
Towards Inclusive Source Code Readability Based on the
Preferences of Programmers with Visual Impairments
Maulishree Pandey∗
maupande@umich.edu

University of Michigan School of
Information

Ann Arbor, Michigan, USA

Steve Oney
soney@umich.edu

University of Michigan School of
Information

Ann Arbor, Michigan, USA

Andrew Begel
abegel@cmu.edu

Carnegie Mellon University Software
and Societal Systems Department

Pittsburgh, PA, USA

ABSTRACT
Code readability is crucial for program comprehension, mainte-
nance, and collaboration. However, many of the standards for writ-
ing readable code are derived from sighted developers’ readability
needs. We conducted a qualitative study with 16 blind and visually
impaired (BVI) developers to better understand their readability
preferences for common code formatting rules such as identifier
naming conventions, line length, and the use of indentation. Our
findings reveal how BVI developers’ preferences contrast with those
of sighted developers and how we can expand the existing rules to
improve code readability on screen readers. Based on the findings,
we contribute an inclusive understanding of code readability and
derive implications for programming languages, development envi-
ronments, and style guides. Our work helps broaden the meaning
of readable code in software engineering and accessibility research.

CCS CONCEPTS
• Human-centered computing→ Empirical studies in acces-
sibility; Empirical studies in collaborative and social computing.

KEYWORDS
software developers, blind or visually impaired, accessibility, code
readability
ACM Reference Format:
Maulishree Pandey, Steve Oney, and Andrew Begel. 2024. Towards Inclusive
Source Code Readability Based on the Preferences of Programmers with
Visual Impairments. In Proceedings of the CHI Conference on Human Factors
in Computing Systems (CHI ’24), May 11–16, 2024, Honolulu, HI, USA. ACM,
New York, NY, USA, 17 pages. https://doi.org/10.1145/3613904.3642512

1 INTRODUCTION
Reading code is one of the most fundamental and important activi-
ties in software development. Readability is a subjective measure-
ment of how easy it is to go through any given code. More readable

∗The author is currently a UX researcher at Google. The research was done when she
was an a doctoral student at the University of Michigan.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CHI ’24, May 11–16, 2024, Honolulu, HI, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0330-0/24/05. . . $15.00
https://doi.org/10.1145/3613904.3642512

code is easier to comprehend and maintain in the long term. Typ-
ically, software maintenance comprises 70% of any project’s life
cycle [15], making it the most intensive aspect of software develop-
ment projects. Elshoff and Marcotty recommended adding another
phase to the software lifecycle just to make the source code more
readable [23]. They suggested the phase should require developers
to apply consistent formatting, leave good comments, and remove
unused code blocks. Software companies enforce adherence to cod-
ing standards [48] and use code reviews to ensure code quality [22].
Companies like Google and AirBnb have even made their coding
standards public to ensure consistent and readable code contribu-
tions from the larger programming community [3, 27]. Others have
recommended ensuring the readability of documentation to aid
developers in making readable edits to codebases [1, 29]. Some also
propose teaching students to write readable code as part of standard
programming coursework [19].

The focus on readability has led to the development of rich visual
design and functionality in code editors. For instance, indentation is
long known to improve readability among sighted developers [53].
Code editors like Sublime Text, and IntelliJ display vertical lines
to visually match indentation levels. IDEs such as VS Code offer
mini-maps, which are zoomed out representations of the code struc-
ture. Developers can quickly navigate to different code blocks by
identifying their shape and relative position in the map.

However, our current understanding of readability is based on
the opinions and preferences of sighted developers [21, 36]. Blind
and visually impaired (BVI) programmers use assistive technologies
(ATs) such as screen readers, which lack the visual expressiveness
and information density of graphical user interfaces (GUIs). The
serial and ephemeral nature of screen reader output [10] leads to
different browsing [12] and skimming [2] strategies among BVI
people in comparison to sighted people. These differences between
screen readers and GUIs suggest that BVI developers may have
different readability preferences from sighted developers. In this pa-
per, we investigate code readability for BVI developers. Specifically,
we pose the following research questions:

(1) RQ1. How and why do the code readability preferences of
BVI developers differ from that of sighted developers as
identified through literature review (see §2.2)?

(2) RQ2. What implications do these differences have for pro-
gramming tools such as static analyzers and code editors,
code styling guidelines, and programming languages?

