
Towards Providing On-Demand Expert Support
for Software Developers

Yan Chen1, Steve Oney1, Walter S. Lasecki2,1
School of Information1, Computer Science & Engineering2

University of Michigan – Ann Arbor
{yanchenm,soney,wlasecki}@umich.edu

ABSTRACT
Software development is an expert task that requires complex
reasoning and the ability to recall language or API-specific
details. In practice, developers often seek support from IDE
tools, Web resources, or other developers to help fill in gaps
in their knowledge on-demand. In this paper, we present two
studies that seek to inform the design of future systems that
use remote experts to support developers on demand. The
first explores what types of questions developers would ask a
hypothetical assistant capable of answering any question they
pose. The second study explores the interactions between de-
velopers and remote “experts” in supporting roles. Our results
suggest eight key system features needed for on-demand re-
mote developer assistants to be effective, which has implica-
tions for future human-powered development tools.
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INTRODUCTION
Software development is an expert task that requires complex
reasoning skills within the bounds of formal language syntax
and Application Programming Interface (API)-specific func-
tionality. Support for recalling keywords, function names, ar-
gument types and methodologies, and other details can come
from a variety of sources. Current support usually comes ei-
ther from tools built directly into Integrated Development En-
vironments (IDEs) or from other developers.

IDE tools provide contextualized, easily-accessible, and on-
demand support for developers, but are generally limited in
the types of feedback they can provide (e.g., syntax error
highlighting and function auto-complete) because the system
cannot truly understand user queries or the context of the
problem. We find that these limitations preclude many ques-
tions that developers would ask while programming.
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To overcome the limitations of automatic approaches, sup-
port from other human developers is often enlisted. This can
take several forms, each with their own trade-offs. In a work
environment, an expert colleague can provide useful support
in the specific languages and frameworks in use, but is un-
likely to be available on demand or able to support frequent
questions. Web forums can provide a wealth of information
about general questions, but typically do not provide highly
personalized support or quick responses to developer queries.
Additionally, many of the most successful developer forums
restrict the types of questions that can be asked and when they
can be asked. For example, Stack Overflow [41] explicitly
discourages the types of project-specific code requests that
we observed in our motivating studies. It also requires some
level of reciprocity from users in the form of useful answers to
other developers’ questions. Providing sufficient context for
others to help solve a problem can also be a time-consuming
task that often takes multiple turns of interaction to complete.

Hired freelance developers can provide tailored support for
specific questions, immediate answers, and even the ability to
hand off sub-tasks for independent completion. However, in
addition to the monetary price of hiring a freelancer, the tra-
ditional hiring process adds significant time and preparation
effort costs (interviews, initiation, etc.). Lastly, none of these
expert solutions provide the in-context support that IDE tools
do, adding the need for an additional context switch to and
from a developer’s workflow.

The rise of online expert crowd platforms, such as Up-
work [14], allows on-demand, programmatic hiring of devel-
opers for pay. However, the complexity of the hiring and on-
boarding process needed to find reliable workers who have
sufficient knowledge of the project remains unchanged. Re-
ducing the hiring overhead is critical to making expert sup-
port in development processes feasible. Ideally, asking for
help would be as simple as informally saying the question at
hand, and providing in-context support within an IDE.

In this paper, we introduce a new space of support systems
and present two studies that inform the design of such systems
in the future. In the first, we explore the types of questions
developers might want to ask an on-demand support agent. In
the second, we examine the logistical challenges of providing
on-demand remote developer support.



Contributions
Our studies demonstrate the need for systems that can answer
developer queries during a live coding session, and explore
the challenges that arise in this domain. Specifically, we make
the following contributions in this paper:
• A “hypothetical assistant” study of what questions devel-

opers would ask when they are programming if complete
support was provided

• The first study of how people ask for help when on-
demand, reactive expert help is available during a Web de-
velopment task

• Design takeaways and recommended features for systems
that aim to recruit on-demand support for developers

With this work, we present the technical challenges and de-
sign opportunities of instant expert support. We also hope to
catalyze further work in the community on this topic.

MOTIVATING SCENARIO
To illustrate the potential advantages of the features we dis-
cuss, consider the case of Anita, a software developer work-
ing on a project that she would like to release as open-source.

Scenario
Anita begins development using an IDE with on-demand sup-
port enabled. As she codes, the IDE reminds her of code
blocks that need comments to be understandable to others.

After implementing the basic structure of the client for the
tool she is building, she decides to integrate an API call to a
service that she has never used before. Instead of breaking
from her coding task to start looking into online documenta-
tion and forum examples, she requests (from her IDE) expert
help to write the function that contains this API call, and asks
that the response explain the implementation decisions and
functionality so that she can better learn the API for the next
time she needs to use it. While the operation completes based
on a simple spoken natural language request, she continues to
develop her tool as she otherwise would have.

When feedback arrives that her function is written, she checks
it and sees that the support developer has left extra details
about the implementation because it used a software design
pattern that she had not used before very frequently. After
understanding the code, she approves the automatic integra-
tion into her current code, and then resumes building her tool.

Later, when Anita is unsure of why a returned value is not
being parsed as expected, she makes another request to an
expert to see if they know anything more about this particular
library function. Within seconds, a support developer who is
experienced with the frameworks and libraries being used in
this part of the tool is looking at Anita’s code and explains
via chat that a segment of code that they have highlighted
would need to pass an additional parameter to the function
in question in order to get the right return type. Anita adds
the fix and thanks the developer, all without every leaving her
IDE window. With her tool completed faster and with fewer
distractions than she expected, Anita posts it online.

