that runs when the window is
clicked

Appendix B: ConstraintJS API

215

var x = cjs.fsm("a", "b");
var run_transition = x.addTransition("a", "b");
//add a transition from a to b
window.addEventListener("click", run_transition);
// run that transition when the window is clicked

var x = cjs.fsm("a", "b");
x.addTransition("a", "b", cjs.on("click"));

var x = cjs.fsm("a", "b");
var run_transition = x.addTransition("a","b",function(run_transition) {
 window.addEventListener("click", run_transition);
 });
// add a transition from a to b that runs when the window is clicked

cjs.FSM.prototype.destroy(...)

Remove all of the states and transitions of this FSM. Useful for cleaning up memory

cjs.FSM.prototype.getState()

Returns the name of the state this machine is currently in. Constraints that depend on the return value will
be automatically updated.

.getState()

Returns string The name of the currently active state

Example:

var my_fsm = cjs.fsm("state1", "state2");
my_fsm.getState(); // 'state1'

cjs.FSM.prototype.is(state_name)

Check if the current state is state_name

.is(state_name)

state_name string The name of the state to check against

Appendix B: ConstraintJS API

216

Returns boolean true if the name of the active state
is state_name. false otherwise

Example:

var my_fsm = cjs.fsm("a", "b");
my_fsm.is("a"); // true, because a is the starting state

cjs.FSM.prototype.off(callback)

Remove the listener specified by an on call; pass in just the callback

.off(callback)

callback function The function to remove as a callback

Returns FSM this

cjs.FSM.prototype.on(spec, callback,
[context])

Call a given function when the finite-state machine enters a given state. spec can be of the form:

'*': any state

'state1': A state named state1

'state1 -> state2': Immediately after state1 transitions to state2

'state1 >- state2': Immediately before state1 transitions to state2

'state1 <-> state2': Immediately after any transition between state1 and state2

'state1 >-< state2': Immediately before any transition between state1 and state2

'state1 <- state2': Immediately after state2 transitions 2 state1

'state1 -< state2': Immediately before state2 transitions 2 state1

'state1 -> *': Any transition from state1

'* -> state2': Any transition to state2

.on(spec, callback, [context])

spec string A specification of which state to call the callback

Appendix B: ConstraintJS API

217

callback function The function to be called

[context] object What this should evaluate to when callback is called

Returns FSM this

Example:

var x = cjs.fsm("a", "b");
x.on("a->b", function() {...});

cjs.FSM.prototype.startsAt(state_name)

Specify which state this FSM should begin at.

.startsAt(state_name)

state_name string The name of the state to start at

Returns FSM this

Example:

var my_fsm = cjs.fsm("state_a", "state_b");
my_fsm.startsAt("state_b");

new cjs.MapConstraint([options])

Note: the preferred way to create a map constraint is with cjs.map This class is meant to emulate
JavaScript objects ({}) but with constraints

Options:

• hash: a key hash to use to improve performance when searching for a key
(default: x.toString())

• valuehash: a value hash to use improve performance when searching for a value (default: false)

• equals: How to check for equality when searching for a key (default: ===)

• valueequals: How to check for equality when searching for a value (default: ===)

• value: An optional starting value (default: {})

• keys: An optional starting set of keys (default: [])

• values: An optional starting set of values (default: [])

Appendix B: ConstraintJS API

218

• literal_values: True if values that are functions should return a function rather than that
function's return value. (default:false)

• create_unsubstantiated: Create a constraint when searching for non-existent keys.
(default: true)

.MapConstraint([options])

[options] Object A set of options to control how the map constraint is evaluated

cjs.MapConstraint.BREAK

Any iterator in forEach can return this object to break out of its loop.

cjs.MapConstraint.prototype.clear()

Clear every entry of this object.

.clear()

Returns cjs.MapConstraint this

Example:

var map = cjs({x: 1, y: 2});
map.isEmpty(); // false
map.clear();
map.isEmpty(); // true

cjs.MapConstraint.prototype.destroy([si
lent=false])

Clear this object and try to clean up any memory.