We conducted a remote exploratory qualitative studywith 16 BVI
developers to answer our research questions. During the study, we
asked participants to review 15 rules related to code readability (see
Table 1). We presented two functionally equivalent but differently

https://orcid.org/0009-0005-0543-3088
https://orcid.org/0000-0002-5823-1499
https://orcid.org/0000-0002-7425-4818
https://doi.org/10.1145/3613904.3642512
https://doi.org/10.1145/3613904.3642512


CHI ’24, May 11–16, 2024, Honolulu, HI, USA Maulishree Pandey, Steve Oney, and Andrew Begel

formatted versions of code snippets for each rule. One version’s
presentation was informed by PEP8 [63], the official Python style
guide, serving as a proxy for sighted developers’ preferences; the
second version’s formatting was informed by accessibility research.
We asked participants to select their preferred option for each rule.
We asked follow-up questions to understand their preferences and
concluded with a short semi-structured interview to elicit their
experiences with code styling during collaborative activities such
as code reviews.

Our research leads to a more inclusive understanding of code
readability and makes the following contributions to the fields of
HCI, accessibility, and software engineering research:

• A taxonomy for what is good code formatting on screen
readers vs. GUIs to support better code readability

• Empirical data to explain how various factors shape code
readability on screen readers

• Design recommendations for code editors and programming
languages

2 RELATEDWORK
Buse and Weimer defined code readability as “a human judgement
of how easy a text is to understand” [17]. Readability is known
to improve program comprehension but is distinct from overall
understandability of code. For instance, readable code may still be
difficult to understand due to unfamiliar APIs, poor documentation,
and complexity of source code [51]. Sighted developers do not read
code linearly. They are far more likely to skim the source code to
locate regions of interest where they do more focused reading [54].
In this section, we first draw on empirical studies at the overlap of
accessibility and programming to explain what we know about code
reading, comprehension, and navigation on screen readers. Then
we summarize the factors that shape code readability for sighted
developers.

2.1 Code Reading on Screen Readers
The primary focus of existing HCI and accessibility studies has been
on code navigation and comprehension. However, a close review
of these papers reveals a few insights about readability.

2.1.1 Linear Navigation. Prior research suggests that BVI devel-
opers want to avoid going through the codebase line by line but
are forced to do so to get an overview of the code structure [5].
Francioni and Smith developed JavaSpeak to enable BVI developers
to acquire details about the code structure and semantics more
efficiently [25]. JavaSpeak spoke the code with different intona-
tions to communicate structure. The researchers also suggested
using prosodic elements like speaking rate, pitch, or phrasing to
communicate semantic characteristics about code [25], a recom-
mendation seconded by Stefik [58]. Screen readers like JAWS [26]
and NVDA [35] use prosody to indicate the capitalization, which
may come in handy during programming.

Stefik suggested using audio cues to inform BVI developers about
the “scoping relationships between pieces of syntax” to commu-
nicate the information provided by syntax highlighting [58]. An
example of Stefik’s suggestion would be the work by Hutchinson
and Metatla [30]. They designed 12 audio cues to represent different
programming constructs, such as the sound of door opening for

if blocks and door closing for else blocks [30]. The idea was that
developers could use the audio cues to skip listening to the entire
statement and move through the codebase more efficiently [30].
However, BVI participants in the study reported wanting more prac-
tice with the audio cues to map them accurately to the constructs.
Evidence suggests that skeuomorphic audio cues can help reduce
the learning curve [43].

Studies suggest that BVI developers avoided indenting code alto-
gether unless collaborating with sighted developers [5, 41]. It makes
linear code reading very verbose by announcing all the whitespaces.
BVI developers are known to develop custom scripts to minimize
the indentation announcement [5]. For similar reasons, they pre-
fer to not receive all punctuation announcement [9]. One way to
address verbosity is by outputting the semantic meaning of a code
statement but that can make editing the syntax challenging in real-
world projects [58]. Thus, researchers have used the approach only
for making source code more understandable to novice BVI devel-
opers [50, 59]. Lastly, recent evidence shows that poor identifier
or variable names affect code reading and debugging on screen
readers [40, 41] but we lack perspective on their casing, length, and
naming choices.

2.1.2 Non-Linear Navigation. Sighted people can use an array of
methods for non-linear navigation: scroll, point and click, use key-
board shortcuts, utilize IDE features like tree views and mini maps,
and keyword search. BVI developers only have a subset of these
options available to them to make sweeping jumps through the
code [43]. Keyword search is reportedly one of the most common
methods for code navigation [5, 44]. BVI developers have reported
maintaining a document to easily look up variable and function
names [4]. However, search can be time consuming and frustrat-
ing when multiple results pop up for the same keyword [5]. BVI
developers have to review code statements multiple times to verify
they are on the required line [5]. As a workaround, they may leave
comments to bookmark interesting locations in the code [5].