Comments and Discussion
Since Anita does not have to interrupt her workflow to find in-
formation and delegate tasks, she is less distracted and more
productive. She also does not have to lose time specifying
tasks in complete detail. Instead, the system automatically
extracts additional information based on code structure, pre-
vious documentation, and her interactions with the code. The
ability to specify when the remote developer should provide
additional details of a solution helps provide learning benefits
when desired, while not wasting time or helper effort when
the explanation is not needed. Additionally, because the sys-
tem recruits experts on demand, Anita is only billed for the
time and support that was actually needed. This is in con-
trast to the naive solution to providing on-demand support by
keeping a single developer on retainer for the entire session.

Challenges
Computers alone will not be able to provide the functionality
described above any time in the near or medium-term future.
The natural language understanding, program synthesis, and
problem solving components of this system are each well be-
yond what is currently possible with AI alone, and the com-
bined challenge is disproportionately harder to solve.

In order to overcome this, we need to leverage human intel-
ligence and expertise. However, little is known about what
people would actually choose to ask if the scope of support
tools was not limited a priori by the system, or what chal-
lenges human experts face when asked to provide on-demand
support. Increasing understanding of these two aspects of the
design space will allow system builders to better reason about
the challenges that need to be overcome to create fast, usable,
and efficient assistance tools for software developers.

BACKGROUND & RELATED WORK
This work builds on previous research on collaboration and
expertise-finding in the context of software development.

Finding Expertise in Software Development
The ability to identify and communicate with domain experts
is an important determinant of software developers’ effective-
ness. One study found that effective engineers tend to com-
municate more frequently with experts who are outside of the
engineer’s domain of expertise [3]. Finding helpers is a mu-
tual process which not only requires helpers to have the rel-
evant expertise, but also requires help-seekers to provide the
right contextual information.

Community Question Answering
A number of Community Question-Answering (CQA) web-
sites allow software developers to post questions to a large
community. The most widely used CQA website for develop-
ers is Stack Overflow [41]. In addition to providing a forum
where developers can ask questions, CQA sites aid developers
by providing a repository to answers of previous questions.
Answer Garden [1, 2] pioneered work in this area by building
an “organizational memory” through a growing database of
questions and answers. However, we find that many of the
types of questions that developers would prefer to be able to
ask on-demand experts are not appropriate for CQA sites for



a number of reasons. First, many of the questions that de-
velopers asked during our pair programming study required
that answers be immediate in order to be useful. On Stack
Overflow, it takes a median of six hours for users to receive a
response to their question that they will accept [36].

Further, it can take significant time and effort to compose a
question that is appropriate for a CQA site. To formulate an
effective question (one that will eventually be answered) de-
velopers must start by capturing all of the potentially relevant
aspects of their project and system setup. This step can pre-
clude asking questions where the relevant context is difficult
to capture. In fact, one of the main reasons for questions to
remain unanswered is that they are too short or do not provide
enough context [4].

By contrast, we show that an on-demand expert support sys-
tem for developers should be able to automatically capture de-
velopers’ work context to handle otherwise ambiguous ques-
tions. Developers should be able to point to a snippet of code,
ask “What does this parameter do?”, hand off execution of
planned coordination to the system, and receive a meaningful
response within minutes.

Real-Time Crowdsourcing
The model and features we propose in this paper rely on the
ability to quickly recruit experts in order to improve ques-
tion response time. Pera and Ng have shown that CQA sites
can improve their algorithms for question-matching, which
would help developers find relevant archived answers [42].
Another way to improve the response time of CQA sites is
to route questions to appropriate experts, as Riahi et al. pro-
pose [44]. However, both of these techniques still require that
developers spend time to carefully formulate their questions
while including the relevant contextual details.

Instead, we propose building on previous techniques for
real-time crowd recruitment. VizWiz [7] introduced model
for eliciting real-time responses from the crowd by keeping
workers engaged in example tasks until their assistance is
needed in real time. This model can elicit responses from
the crowd in a matter of seconds. Adrenaline [6] takes a
similar approach by queuing idle workers so they may com-
plete other tasks while they wait. LegionTools [28] is the first
task-independent open-source tool for recruiting and manag-
ing real-time crowds. Legion extends the real-time crowd-
sourcing model to include continuous tasks — tasks that span
as long as the worker chooses to stay engaged — over small,
disjoint microtasks. This helps retain context and greatly im-
proves answer latency.

Aardvark improves its response time by routing questions to
experts who are currently online [21]. Chorus [31] enables
on-demand conversational interaction by recruiting multiple
workers for conversational interactions with users. Appari-
tion [29] enables prototyping interactive systems in real-time
by introducing self-coordination mechanism to reduce task
conflict among workers.

By combining these techniques with an IDE-integrated com-
munication mechanism, future tools can enable quick and
meaningful responses to software development questions.

Expert Guidance
Beyond CQA websites, several commercial systems enable
more personalized mentorship for software developers. Code
Mentor [23] and hack.hands() [25] allow software developers
to create requests that connect them with experts (as judged
by self-report and community reviews) quickly. Help re-
questers and experts can communicate through a shared code
editor, chat window, and video chat. Based on the findings
of our studies, we propose a “per-question” assistance model
rather than the mentorship model introduced by these sys-
tems. In a per-question model, requests for help can be asked
and answered asynchronously rather than requiring the devel-
oper to start a new help session for every question. Further,
this model would allow the question to be routed to multiple
potential experts; if one does not know the correct answer,
another can respond. This is unlike the mentorship model,
where if a code mentor does not know the correct answer to
a question, the developer must initiate a new session. Finally,
the “per-question” model would enable better expert selection
because unlike the mentor model, the question itself would be
known before connecting the help requester and expert.

Beyond Answer Garden (discussed above), several systems
have proposed systematically routing help requests to an ap-
propriate expert. Expertise Recommender [37] and SHOCK
[35] both include mechanisms to route questions to users who
are capable of answering them. Expertise Recommender re-
lies on collaborative filtering to build expert profiles, whereas
SHOCK automatically builds expertise profiles based on tasks
the user has performed on the Web. The designs of these sys-
tems may help guide the question-routing architecture for our
proposed question-routing system.