.destroy([silent=false])

[silent=false] boolean If set to true, avoids invalidating any dependent
constraints.

cjs.MapConstraint.prototype.entries()

Get every key and value of this object as an array.

Appendix B: ConstraintJS API

219

.entries()

Returns array.object A set of objects with properties key and value

Example:

var map = cjs({x: 1, y: 2});
map.entries(); // [{key:'x',value:1},
 // {key:'y',value:2}]

cjs.MapConstraint.prototype.forEach(cal
lback, thisArg)

The forEach() method executes a provided function once per entry. If cjs.MapConstraint.BREAK is
returned for any element, we stop looping

.forEach(callback, thisArg)

callback function Function to execute for each entry.

thisArg * Object to use as this when executing callback.

Returns cjs.MapConstraint this

Example:

var map = cjs({x:1,y:2,z:3});
map.forEach(function(val, key) {
 console.log(key+':'+val);
 if(key === 'y') {
 return cjs.MapConstraint.BREAK;
 }
});
// x:1 ... y:2

cjs.MapConstraint.prototype.get(key)

Get the item at key (like this[key])

.get(key)

key * The entry's key

Returns *,undefined the value at that entry or undefined

Appendix B: ConstraintJS API

220

Example:

var map = cjs({x: 1, y: 2});
map.get("x"); // 1

cjs.MapConstraint.prototype.getOrPut(ke
y, create_fn, [create_fn_context],
[index=this.size], [literal=false])

Search for a key or create it if it wasn't found

.getOrPut(key, create_fn, [create_fn_context], [index=this.size], [literal=false])

key * The key to search for.

create_fn function A function to create the value if key is not found

[create_fn_context] * The context in which to call create_fn

[index=this.size] number Where to place a value that is created

[literal=false] boolean Whether to create the value as a literal constraint
(the value of a function is the function)

Returns number The index of the entry with key=key or -1

Example:

var map = xjs({x: 1, y: 2});
map.getOrPut('x', function() {
 console.log("evaluating");
 return 3;
});
// output: 'evaluating'
// 3
map.getOrPut('x', function() {
 console.log("evaluating");
 return 3;
});
// (no output)
// 3

cjs.MapConstraint.prototype.has(key)

Check if there is any entry with key = key

Appendix B: ConstraintJS API

221

.has(key)

key * The key to search for.

Returns boolean true if there is an entry with key=key, false otherwise.

Example:

var map = cjs({x: 1, y: 2});
map.has('x'); // true

cjs.MapConstraint.prototype.indexOf(key
)

Get the index of the entry with key = key

.indexOf(key)

key * The key to search for.

Returns number The index of the entry with key=key or -1

Example:

var map = cjs({x: 1, y: 2});
map.indexOf('z'); // -1

cjs.MapConstraint.prototype.isEmpty()

Check if this object has any entries

.isEmpty()

Returns boolean true if there are no entries, false otherwise

Example:

var map = cjs({x: 1, y: 2});
map.isEmpty(); // false

cjs.MapConstraint.prototype.item(...)

Convert my value to a standard JavaScript object. The keys are converted using toString

Appendix B: ConstraintJS API

222

.item()

Returns object A standard JavaScript object

.item(key)

key number The object key

Returns * The value at index key

.item(key, value)

key number The object key

value * The new value

Returns cjs.MapConstraint this

Example:

var map = cjs({x: 1, y: 2});
map.item(); // {x:1,y:2}
var map = cjs({x: 1, y: 2});
map.item('x'); // 1
var map = cjs({x: 1, y: 2});
map.item('z', 3);
map.keys(); //['x','y','z']

cjs.MapConstraint.prototype.itemConstra
int(key)

Return a constraint whose value is bound to my value for key

.itemConstraint(key)

key *,Constraint The array index

Returns Constraint A constraint whose value is this[key]

Example:

var map = cjs({x: 1, y: 2});
var x_val = map.itemConstraint('x');
x_val.get(); // 1
map.item('x', 3);
x_val.get(); // 3

Appendix B: ConstraintJS API

223

cjs.MapConstraint.prototype.keyForValue
(value, [eq_check])

Given a value, find the corresponding key

.keyForValue(value, [eq_check])

value * The value whose key to search for

[eq_check] function How to check if two values are equal (default: ===

Returns *,undefined The key where this.get(key)===value

Example:

var map = cjs({x: 1, y: 2, z: 3});
map.keyForValue(1); // 'x'

cjs.MapConstraint.prototype.keys()

Get the keys on this object.