Another common strategy is to jump between function signa-
tures [6, 7]. Audio-based plugins are especially helpful in non-
linear navigation. StructJumper provided a hierarchical tree view
of the source code’s nested structure to facilitate skimming and
non-linear navigation [9]. Its evaluation showed that efficient navi-
gation meant BVI developers did not have to remember much of
the code during code reading [9]. The success of hierarchical trees
was extended to support navigation of larger software projects with
several files [42, 56].

2.2 Factors Affecting Code Readability for
Sighted Developers

Prior research suggests that readability for sighted developers de-
pends on the following: (1) use of spacing to make blocks visually
distinguishable and easily identifiable using indentation, vertical
line breaks, and whitespaces (2) identifier names and their naming
style (camel case vs. snake case), (3) line length for source code and
comments, and (4) text formatting [36]. We discuss these below;
Table 1 summarizes the factors and their sub-factors.

2.2.1 Spacing. Indentation is one of the most widely used ap-
proaches for modifying code layout. Early evidence suggested that



Towards Inclusive Source Code Readability Based on the Preferences of Programmers with Visual Impairments CHI ’24, May 11–16, 2024, Honolulu, HI, USA

as program complexity increased, indentation improved program
comprehension [18, 53]. Subsequent studies investigated the op-
timal amount of indentation that aided in readability without in-
creasing typing effort. For instance, Miara et al. suggested using 2–4
spaces to indent code blocks in Pascal, with 2 spaces offering most
readability across developers’ experience levels [32]. Furthermore,
they found that an overly indented code made scanning difficult.
Indentation also had diminishing returns in heavily nested code or
when entities were separated by blank lines [18]. While developers’
opinions remain undecided between 2 vs. 4 spaces [11, 21], the
latter gives the visual appearance of a tab character and may lead
to inconsistent use of tabs and spaces during collaboration, causing
breakdowns in programming languages such as Python.

Another way to improve source code navigation is through seg-
menting i.e., putting blanks lines between code blocks that are
functionally not similar [17, 49, 61, 64]. While it has not been found
to have a significant effect on program comprehension and re-
call [31] and developer opinion seems split on the topic [21], coding
standards recommend the use of vertical space to delineate code
blocks [63]. Furthermore, the approach is an alternative to more
explicit form of coding such as marking the beginnings and ends
of code blocks with explicit statements or comments, which makes
the code longer and difficult to read [60].

Coding standards also recommend using whitespaces around
operators to improve legibility at line level [63]. While they have
not been reported to significantly improve readability [49], they
are considered good coding practice [17].

2.2.2 Identifiers. Meaningful identifier names (e.g., variable names
or function names) have been found to improve readability [61]
whereas poor naming practices can increase developers’ cognitive
load [24]. Developers may not follow good naming practices due
to differing opinions on what constitutes a good name [61], with
novice developers more likely to use poor naming choices [47].

When it comes to identifiers, the word boundary style also mat-
ters. Sharif and Maletic investigated the effect of camel case and
snake case on identifier names [52]. They found that participants
took 13.5% longer to recognize camel case identifiers [52]. On the
other hand, Binkley et al. [14] found that regardless of developer
experience, camel casing led to higher accuracy for source code
manipulation in Java and C. Their follow-up study found that be-
ginners recalled camel cased identifiers better whereas experts re-
called better with snaked case. However, there was no statistically
significant difference in visual effort needed for both styles [13].
Furthermore, regardless of the word boundary, longer names took
more time to be recognized [14].

2.2.3 Line Length. Readability also depends on line length. Long
lines of code are more difficult to understand, much like long sen-
tences. Most coding standards recommend limiting lines to 79 char-
acters [63]. It allows sighted developers to open multiple editor
windows side by side and avoid horizontally scrolling [21]. Some
researchers have even recommended that programming languages
should favor constructs that allow developers to write shorter lines
of code, for example using pre and post increments (e.g., i++) in-
stead of addition operations (e.g., i = i + 1) [17].

Coding standards such as PEP8 typically recommend a shorter
line length of 72 characters for more free flowing text such as

comments and docstrings, which are strings used to document
functions and classes [63]. Comments are especially useful in large
non-modular code [62]. Developers are encouraged to use com-
ments sparingly and write them in simple language [57], while
ideally writing code where the intent is apparent without the need
for additional explanations [28].