In the domain of software development, Mockus and Herb-
sleb proposed Expertise Browser [39] as an approach to find
experts in the context of a shared project. It relies on reposi-
tory commit data from prior projects to quantify expertise in
the context of geographically distributed development teams.
However, we propose creating systems where software de-
velopers can seek guidance from outside of a project team,
which requires a different method of determining expertise.

Programming Team Communication
Despite their reputation for preferring solitude, software de-
velopers who work in teams can spend up to half of their
time communicating [20]. Team organization and communi-
cation mediums play an important role in the effectiveness of
communication between developers. The model of task del-
egation system we propose in this paper is related to Harlon
Mills’ idea of a “surgical team” development model where
the developer with the most experience with a particular task
delegates more mundane tasks to other developers [38, 11].
On-demand code assistants would enable developers to dy-
namically create such supporting roles without the need to be
part of a formal organization.

Pair Programming
Pair programming is a method in which two people work to-
gether side-by-side at one computer [12]. Pair programming
has been shown to yield better design, more compact code,
and fewer defects for roughly equivalent person-hours [51],



but it requires the collaborators to be available for long ses-
sions, even when minimally needed, which is inefficient.

Distributed pair programming is a derived version of pair pro-
gramming that uses a dedicated IDE to allow every participant
to edit the same code locally [5, 46]. Although the distributed
pair programming approach removes the issues of distance
work and dispersed team [40], how to coordinate the work
and maintain the context for both old and new participants
still remain largely unexplored. Our studies instead aim to
automate coordination by “dropping” developers into a task
long enough for them to solve the problem and move on.

Team Information Needs
A number of researchers have also categorized the types of
questions programmers asked in different contexts. Sillito et
al. described 44 types of questions programmers ask when
evolving a large code base [48]. Ko et al. categorized six
types of learning barriers in programming systems for begin-
ners and proposed possible solutions from programming sys-
tem sides [27], and also documented communication amongst
co-located development teams [26]. Guzzi et al. analyzed IDE
support for collaboration and evaluated an IDE extension to
improve team communication [18].

Whereas these studies of information needs focused on ex-
isting team structures, this paper introduces a new path for
information seeking via on-demand expert support, and the
studies presents qualitatively different data and implications.
Unlike existing team structures, this paper proposes a team
structure where a project stakeholder requests remote help
from experts who are not stakeholders. This difference has
significant implications for team trust, communication pref-
erences, and context sharing.

Collaborative Development
Systems like Codeopticon [16] and Codechella [17] provide
ways that helpers (i.e., tutors/peers) can efficiently monitor
multiple learners behavior and provide proactive on-demand
support. Commercial IDE tools such as Koding [49], Codenvy
[22], and Cloud9 [24] enable users to code collaboratively on-
line in real-time. Although these systems reduce many of the
barriers developers face when working at a distance [40] and
time spent on environment configuration, they do not support
the case when developers are actively seeking help [50].

IDE-Integrated Help Finding Tools
The on-demand support systems we propose based on the
studies presented in this paper are forms of Recommenda-
tion Systems in Software Engineering (RSSEs) [45]. Unlike
most CQA websites, they would accept questions and provide
answers within the context of a developer’s IDE. This would
enable a question routing and capturing mechanism to lever-
age previous code context to improve the specificity of the
question and the ease of integrating answers back into devel-
opers’ code.

Previous RSSEs have helped developers capture the answers
to different kinds of questions. Through laboratory studies,
Brandt et al. found that programmers rely heavily on example
code from the Web [10, 9]. Brandt used these studies to guide

the design of Blueprint [8], a system that allows programmers
to rapid search for a query in an embedded search engine in
their local IDE. Hartmann et al. also explored ways to aid
developers in recovering from errors by collecting and min-
ing examples of code changes that fix errors [19]. However,
the results of the studies presented in this paper show that de-
velopers have broader information-finding needs that can be
difficult to respond to through solely automated means.

Our studies suggest that multimodal interaction, such as
blending code highlighting with natural language audio de-
scriptions, may help enrich the context of developer requests.
This idea has been explored in different contexts [13], but not
yet in the context of creating virtual programming pairs.

Crowdsourcing
Most work has investigated how to improve crowd workflow
by converting parallel tasks to series tasks [46], and letting
the crowd workers guide the workflow [34]. However, little
work has focused on exploiting expert crowds to help with
complex tasks such as programming in real time. The design
findings presented in this paper will help guide systems that
can coordinate crowd experts in real time.

Crowd-Enabled IDE Tools
A few tools have enabled crowds to aid in development tasks.
Latoza et al. [32] developed CrowdCode, which decomposes
programming into self-contained function-based microtasks.
In CrowdCode, clients make requests to the crowd with self-
written specifications of the desired function’s purpose and
signature. Crowd workers are then automatically assigned to
these tasks. However, such a system is limited in how much it
can reduce the end user’s time expenditure, since the request
authoring process requires a detailed problem specification.

Having the crowd to efficiently assist programming has been
challenging in terms of qualified worker recruitment and effi-
cient work evaluation. Collabode [15] allows users to define
function-based microtasks, including testing and debugging a
function, which allows workers to evaluate the previous work.
It also provides workers the choice of skipping the microtasks
which do not match with workers’ skill sets. We propose re-
cruiting helpers and allowing them to choose the tasks, allow-
ing users to decide whether the answer is valuable.

Expert crowds
Flash teams [43] introduced a framework that allows users to
authorize modular tasks to link expert crowd workers and as-
semble small teams for complex tasks. However, the applica-
tion requires high user input effort for workflow management.

