
Empowering Designers with Creativity Support Tools

Stephen Oney
Human-Computer Interaction Institute

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213 USA

soney@cs.cmu.edu

Abstract

When conceiving of and implementing interactive
behaviors, most designers rely on professional
software developers to prototype and implement their
designs. They often use static drawings or animations
to convey how their application should work. While
these drawings are effective in conveying the look of an
application, they do not effectively communicate its
feel. In addition, other barriers prevent many
interaction designers from taking full advantage of
computational tools. We plan to address this by
building a new development language and environment
especially suited for creating and prototyping
interactive applications. In this paper, several related
studies and their implications for the design of such a
language are discussed.

1. Introduction

The lack of expressiveness in nearly all modern
programming languages is a significant barrier for
interaction designers interested in creating novel
interactive applications. Most prototyping and
development tools are complex enough that when
designing interactive applications, designers must rely
on programmers to create prototypes and program the
final application. This separation between the designer
and programmer of the interactive application reduces
the expression of many designers by introducing a
communication barrier and reducing the amount of
possible design iteration. While researchers and
corporations have created several tools aimed at
alleviating communication problems between
designers and developers, the underlying languages
and development environments used by both designers
and developers often hinder their expressiveness. To
address these issues, we have started the Euclase
project. We aim to create a development environment
especially for the creation of interactive behaviors and
applications.

2. Related Work

Many past studies on designers and developers can
help guide the feature-set of a tool especially for
interaction designers. A few of the most relevant
studies and tools are described here.

Myers et al. pointed out many of the immediate
deficiencies in the tools used by designers [1]. They
found that while it was easy to communicate look, it
was much more difficult to illustrate how their
application would feel. Most of the desired behaviors
designers were interested in creating were too complex
to effectively be captured by any fixed set of widgets.
Designers also indicated a strong desire to be able to
explore and be able to easily find and backtrack to
previous designs. In addition, Brandt et al. found that
most development tools do a poor job of allowing their
users to easily incorporate examples into their own
code [2]. They investigated the role of examples for
developers, classifying the types of examples used and
found that examples are crucial in the development
process.

In addition to pointing out possible areas for
improvement over today’s tools, Park et al. have
investigated the feasibility of creating a programming
language that allows for natural descriptions of
interactive behaviors [3]. They found that most
behaviors had descriptions that were shared amongst
almost all the participants. The commonalities in how
certain interactive behaviors are described can help
guide the design of a language especially aimed at
allowing designers to prototype interactive behaviors.

3. Approach

The goal of the Euclase project is to create a

language and development environment especially
aimed at increasing the expressiveness of designers
while creating interactive applications. To do this, I
first investigated the needs of interaction designers

through a participatory design workshop, working with
several other Carnegie Mellon researchers, including
members of the School of Design.

In the workshop, designers and developers were
paired and designers had to communicate the design of
a novel control for either an online used car purchasing
website or a flight booking service. Developers were
paired with designers at the start of the workshop and
switched partners for the second half of the workshop
to be paired with different designers and different
projects. This was to investigate problems designers
have in communicating new and unique designs. In
addition, all participants were asked to think of ways in
which a tool could help improve their communication.
We found that written descriptions and pictures of
interactive behaviors are not sufficient to explain how
an interactive behavior works for two main reasons.
First, they usually require some other form of
grounding or context (often in the form of an example
scenario designers have in mind but don’t usually write
down). Second, although designers usually have an
idea of what parts of their designs are uncertain and
malleable, these tools are not effective at
communicating the relative importance of different
aspects of the design. This often leads to developers
making software architectural decisions that are
difficult to change if the design is modified later on.

4. New Tools

Inspired by the importance of examples to both
designers and developers, I wrote FireCrystal, a
Firefox add-on that helps users find code relevant to
interactive behaviors [4]. With FireCrystal, developers
interested in copying an interactive behavior from a
foreign website can record the interaction they want to
copy and then replay that interaction with FireCrystal
highlighting the relevant source code and files.

While FireCrystal and other tools augment existing
languages, I plan to approach many of the
aforementioned obstacles by creating a new
development language with features oriented towards
the needs of interaction designers. Some of the crucial
features of this new language are encouraging
exploration, improving collaboration and
communication in distributed teams, providing a
syntax that is naturally suited towards interactive
behaviors, and allowing for simpler debugging.

To encourage more exploration on the part of
designers, the development environment could offer
undo on the feature level while keeping track of what
users have done across sessions. In addition, by
making examples central to the language, designers
could be encouraged to explore by using and

customizing the prototypes of other designers. This
might be done by including additional information
about how the variables in examples are used, or what
libraries need to be imported, in the form of additional
meta-information.

Communication and collaboration possibilities
amongst distributed team members could be improved
by allowing for annotations on top of working
prototypes, which would increase the visibility of
design rationales and other notes. In addition, the same
architecture that would allow the language to make
better use of examples and keep track of many
revisions could allow distributed teams to keep track of
many different versions of a particular project and
easily pick out and combine features from multiple
project revisions.

5. Conclusion

Previous studies have pointed out that today’s tools
are not suitable for interaction designers for multiple
reasons. We have built on these studies with a
participatory design workshop and a preliminary tool
to help designers extract example interactive behaviors.
For future work, rather than building a tool on existing
languages, we plan to test ways of making a new
language that is more suitable for creating interactive
applications and to evaluate the effectiveness of
different language features. By creating a language
with these features, we hope to allow more interaction
designers to take advantage of the power of
computational tools.

6. References

[1] B. A. Myers, S. Y. Park, Y. Nakano et al., “How
Designers Design and Program Interactive Behaviors,” IEEE
Symposium on Visual Languages and Human-Centric
Computing,, pp. 177-184, 2008.

[2] J. Brandt, P. J. Guo, J. Lewenstein et al., “Two studies of
opportunistic programming: interleaving web foraging,
learning, and writing code,” Proceedings of the 27th
international conference on Human factors in computing
systems, 2009.

[3] S. Y. Park, B. Myers, and A. Ko, “Designers' Natural
Descriptions of Interactive Behaviors,” IEEE Symposium on
Visual Languages and Human-Centric Computing, pp. 185-
188, 2008.

[4] S. Oney, and B. Myers, “FireCrystal: Understanding
Interactive Behaviors in Dynamic Web Pages,” Visual
Languages and Human-Centric Computing, 2009 (to
appear).