2.2.4 Text Formatting. Readability for sighted people is shaped by
legibility of the displayed text, which comprises layout (discussed
above) and text formatting characteristics. Good legibility is re-
lated to readers’ spatial visual abilities [65]. Depending on one’s
visual acuity, one needs to modify formatting attributes such as font
type, contrast, font size, etc. to maximize the legibility of readable
text [65]. For instance, Baecker applied the principles of graphic
design to C programs [8]. He relied on different font types, propor-
tional character spacing, and color contrast to improve the parsing
of complex statements and special symbols by 25%, as measured
by performance on a comprehension test [8]. Similarly, Raymond
explored the use of typography to enhance readability [46]. Code
editors set the formatting characteristics to reasonable defaults
and these can be personalized by sighted developers to their liking.
Among the factors discussed above, visual formatting is least rele-
vant to BVI developers. They do not use text formatting attributes
such as font size, font family, and colors on screen readers.

Modern code editors offer syntax highlighting and auto inden-
tation to help sighted developers in identifying areas of interest.
Static analysis tools such as code linters flag departures from cod-
ing standards such as line length violations or poor indentation
without having to run the code. Together, these features facilitate
skimming and focused reading for sighted developers. But we know
little about how BVI developers identify areas of interest and what
helps them in focused reading. Our study attempts to address that
gap.

3 STUDY DESIGN
We conducted a remote exploratory qualitative study with 16 BVI
developers to understand their preferences and perspectives on
factors that impacted code readability. Studies lasted between 58 to
90 minutes.

3.1 Participants
We obtained IRB approval from the university for our study.

We recruited our participants through snowball sampling and on-
line forums such as program-l, a mailing list primarily comprising
BVI developers [45]. The eligibility criteria for participation were
that developers should be 18 years or older, possess at least one
year of experience programming with screen readers, and be able
to communicate about code in spoken English. Since code styling
guidelines vary across programming languages, we selected Python
and JavaScript for the study. Our choice was informed by the im-
mense and consistent popularity of both programming languages
in the developer community [38, 39].

We circulated a questionnaire to screen participants who met
our eligibility criteria. The questionnaire asked respondents to self-
report their programming experience in Python and JavaScript on
a scale of 1 to 5; 1 meant no experience and 5 meant expertise in



CHI ’24, May 11–16, 2024, Honolulu, HI, USA Maulishree Pandey, Steve Oney, and Andrew Begel

Table 1: Readability factors we considered in our study. #O1 and #O2 indicate the number of participants who chose option 1
and option 2 respectively for any factor/sub-factor combination. #O3 indicates participants who found both options equally
readable or proposed a third alternative. Last column is a sum of O1 – O3 and equals the total number of participants in our
study

Factor Sub-Factor Code Type Option 1
(O1)

#
O1

Option 2
(O2)

#
O2

#
O3

#
Sum

Spacing Indentation Nested Data Struc-
tures

Separate parentheses and
key-value pairs

12 Match key-value pairs and
parentheses

4 0 16

Docstrings Indent docstring arguments 4 Do not indent docstring ar-
guments

9 3 16

Segmenting – Use two blank lines to sepa-
rate entities

4 Use single blank lines 12 0 16

Whitespaces Mathematical Op-
erators

Surround operators with
whitespaces

10 Avoid whitespaces 3 3 16

Slice Operators Surround operator with
whitespaces

10 Avoid whitespaces 5 1 16

Identifiers
Word Bound-
aries

– Use snake case 2 Use camel case 10 4 16

Length – Long variable name 13 Short variable name 0 3 16

Intent – Use consistent prefixes 2 Use consistent suffixes 12 2 16

Line Length

– Function Calls Render arguments on sepa-
rate lines

8 Render arguments on same
line

6 2 16

– Function Signa-
tures

Render arguments on sepa-
rate lines

10 Render arguments on same
line

5 1 16

– Chaining Treat dot operator as a de-
limiter

14 Do not treat dot operator as
a delimiter

1 1 16

– Binary Operations Place line break before the
operator

7 Place line break after the op-
erator

4 5 16

– Comments Split comment across lines 3 Do not split comment 12 1 16

– Imports Place imports on different
lines

7 Place imports on the same
line

6 3 16

String Quotes Quote charac-
ter

– Use single quote 2 Use double quotes 12 2 16

the language. We selected respondents who reported an experience
of 3 or higher. We received a total of 20 responses and conducted
the study with 16 respondents. All recruited participants reported
either equal experience between Python and JavaScript or more
programming experience with Python. Therefore, we conducted
the study entirely using the Python stimuli. The questionnaire
also collected details about participants’ demographics, assistive
technology use, and job role (see Table 2).