INTERACTING WITH A HYPOTHETICAL ASSISTANT
To understand how developers would use on-demand expert
support, we observed how developers interacted with a “hy-
pothetical assistant”. Our use of a hypothetical assistant is
similar to Shewbridge et al.’s use of a “faux 3D printer” to
explore future uses of 3D printing at home [47]. It allows
us to better understand the types of questions that software
developers would want to ask an intelligent assistant in the
“best case” scenario: if there are no limitations on its time,
compensation, or capability.
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Figure 1. Setup for our hypothetical assistant study. Developer partic-
ipants were asked to bring their own task to complete, and ask ques-
tions from our hypothetical assistant as if it could answer any support
question needed. Participants were still allowed to use traditional online
resources and augment them with the assistant as they saw fit. Context
related to their programming task was collected at the beginning of each
study, and audio of their questions was recorded during the session.

Study Design
We recruited five participants from the authors’ univer-
sity, each with different levels of programming experience.
We asked participants to work on their own programming
projects on their computer and IDE in a laboratory for 45
minutes. We instructed participants to imagine that they had
an intelligent human assistant nearby who is capable of an-
swering any questions that they express verbally. Participants
could use their hypothetical assistant to answer questions or
perform a variety of types of work. The hypothetical assis-
tant served as a conceptual prop that participants could make
requests to, while we recorded audio, as Figure 1 illustrates.
After the study, we conducted an interview regarding the hy-
pothetical intelligent assistant and looked for commonalities.

Participants’ Request Categories
We filtered out non-programming questions and found that
participants’ requests fell into seven categories. Table 1
shows the seven categories, the number of sessions in which
each question type appeared, and their overall frequency. We
explain each category in more detail in this section. We will
reference these categories in the design section.

Memory Aids
In memory aid requests, participants knew semantically what
they were looking for, but sought information regarding the
exact syntax required. For example,

P1: “. . . I forgot how to use the syntax for glmer() function in
R, I forgot like specifically how to write the random variable
like to feed to the function, so can you find that out for me?”

P5: “What’s the command to put in terminal in the command
line when trying to make a file and executable?”

Explanatory Requests
In contrast to memory aids, explanatory requests seek expla-
nations in addition to specific information.

P1: “I’m curious about what the [a] argument actual means
or like does in that functions can you find that as well.”

High-Level Strategic Guidance
Unlike the previous two request categories, high-level strate-
gic guidance questions ask for the best way to approach a

problem. Here, participants have a high-level idea of the task
they wanted to perform, but were not sure how to translate
their idea into code, or if it is possible.

P1: “I’m trying to like make a Bayesian network model based
on the current existing data, and I just wonder like is there a
good library or package that I can use from R. . . ”

P3: “Wondering if there is a way to ensure to understand if
the radio button in HTML can be color coded.”

Code Requests
Participants also asked for specific blocks or portions of code
from the hypothetical assistant.

P3: “How to make an AJAX get call from JavaScript”

Debugging Requests
Two participants also requested help debugging their code.
Although this type of request was relatively uncommon, we
believe this might be due to our study’s short duration. De-
bugging examples are:

P1: “I’m trying to make a new variable from R by selecting
like some parts of the data columns, but I kept getting an er-
ror. . . is there a way to like which column name has been
mistype, or doesn’t exist in the existing data frame?”

P1: “I’m trying to integrate MySQL database to R using R
MySQL library I’m using the db connect function, but I keep
getting an error if I use something like remote hostname other
than localhost I’m not sure what’s the problem. [sic]”

P1: “I’m using [a] function from [a] package from R, I do
. . . I’m getting unconstrained network result from, I want
to constraint the number of network by 2, but sometime it
gets too much time to compute then getting out unconstrained
network which is very strange for cause I thought it would
cost less time than the constrained one. Can you find out
why? And suggested how should I fix my code?”

Code Refactoring
Two participants also requested help refactoring their code to
improve its structure. Many of these code refactoring requests
also had an educational component; participants wanted to
refactor their code to improve their coding style.

P1: “I’m using ROC curve to evaluate logistic regression, not
sure whether that’s a good idea or not, can you find other
kinds of function that I can use to learn. . . ?”

P4: “I’m setting up a variable method to manipulate the class
I’m making in the init() function which I’m supposed to do,
I’m also curious as to whether I have to make persistent vari-
ables elsewhere outside of init() method, whether I can make
a new variable on self anywhere.”

P4: “What are the best like refactoring patterns going for-
ward that could make a non object-oriented script.”

Effort-Saving Requests
Four participants also made effort-saving requests to auto-
mate parts of writing and debugging code that they appeared
to find tedious. Interestingly, a large number of effort-saving
requests involved writing tests for code.



Description # Sessions (out of 5) # / Session
Memory Aids: Participants sought a specific function name 2 0.6
Explanatory Requests: Participants sought examples or explanations of their code 4 1.8
High-Level Strategic Guidance: Participants sought best ways to approach problems 5 4.6
Code Requests: Participants sought specific pieces of code 2 0.6
Bug Fixing: Participants sought specific solutions to program errors 2 1.0
Code Refactoring: Participants asked for code improvements 2 0.8
Effort-Saving Requests: Participants handed off tasks to save time and effort 4 4.0

Table 1. Common query types observed during our hypothetical assistant study, with corresponding frequencies. Each of these query types suggests a
support role that remote software development assistants can play in future systems. “Number of Sessions” indicates the number of different sessions
that each type of question occurred in, while “Number of Queries per Session” indicates the number of queries that referred to solving one of these
query types, on average.

P5: “Do some unit test for me to set key and get key.”

P3: “I can test it on IE, can you please test this on Safari?
Because I don’t have a Mac machine”

P4: “Make some of the document that I’m testing, like I’m
making a [a] document that’s kind of a pain to make, it will
be great if someone can do that.”
Findings and Interviews
Overall, each participant asked an average of 15 questions.
Participants often phrased questions in a way that required
knowledge of their code base. In other words, only 18% of
participants’ questions were “self-contained”.