.keys()

Returns array.* The set of keys

Example:

var map = cjs({x: 1, y: 2});
map.keys(); // ['x','y']

cjs.MapConstraint.prototype.move(key,
to_index)

Move the entry with key key to `index

.move(key, to_index)

key * The key to search for

to_index number The new index for the key

Returns cjs.ArrayConstraint this

Appendix B: ConstraintJS API

224

Example:

var map = cjs({x: 1, y: 2, z: 3});
map.keys(); // ['x','y', 'z']
map.move('z', 0);
map.keys(); // ['z','x', 'y']

cjs.MapConstraint.prototype.moveIndex(o
ld_index, new_index)

Move the entry at old_index to index new_index

.moveIndex(old_index, new_index)

old_index number The index to move from

new_index number The index to move to

Returns cjs.ArrayConstraint this

Example:

var map = cjs({x: 1, y: 2, z: 3});
map.keys(); // ['x','y', 'z']
map.moveIndex(1, 0);
map.keys(); // ['y','x', 'z']

cjs.MapConstraint.prototype.put(key,
value, [index=this.size], [literal])

Set the entry for key to value (this[key]=value)

.put(key, value, [index=this.size], [literal])

key * The entry's key

value * The entry's value

[index=this.size] number The entry's index

[literal] boolean Whether to treat the value as literal

Returns cjs.MapConstraint this

Appendix B: ConstraintJS API

225

Example:

var map = cjs({x: 1, y: 2});
map.put("z", 3, 1);
map.keys(); // ['x','z','y']

cjs.MapConstraint.prototype.remove(key)

Remove a key's entry (like delete this[key])

.remove(key)

key * The entry's key

Returns cjs.MapConstraint this

Example:

var map = cjs({x: 1, y: 2});
map.remove("x");
map.keys(); // ['y']

cjs.MapConstraint.prototype.setEquality
Check(equality_check)

Change the default equality check when getting a key

.setEqualityCheck(equality_check)

equality_check function The new key equality check

Returns cjs.ArrayConstraint this

cjs.MapConstraint.prototype.setHash(has
h)

Change the hash function when getting a key

.setHash(hash)

hash function,string The new hashing function (or a string representing a property
name for every key to use as the hash)

Returns cjs.ArrayConstraint this

Appendix B: ConstraintJS API

226

cjs.MapConstraint.prototype.setValueEqu
alityCheck(vequality_check)

Change the default value equality check when getting a value

.setValueEqualityCheck(vequality_check)

vequality_check function The new value equality check

Returns cjs.ArrayConstraint this

cjs.MapConstraint.prototype.setValueHas
h(hash)

Change the hash function when getting a value

.setValueHash(hash)

hash function,string The new hashing function (or a string representing a property
name for every key to use as the hash)

Returns cjs.ArrayConstraint this

cjs.MapConstraint.prototype.size()

Get the number of entries in this object.

.size()

Returns number The number of entries

Example:

var map = cjs({x: 1, y: 2});
map.size(); // 2

cjs.MapConstraint.prototype.toObject([k
ey_map_fn])

Converts this array to a JavaScript object.

Appendix B: ConstraintJS API

227

.toObject([key_map_fn])

[key_map_fn] function A function to convert keys

Returns object This object as a JavaScript object

Example:

var map = cjs({x: 1, y: 2, z: 3});
map.toObject(); // {x:1,y:2,z:3}

cjs.MapConstraint.prototype.values()

Get the values on this object.

.values()

Returns array.* The set of values

Example:

var map = cjs({x: 1, y: 2});
map.values(); // [1,2]