In our final study sample, 14 participants identified as men and
2 identified as women. Participants were between 18 – 38 years old.
They were employed as backend developers, full stack developers,
tech lead positions, or were pursuing a higher education degree
in computer science or a related field. All participants relied on
screen readers to interact with digital devices; three participants
reported using braille displays in the screening questionnaire but
did not utilize them during the study. Specifically for the study, 14
participants used NVDA and 2 used JAWS (see Table 2).

3.2 Stimuli
The study was conducted remotely on Zoom. During the study,

we presented participants with a markdown file that listed 15 code
formatting rules based on the factors identified from existing re-
search (see section 2.2). For each rule, we provided two functionally
equivalent Python code snippets, inspired by Santos and Gerosa’s
study design [21]. One version conformed to PEP8 standards [63]
and served as a proxy for sighted developers’ preferences (e.g., in-
dented code block, snake case for identifiers); the other option was
either formatted based on the evidence from accessibility research
(e.g., unindented code to minimize verbosity) [5] or the alternative
considered in studies with sighted developers (e.g., camel case for
identifiers) [52]. We added a rule to understand preferences for
quoting strings because we expected it to impact verbosity [63] We
randomized the order of rules and the order of options before each



Towards Inclusive Source Code Readability Based on the Preferences of Programmers with Visual Impairments CHI ’24, May 11–16, 2024, Honolulu, HI, USA

study session to mitigate learning effects across participants. Table
1 summarizes the rules and their breakdown across factors that
affect readability. Appendix A lists code snippets corresponding to
Table 1 whereas appendix B shows a randomized markdown file
presented as stimuli to one of the participants.

3.3 Procedure
We asked participants to open the markdown in a code editor

of their choice. Table 2 lists the code editor and the screen reader
they used during the study. Participants were told to read each rule
and its options as they would naturally go through any code. For
each rule, we asked them to share which option they preferred and
why. The research coordinator asked follow up questions about
how the options affected readability, navigation, and verbosity on
screen readers. Participants had the choice of creating alternatives
if they did not like either of the two options presented in the mark-
down. The study concluded with a semi-structured interview to
elicit their perspectives about differences in code styling prefer-
ences with sighted developers and the workflows they followed to
improve code readability during collaboration. We compensated
each participant with a USD $60 gift card (or its equivalent in local
currency) for their participation.
3.4 Analysis
We transcribed the data from each study session. We organized and
summed up participants’ choices for each rule. We report these in
Table 1 (columns 5, 7, and 8). We used the transcripts to highlight
quotes that explained participants’ choices. We identified emerging
aswell asmissing themes in participants’ reasoning for their choices
through analytic memos [34] and weekly team check-ins. In round
1, we used descriptive codes [34] to organize the themes into the
following categories: (1) readability, (2) ease of navigation, (3) typing
effort, (4) collaboration, (5) programming tool and screen reader
settings. In round 2, we used inductive coding [34] to develop sub-
themes within each of them, followed by merging of certain themes.
We finally ended up with three high-level themes that explain
participants’ choices across all factors and form the findings section
of our paper.

4 FINDINGS
This section along with Table 1 answers RQ1: how and why do
the code readability preferences of BVI developers differ from that
of sighted developers as identified through literature review? We
explain how length of code (see §4.1), programming environment
(see §4.2), and different levels of navigation (see §4.3) shaped prefer-
ences across the factors and sub-factors we considered. Participants’
quotes are lightly edited for clarity.

4.1 Impact of Line Length on Readability
We open our findings section by discussing how line length and
type of code (e.g., function calls, library imports, comments, etc)
shaped participants’ code styling preferences.