To better understand participants’ concerns and suggestions,
we conducted a follow-up interview. In this interview, we
gathered their opinions on the advantages, disadvantages, and
desired features of a hypothetical code assistant. Every par-
ticipant indicated that timely responses would be crucial to
their adoption of such an assistant. Four participants also
cited personalized answers and free form questions as another
potential advantage of such an assistant over current systems.

P1: “A lot of time I like ask questions person to person. It’s
much easier to articulate my questions. . . ”

The most cited concern amongst participants was data pri-
vacy; two participants would prefer to have fine-grained con-
trol over what parts of their code they transmit when they
ask a question. Three participants were also concerned about
a potential lack of learning benefits compared to traditional
sources of information.

P5: “One bad thing that I think the system. . . goes against the
very nature of computer scientists, because computer scien-
tists need to solve those problems on their own”

One participant, who is a non-native English speaker with a
heavy accent, saw relying on voice input as a potential disad-
vantage. This participant found that they would prefer to type
questions rather than speaking them.

Finally, we asked participants the media with which they
would prefer an intelligent assistant responded. Although
participants had a strict preference between text (3/5) and
voice (2/5), most particpiants’ chosen medium depended on
the type of response. One participant preferred a combina-
tion of the two: voice feedback with bullet point reminders.
Participants also differed in their preferred style of response.
Two participants preferred a “teach me” style of feedback,

which they would translate into steps. However, two partici-
pant preferred a “show me” style of feedback when the ques-
tion is short, with directed instructions.

REMOTE PAIR PROGRAMMING SUPPORT
We ran a second study to explore how developers try to on-
board remote experts on demand. Unlike the hypothetical
assistant study, our study focused on communication chal-
lenges, such as on-boarding challenges, contextual needs, and
interaction difficulties.

Study Design
Whereas the first study referenced a hypothetical intelligent
assistant (which we think of as a “best-case” assistant), our
study used human assistants. We paired participants so that
every session had one “requester” and one “helper”. We re-
cruited 24 participants for 12 sessions, and gave requesters
Web development tasks that involved displaying JSON data
from a URL. Helpers were asked to respond to any queries
from requesters (through voice and text) during the study.
Figure 2 illustrates our study setup.

We determined whether each participant would be a helper or
requester based on their Web programming experience. To
measure this, we gave participants a pre-task survey of their
JavaScript and HTML skills. We assigned participants who
scored six or above (out of nine points) to helper roles and
those who scored five or below to requester roles. This sim-
ulates the case where a future system is able to recruit the
“right” helper for a job. Our experiments are intended to ex-
plore the interaction between helpers and requesters after the
recruiting has been completed.

All 12 requester participants were students at the authors’
university, as were half (six) of the helpers. We recruited
the other six helpers from Upwork [14], a popular freelanc-
ing platform. We specifically recruited Upwork participants
whose profiles indicated that they were professional program-
mers. We used the same survey to ensure they were equally
qualified to be helpers as our local participants.

During each session, requesters and helpers were physically
separated, and requesters can ask for support from helpers via
Skype, which connected them through the session. We asked
requesters to share their screen in order to provide enough
context to the helpers. We collected audio recordings during
the study to capture the conversations that the pairs had, and
the responses to the follow-up questions we asked them.
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Figure 2. Setup for our human expert assistant study. In each trial, one
“requester” participant (developer) was paired with one “helper” (ex-
pert, based on a pre-study skill assessment). Participants could chat via
either text or voice, and requesters were able to share their screen with
helpers as needed using Skype. The helper was tasked with assisting the
requester reactively, meaning that they only responded to queries, and
did not proactively propose solutions or approaches. This simulates a
“best case” (repeated, non-multiplexed helper) on-demand model where
human experts are not expected to be continuously available between
end-user queries.

Unlike most pair programming paradigms, we specifically
asked (and reminded them as needed) the helpers to be strictly
reactive. This is in contrast to many pair programming
paradigms where experts proactively monitor participants’
code. Instead, helpers would only look at requesters’ code
when the requesters explicitly asked a question. This allowed
us to better simulate the environment that intelligent code as-
sistants would operate in: responding only to explicit requests
for help and answering questions without having the com-
plete context in which they were asked. This also allows for
increased flexibility in the types of experts or crowds that can
support such a system in the future.

We told requesters that they could also search for help using
any standard Web resources (e.g., Google, Stack Overflow, or
library documentation sites). By letting requesters use third-
party resources, we gain a better understanding of the types of
questions they prefer to answer through web resources versus
where consulting a helper was preferred. After the study, we
asked participants a few questions to get feedback on their
experience with respect to the setting and helper, with specific
examples of issues that arose during the study.

After analyzing the data, we generated a list of features re-
lated to participants’ concerns during the study, and then re-
contacted all of the 24 previous participants. We received 11
replies (5 helpers, 6 requesters). We asked for their feedback
on how effective they think the suggestions would be, given
their experience during the study.

Findings
To understand the experience that participants had during the
study, we transcribed and analyzed all of the conversations
and interviews from our audio recordings. Following the the-
matic analysis method, we first read through each turn of the
requester-helper conversations, and the interview responses.
This resulted in the identification of 6 distinct user informa-
tion needs (see Table 2). We also counted the number of
sessions containing at least one occurrence of each informa-
tion need, and the number of conversations that each need
occurred in among the 12 pairs.

We defined a conversation to be a single, complete request-
response interaction between requesters and helpers. If turns
of a conversation were about the same initial requester query,
we counted them as a single conversation. If a requester asks
a new question, it begins a new conversation if and only if
there was new information elicited by the query itself. For ex-
ample, if a requester asks a question, the helper replies with
“Say that again?”, and the requester repeats their question,
then this second query does not elicit new information, and
thus would still be part of the same conversation. The same is
true if the situation is reversed and the requester says “What?”
to the helper’s response. However, if a helper first provides
a response, and the requester replies by clarifying their query
further, then we count the two questions as belonging to sep-
arate conversations. This rule separates interactions into fo-
cused pieces, and avoids imbalance due to participants’ vary-
ing styles of interaction.

Below, we provide evidence to support each of the claims in
this section. In addition, we derived system feature implica-
tions that address the participant needs that we observed.

Experience
Seven participants, including both requesters and helpers, ex-
plicitly mentioned they would like to provide or have some
kind of assessment of the requesters’ coding background in
order to receive or provide help more efficiently. For exam-
ple, if helpers knew that the requester is a jQuery beginner,
then the helper could avoid simply telling them to write an
AJAX call to make a request.

H1: “If I knew where she was coming from, it made it more
efficient, because I won‘t have to ask do you know what this
is, how to make this thing, or I could just say. . . ”

H1: “. . . do you know console.log?” R1: “Yes”

Context
Even though we designed the study such that the helpers do
not know what the requester’s task is beforehand, requesters
often rephrased part of the task to the helpers to provide
context. We observed that helpers often helped refine the
requester’s original questions and tried to get more context
about the questions. Also, since we asked helpers not to be
proactive and only use screen sharing when they need more
information, they did not observe all the changes that the re-
questers made since the last time they saw the requesters’
shared screen. For example,

H1: “She had it working correctly in terms of event title com-
ing out on the web in the output, then later on when she was
coding, and she was doing some quick copy and paste and
stuff like that and some quick kinda changes and tiny bit of
JavaScript, and I think she resize the, like different sizes in
JSBin, or whatever it’s called, so I couldn’t see all JavaScript
anymore, she’d changed something . . . , I couldn’t see what
she did. . . I couldn’t see what she did later, it’s literally not
like visible to my screen”

R11: “How can I make to fetch information line?” H11: “so
what exactly are you requesting. . . what kind of information
are you fetching?” R11: “it’s kind of like JSON file, I need to



Patterns Description # Sessions
(out of 12) # / Session # Interviews

(out of 12) # / Interview

Background Helpers wanted to know the requester’s experience level
and background 11 1.5 7 0.7

Context Helpers wanted to know what the high-level goals and
context were 11 1.5 9 0.8

Sharing Participants wanted a shared editor that lets helpers type
code directly 11 2.1 11 1.1

Real-Time
Response

Participants needed immediate responses (some pre-
ferred voice, others text) 12 N/A 10 0.9

Integrated
System

Participants did not like switching windows, and would
prefer a single system 9 N/A 7 0.8

Personalized
Help

Requesters wanted help suited to their intent, e.g., spec-
ifying “teach me” when more explanation was desired 9 1.0 10 1.2

Table 2. Common participant information needs that we observed during our human expert assistant study, with corresponding frequencies. Each of
these needs would limit the success of a naive approach to providing remote assistance for software developers. “Number of Sessions” indicates the
number of different trial sessions that each information need occurred in, while “Number of Conversations per Session” indicates the average number
of times each need arose in a conversation (stemming from requester queries). “Number of Interviews” indicates the number of unique interviews in
which the need was mentioned at least once. “Number of Mentions per Interview” is the average number of times that a participant mentioned the need
in the post-trial interviews.

extract several information from the JSON file.” H11: “Right,
do you have an URL or something?” R11: “Yeah”

H5: “If I could know what the problem is, the problem state-
ment that he was solving for, so I probably would be able to
help better.”

Sharing
During the study, we asked requesters to share their screen.
Both requesters and helpers mentioned that it would save time
if helpers could type in the requesters’ editor or point to which
line of code they were referring to. We observed that helpers
often used the shared screen to tell requesters where to look
and what to type. However, requesters were sometimes un-
able to follow helpers’ suggestions. This process took longer
than expected, potentially because of the ambiguity of the
helpers’ instructions (e.g., when multiple lines use the same
terms mentioned), or the requesters were not familiar with the
programming languages (e.g., what/where a callback func-
tion is), or communication issues (e.g., English proficiency,
or Skype signal quality). For example,

H1: “. . . just bring the cursor to the left into the after the curly
brace. . . ” R1: “after the curly brace, here?” H1: “yeah, and
then put a comma, and put a string call JSON, and quotes”
R1: “(typing)” H1: “no no the quotes . . . ”

R3: “The code she sent can run on her side, but I’m not able
to run it on my side. So if she could share it in some way, like
do a comparison of the output, that will be great.”

Real-time Response
We provided voice, text, and sharing of the requester’s screen
as communication channels during the study. Each of these
channels delivers different information. Pairs mainly spoke
to each other, even when helpers were instructing requesters
what to type. In the post-task interview, two participants men-
tioned the real-time response is good for technical support
based on their prior experience (H1, R3). The participants’
screen recordings also showed that when helpers were wait-

ing for a request, they complete non-support tasks, such as
coding their own project, reading news, etc.

However, more than half of participants were non-native En-
glish speakers, which led to voice communication issues.
Thus, many requesters asked helpers to communicate through
text. Furthermore, some requesters felt unconformable with
voice and hesitated to ask questions as a result.

H6: “In general, I won’t write for the requester, but more like
tell them [sic]. . . ”

Integrated System
Participants used multiple systems during the study: Skype,
code editor, browser, etc. We observed that participants were
often annoyed when switching their focus back and forth be-
tween windows. For example, if a helper sent a code snippet
to a requester via Skype, the requester would have to go to
Skype, and copy/paste the code to their editor. On the other
hand, when the helpers wanted to run the requesters’ code on
their own machine, they had to copy the code from Skype and
paste back into their editor. Beyond these issues, participants
also had problems with connections and platform switching.

R8: “The hangout got disconnected. I was talking and devel-
oping, and no clue when it was not working. Also, I have to
go back the window and check the text helper sent.”