Listing 1: Options presented to participants for call chains

4.1.1 Line Length. Participants preferred lengthy function calls,
signatures, and chained statements to be split across multiple lines
instead of single line (e.g., Option #1 in Listing 1). PEP8 recom-
mends limiting line length to 79 characters unless teams prefer
otherwise [63]. The character limit enables sighted developers to
open files side by side without horizontally scrolling to read the
overflowing text. While our finding is in agreement with PEP8’s
guideline, our participants’ choices were driven by reasons of code
comprehension. Screen readers are programmed to read out all the
content on the line when the cursor reaches it. Participants shared a
long and complex line of code, such as a function chain (e.g., Option
#2 in Listing 1), was difficult to process when read out in one go. To
avoid the continuous audio stream, they used the control-right and
control-left arrows to read one word at a time. However, that proved
to be too slow a reading pace. On the contrary, when code was
split across multiple lines, the screen reader read smaller chunks.
These were not only easier to process but also gave more control to
participants. They could choose which chunk to pause on or skim
past without listening to it entirely:

“So like if they are in the same line like, my mental
process cannot process anything. So like this one, if it is
split into multiple lines, I just read a part of the content
bit by bit [reads Option #1 of Listing 1]. So this line is
not too long so after reading it [...] And after processing,
I can just move to the next line.” — P15

If the line included complex variable names, participants had
to navigate through each character to verify the contents. Here
again chunking helped! Participants could get to complex-sounding
arguments quickly by first down-arrowing to the chunk they were
interested in and then using right and left arrows to verify the
characters:

“I want to read this character by character. Probably
I’ll be a little bit more faster because I’m right in the
starting of the line, and I don’t need to find that word.
Immediately I can start reading, right? From the first
character. ” — P11

We noted that participants’ preferences were mediated by the
likelihood of code reuse. A few participants pointed out that func-
tion signatures could be kept on one line despite its length since
one is unlikely to change it. P15 mentioned that keeping function
definition on one line enabled him to “just copy the line and paste
it”, which he could then populate with the arguments to invoke the
function. Typing or copy-pasting the function call in multiple places
helped memorize the function definition. The ability to easily recall
the code meant they could skip past the signature, which in turn
made them prioritize formatting choices that facilitated efficient
navigation.

A few participants said that in addition to splitting a lengthy line,
they also preferred using named arguments. P8 described his work
as a game developer involved function overloads that had up to 15
similar sounding arguments, such as the X, Y, and Z coordinates to
map the three dimensional sound. In such cases, splitting the code
across lines was not enough to remember the order of arguments.
Furthermore, IntelliSense, the code editor feature that displays
documentation upon mouse hovers, was not fully accessible to BVI
developers:



CHI ’24, May 11–16, 2024, Honolulu, HI, USA Maulishree Pandey, Steve Oney, and Andrew Begel

Table 2: Participants’ Demographic Details and Environment (code editor and screen reader) they used during the study. The
first column lists gender and age in brackets (e.g., P1 is 32 years old and identifies as a man)

# Job Role Prog.
Experience Region Screen

Reader
Punctuation

Setting
Indent

Reporting Code Editor

P1 (32M) Backend Developer 10–14 years Europe NVDA All None Notepad++

P2 (18M) Student 5–9 years Canada NVDA All Speech Notepad2

P3 (20M) Student 1–4 years India NVDA Most Speech Notepad

P4 (23M) Game Developer 1–4 years Pakistan NVDA All Speech +
Tones

VS Code

P5 (32M) Backend Developer 20–24 years Europe NVDA All None VS Code

P6 (26M) Backend Developer 1–4 years India NVDA Most Tones Notepad

P7 (34M) Backend Developer 10–14 years South Africa NVDA Most Speech Notepad++

P8 (38M) Game Developer 20–24 years USA NVDA Some Tones VS Code

P9 (28M) Full Stack Developer 10–14 years India NVDA All Speech VS Code

P10 (18M) Student 5–9 years India NVDA Some Speech VS Code

P11 (24M) Backend Developer 5–9 years India JAWS Most N/A VS Code

P12 (29M) Tech Lead 10–14 years Canada NVDA Some None Notepad++

P13 (25F) Student 1–4 years Europe NVDA All Tones Notepad++

P14 (31F) Data Scientist 10–14 years USA JAWS Most N/A VS Code

P15 (37M) Researcher 15–19 years China NVDA All Speech Notepad++

P16 (21M) Student 1–4 years Europe NVDA All Tones Notepad

“You [sighted developers] all have a lot of cool stuff
where you can highlight something with a mouse [...]
That’s not something we get as blind programmers. I
think it’s getting better now ’cause you can do it in
VS Code. You can kind of highlight an argument and I
think you can press F12, and it will tell you what it goes
with. But still it’s not the most intuitive thing [...] But I
love named arguments, I really adore them!” — P8