H3: “Like every time I have to come back and check [Skype],
it’s very tiny, maybe it’s because I shrink it, and then I have
to open it up. . . if we could use JSBin, and then there is a chat
or voice on the side bar, that will be faster, so it’s like I type
and he can see and can talk. . . ”

Personalized Help
Often, we observed that requesters had to iterate on their orig-
inal questions, even if the helper provided a related answer.
Both requesters and helpers mentioned that they would like
to provide or know the level of responses they want to receive
from the helper or they should provide to requesters. This



could be a high level answer, such as goal, or a detailed an-
swer, like a function name. For example,

H1: “Do you want to try to type something or you want to me
to explain what to do?” R1: “Please explain what to do.”

R6: “It would’ve been helpful if he could intervene to see if
I’m doing something wrong ... that I couldn’t figure out.”

SYSTEM DESIGN SUGGESTIONS
After analyzing the data from the hypothetical assistant study
and the remote pair programming study, we found that both
requesters and helpers expressed their concerns regarding our
research question of how to provide or receive help more ef-
ficiently. We drew system design implications from these
concerns and suggested six features to both helpers and re-
questers. We contacted our prior participants (11 of 24
replied) and interviewed them about the six feature sugges-
tions we developed based on their experiences and concerns.
We used prototypes to explain three of these features. We
discuss the interviews and their design implications below.

Helper Page
To make helpers efficiently find the questions they are capa-
ble of answering, we suggested creating a webpage that lists
requesters’ unanswered questions. Here, we discuss two fea-
tures related to this page.

Question List
We prototyped this question list on a webpage that contains
all the unanswered requests that the requesters made, code in
the working file, requesters’ highlighted code, a Cloud9 [24]
link containing all the files in the repository that the requesters
work on, and the requesters’ Skype usernames. All of prior
helpers claimed that this information is enough for them to
determine if they are capable of answering a question. For
some helpers, a well-written question in natural language was
sufficient (H6, H10).

H4: “If it’s just whether you are capable of answering the
question, I mean I would say like just have the question as
specific as possible, with natural language.”

Background Assessment
With the concerns about the requesters’ programming expe-
rience, we suggest adding an assessment of requesters’ pro-
gramming abilities. We came up with four types of assess-
ments and let the helpers choose their favorite: 1) the num-
ber of lines of code they have written in the past, 2) the fre-
quency of their coding experiences, 3) the number of years
they have been programming, and 4) a self-rating of Begin-
ner/Intermediate/Expert.

Three out of five helpers chose assessment 2 (coding fre-
quency) because they thought the other options could not be
truly associated with the requesters’ actual skill levels. In ad-
dition, they mentioned they would probably need more than
the frequency: it would be ideal if they could also have the
summary of code they have previously written. The other two
helpers chose assessment 4 because they thought the other op-
tions could be biased. We also asked them whether they want
the assessment result to be given in comparison to their own

skill level or as an absolute measure. All preferred an abso-
lute measure.

H6: “I choose [assessment] 2. Because the total amount of
code he wrote is a vague concept compared to how much his
wrote in the most recent days and weeks.”

H10: “[I choose assessment] 4. 1 is hard to tell. You can code
a lot and don’t understand anything. 2 is not a thing you can
measure, someone’s skill. 3 is not a measure.”

Suggested Support Features
On the requester side, we found that six participants directly
mentioned the unfamiliarity they had with the JSBin editor.
They would prefer to code in their own editor. Therefore,
we suggested to develop a package on a widely used editor.
Below, we discuss four suggested features that are needed.

Code-Commenting Reminder
We found that helpers often want to know the broader con-
text of requesters’ questions (their project and task goals),
even when it was irrelevant to the request. Conversely, re-
questers also wanted helpers to be aware of their high-level
task and plan. To address this challenge, we prototyped a
feature in an editor that would automatically generate a de-
scriptive comment reminder (e.g. Please describe what this
method does) above important methods, such as API calls,
which could make the code more contextual and readable. All
six interviewed requesters found this to be a useful feature
that reminds them to comment their code and aids helpers’
understanding of their code.

R7: “It would be a total nagging thing, so like you are risking
annoying people, but that’s exactly the thing that you need to
nag, that you need to keep up with the commenting.”

Two participants suggested that this feature would be more
useful if they could better understand how these methods
were being used in the code and where they were called. This
would allow helpers to better understand requesters’ inten-
tions. We also suggest making this feature easy to control;
three participants mentioned that they would prefer to be able
to quickly enable and disable this feature.

R12: “[Often,] I forget to write my comments, it would be
great to be reminded, it would save me a lot of time later.
There is a small drawback when I don’t have the time to do
it, I don’t want something to keep bugging me and telling
me,. . . But if you can dismiss it, or if you can turn it off, it
won’t be annoying.”

Contextualized Explanations
One setting in which requesters do prefer text responses is
formatted code snippets. Helpers often want to include expla-
nations with proposed changes to requesters’ projects (either
code or comments). Also, requesters may forget where and
what they previously asked if the response time is long, thus,
ideal responses would not only provide them the answers, but
also where and what they asked.

H6: “If I can directly see what he is typing, not just his screen.
The screen resolution is not high, and I wish we could have
something like Google Docs.”



To overcome this, we propose adding a contextualized ex-
planation feature that checks all changes to the project code
made by a helper, and displays the proposed edit along with
an explanation generated by helpers. This may be similar in
style to a modern work processor comment (e.g., in Google
Docs, or Microsoft Word), which appears in a bubble to the
side of the main text, with a visible anchor linking the expla-
nation and the code. This not only helps requesters remain
knowledgeable about the specifics of their code base, even
when being supported by remote experts, but it also provides
a chance to learn from the edits made, if desired. Three par-
ticipants directly mentioned they would prefer to have such
feature versus having the helpers type directly for them.

Text and Voice
Participants could both type and speak to each other during
the study, and they had different preferences in terms of ask-
ing or answering questions. Four out of six requesters pre-
ferred using text to communicate to make exchanging sample
code easier. From the hypothetical assistant study, three out
of five participants preferred text as well, and the rest men-
tioned it depends on the questions. We prototyped the feature
that the requesters could ask a question in voice in the editor,
and we suggest that the system should also allow participants
to ask questions in text as well.

R11: “I like a mix of both, but if only one, I prefer text because
[a helper] can send the example. . . text will be very slow if I
want to explain what I’m doing, voice can do this interaction
very quick.”

R7: “[My preference is] probably voice, I found in general
that whenever I ran into a problem, as soon as I can articulate
the problem fully, I can find the answer to the problem”

Teach/Show Me Button
Ten participants expressed their wish that the helper could
provide more personal help. They may want helpers to edu-
cate them such that they can fill in their knowledge gaps. Or
they only want to speed their productivity up by simply com-
pleting the tasks. To be effective, this feature should be com-
bined with a background assessment tool that allows helpers
to better gauge requesters’ backgrounds. We suggest adding
an option for requesters to indicate their expected response:
if they want the helper to teach them about the question, or
if they just want the helpers to show them how to do a given
task. One requester mentioned that she usually wants to inte-
grate the example into her code so she prefers to understand
the code first (R8).

R2: “Also, if he can do this thing together, instead of he an-
swers my general question, I prefer more detail question, I
prefer he asked me something.”

FUTURE WORK
In future work, we aim to explore each of these features by
creating a functional system and deploying it with real users.
Further work is needed to iterate on the design of our ap-
proaches to addressing the user needs we found. This work
also informs the design of collaborative tools intended to help
teams of developers work more effectively.

Supporting Repeated Interactions
Over time, helpers and experts might build up trust relation-
ships. Developers might prefer to route their questions to ex-
perts with whom they have a prior relationship when possible.
They may also want to give these experts additional permis-
sions to edit or view code. We are exploring ways to support
such ongoing relationships, even given dynamic workforces.

Note that we explicitly limited the type of support to reac-
tive support — a developer must ask a question before re-
ceiving support. We are also considering ways to make help
efficiently proactive — allowing experts to give users sugges-
tions even before they explicitly ask a question. This way, if
an expert sees a potential issue a developer will face, they can
proactively suggest how they can best accomplish their task.

Privacy Considerations and Crowds
A key remaining challenge will be to preserve the privacy of
both the end users and their projects. Prior work has explored
potential ways to preserve privacy in images and other media
[33, 30], but not with complex, context-dependent tasks like
programming. An interesting open question is how expert
programming sub-tasks can be coordinated between multiple
helpers to preserve private information about the project and
approaches used, in a manner that still allows the task to be
completed successfully. The same approaches would allow
multiple developers to support a single end-user developer
quicker and more accurately than any single helper could.

Motivation and Compensation
Another interesting open question is how to best motivate and
compensate experts for their help. The design space for on-
demand support is larger than any particular system, and no
one mechanism for compensation is inherent to the idea of
on-demand support. On the other hand, many CQA websites
rely on a reputation-based system to motivate experts to an-
swer questions [41]. Future work will study different cost
structures for on-demand support through real deployments
instead of in-lab studies, which may change the way that par-
ticipants view costs.

CONCLUSION
In this paper, we have informed a broad space of support sys-
tems and presented a first glimpse into the challenges and op-
portunities of on-demand expert support for software devel-
opment tasks. Our studies provide insight into how and when
developers choose to reach out for assistance, and the chal-
lenges of supporting developer needs via a remote expert. We
have presented a set of features to address the primary needs
that appeared in our study. We then validated the proposed
utility of these features in a follow-up design iteration with
participants from our trials. In summary, this work informs,
and brings into focus, a previously under-studied paradigm of
expert developer support.
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and André van der Hoek. 2014. Microtask
programming: Building software with a crowd. In
Proceedings of the 27th annual ACM symposium on
User interface software and technology. ACM, 43–54.

33. Greg Little and Yu an Sun. 2011. Human OCR: Insights
from a complex human computation process. In
Workshop on Crowdsourcing and Human Computation,
Services, Studies and Platforms, ACM CHI.

34. Greg Little, Lydia B Chilton, Max Goldman, and
Robert C Miller. 2010. Turkit: human computation
algorithms on mechanical turk. In Proceedings of the
23nd annual ACM symposium on User interface
software and technology. ACM, 57–66.

35. Rajan M Lukose, Eytan Adar, Joshua R Tyler, and
Caesar Sengupta. 2003. Shock: communicating with
computational messages and automatic private profiles.
In Proceedings of the 12th international conference on
World Wide Web. ACM, 291–300.

36. Lena Mamykina, Bella Manoim, Manas Mittal, George
Hripcsak, and Björn Hartmann. 2011. Design lessons
from the fastest q&a site in the west. In Proceedings of
the SIGCHI conference on Human factors in computing
systems. ACM, 2857–2866.

37. David W McDonald and Mark S Ackerman. 2000.
Expertise recommender: a flexible recommendation
system and architecture. In Proceedings of the 2000
ACM conference on Computer supported cooperative
work. ACM, 231–240.

38. Harlan D Mills. 1980. Software engineering education.
Proc. IEEE 68, 9 (1980), 1158–1162.

39. Audris Mockus and James D Herbsleb. 2002. Expertise
browser: a quantitative approach to identifying
expertise. In Proceedings of the 24th international
conference on software engineering. ACM, 503–512.

40. Gary M. Olson and Judith S. Olson. 2000. Distance
Matters. Human-computer interaction 15, 2 (2000),
139–178.

41. Stack Overflow. 2015. Stack Overflow. (2015).
https://stackoverflow.com/ Accessed: September,
2015.

42. Maria Soledad Pera and Yiu-Kai Ng. 2011. A
community question-answering refinement system. In
Proceedings of the 22nd ACM conference on Hypertext
and hypermedia. ACM, 251–260.
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