We also found tension between participants’ desire to reduce
navigation and splitting the code. For instance, a few participants
proposed a third option of keeping 2—3 arguments per line instead
of one argument on each line. It meant less typing effort compared
to the formatted option as well as fewer down arrow presses. P12
shared that the Eclipse IDE offered a way to wrap lines in a manner
which is accessible to both screen reader users and GUI users:

“So in Eclipse, sometimes I’ve seen [...] a few of the
function names, which have a lot of arguments, so they
get intended in a way that they fit on the screen. So you
might be having one argument in front of the function
name, and then here we’ll have a couple of arguments
in the second line, then another three arguments in the
third line that way. So yes, it provides better readability
and better scalability.” — P12

A couple arguments on each line were short enough to process
while one navigated downwards without adding vertical length to
the code. Others shared that they would prefer a single argument
on each line despite it requiring more arrow presses. This not only

ensured consistency but also reduced the burden of having to re-
member that some lines could have multiple arguments, ultimately
preventing the loss of information if one skimmed the code too fast.
Participants felt that longer but consistent formatting positively
shaped code comprehension when they revisited the code after a
hiatus.

A few participants also recommended refactoring the code and
making it more modular instead of longer function chains, em-
phasizing participants’ desire for non-linear navigation. A more
modular code enables developers to jump across functions, also
reported by Albusays et al. [5]

4.1.2 Type of Code. Length of line interacted with type of code in
determining participants’ preferences. We included examples to ac-
count for different types of code statements: (1) function signatures
or definitions (2) function calls (3) function chains (4) comments (5)
import statements. Majority of the participants preferred separation
for the former three (as discussed in the previous section) whereas
the preferences were more divided for the latter two, shaped by the
need for consistency, efficient navigation, and less typing.

Participants mentioned that comments were typically written in
English without special syntax or characters. They were easier to
comprehend even when they exceeded the recommended character
length, with our example being 109 characters long (see Rule #3.0.5
Option 2 in Appendix A):

“It’s [comments] not that much sensitive that I need
to read character by character. Whereas, if it is a code,



Towards Inclusive Source Code Readability Based on the Preferences of Programmers with Visual Impairments CHI ’24, May 11–16, 2024, Honolulu, HI, USA

syntax, right? That I need to read character by character.
So that makes sense to logically break.” — P11

The preference is in contrast with PEP8’s recommendation, which
suggests limiting comments to 72 characters for ease of visual con-
sumption [63]. Participants also mentioned that ideally comments
should be written in plain English because its purpose is to explain
the code. However, if a comment was fairly descriptive and listed “2
or 3 different steps” (P2), they would consider breaking them down.

Although we did not include an example, we followed up with
participants about their views on inline comments. PEP8 recom-
mends using inline comments sparingly as they can distract from
code reading [63]. Only select participants said they relied on in-
line comments and limited them to “two to five words” (P6). Most
participants preferred comments to be on their own line because
it tended to interfere with code reading in two ways. First, when
participants tried to jump to the end of the code, their screen reader
focus got placed at the end of the comment instead. They had to
use control-left arrow to go backwards from the comment until
they reached the code to “edit the line” (P1), wasting time in inline
navigation. Second, they might completely miss the comment when
down arrowing “fast through the lines” (P1).

Figure 1: Options presented to participants for import state-
ments

Much like comments, we noted difference in opinionswith regard
to import statements due to three reasons (see Listing 1). First, the
participants made a distinction between standard libraries and third-
party libraries. Our example included standard Python libraries and
a few participants said they were likely to “group them together”
(P8) to “get over them quicker with the down arrow” (P1). On the
other hand, third party libraries needed to be placed on their own
individual lines because one was likely to import a submodule or
rename the module:

“They can just import a specific module into the names-
pace. So then, you do from this import this , or,
you know, import this as this” — P2

Second, editing concerns affected choices. A few participants
felt that import statements were only typed once, mostly read once
at the beginning of the code, and were unlikely to be modified
again. Therefore, one could place multiple imports on a single line
without compromising readability. Others felt that because imports
were typed precisely once, they should in fact be separated out,
ultimately affording more convenience if any library had to be
removed or replaced:

“if it is one library per line, so that if you just want to
remove one of the library, it is more easier.” — P15

Third, participants’ programming experience with other lan-
guages had a bearing on their opinions. For instance, P12 recalled
that JAVA only permitted placing imports on separate lines. He
chose the same option to stay consistent in our study despite de-
scribing the practice as a “headache” (P12).

4.2 Impact of Programming Environment on
Readability

We now elaborate on the effect of screen reader settings such as
punctuation settings and synthesizer choice on code readability.
We also describe how these settings interacted with the code editor
features.

Figure 2: Options presented to participants for identifier
length

The perceived verbosity of code had a bearing on participants’
styling preferences. For instance, certain naming choices required
listening to more audio output and slowed down participants. Con-
sider the options we presented to evaluate preferences for identifier
length (see Listing 2). Sighted developers are likely to read both op-
tions as “radio button height”. On the contrary, for our participants,
the second option was announced as “radio B T N H T” – a more
verbose output despite being fewer characters to type:

“So would you believe that even though option 2 is
shorter, it’s actually longer on the screen reader. Yeah,
it’s more syllables. Ain’t that crazy! Because ‘radioBut-
tonHeight’ is 5. But it’s more characters, whereas ‘ra-
dioBtnHt’ [...] is actually 8.” — P8

Participants shared that a verbose name was harder to remember.
Furthermore, they may confuse the output with similar sounding
alphabets while skimming. The name may also be mispronounced
by differences in capitalization or due to synthesizer choice:

“API is capital A, capital P, capital I. It’s not a word but
people try to use it as a word, so what they do is ‘capital
A, small P, small I’ (Api). Then it will not read as API,
that’s when I get confused.” — P11
“I had one or two instances, where it will just call out
something else. For example, my screen reader will often
call out ‘capital A, capital S’ (AS) as American Samoa.”
— P12

A funny instance of screen reader mispronunciation was when
function signature arguments were rendered on separate lines (see
Rule #3.0.2 Option 1 in Appendix A). The signature’s closing paren-
theses and colon ‘):’ ended up on a separate line. P12 chuckled
when it was announced as “sad face”. Such differences made the
seemingly shorter option more verbose, harder to remember, and
could introduce errors in the code. To avoid these issues, partici-
pants had to slow down their navigation and clarify the spelling by
reading the variable “character by character” (P11).

We had included examples of names that encoded the context of
use in either the suffix (e.g, foregroundColorMenu) or the prefix
(menuForegroundColor) of the identifier. Majority of the partici-
pants preferred context to be announced first (e.g., menuForegroundColor,
footerForegroundColor) to reduce verbosity associated with long
names during code skimming. A few participants pointed out that
they would prefer foregroundColorMenu only if the code also con-
tained counterparts such as backgroundColorMenu. They felt it



CHI ’24, May 11–16, 2024, Honolulu, HI, USA Maulishree Pandey, Steve Oney, and Andrew Begel

would be more useful to glean the global relationship between iden-
tifier categories before learning about the specific UI elements they
were responsible for. Participants’ comments are reminiscent of
Hungarian notation [55] and suggest a preference for quick navi-
gation with lower verbosity.

Verbosity was also determined by the screen reader’s punctu-
ation setting. As shown in Table 2, 8 participants had set their
punctuation to all, 5 had set it to most, and 3 had set it to some.
All announced every punctuation character but meant greater ver-
bosity, which interfered with reading and processing. On the other
hand,most or somewas likely to skip over important characters. The
setting had a strong bearing on whether to use camel case or snake
case. PEP8 recommends snake case i.e., underscores to separate
words in variable names (e.g., primary_address_apartment) [63].
However, if participants’ screen reader punctuation setting was set
to most or all, it was announced as “primary line address line apart-
ment” on NVDA (JAWS announces underscore “underline”). On the
other hand, when punctuation was set to some, the announcements
were same for both options (primary address apartment) but
participants had to go through the identifier to ensure the presence
of the underscore character. The verification once again meant the
slower character-level navigation that interrupted skimming. There-
fore, participants spoke of using camel case even if their colleagues
preferred snake case:

“I prefer Option 1 (camel case) because, A, it’s shorter
and it reads fine [...] I like CamelCase for my Python
variables. I’ve convinced my colleagues not to judge me
for it” — P7

Figure 3: Options presented to participants to understand
line break preferences

The choice of punctuation setting could also skip information
relevant for code comprehension. For instance, we asked partici-
pants where they would like to insert line breaks in long lines —
split the line after the operator or before the operator (see Listing
3). Operators placed at the beginning of the line were announced
regardless of one’s punctuation setting. However, a less granular
punctuation setting did not announce operators placed at the end
of the line:

“If you put the dot at the end, it will not announce,
filter dot. It will just announce filter. Because for
JAWS, it’s a full stop.” — P11 (punctuation set to most)
“It doesn’t read the dash on dividends - qualified_dividends
- So it’s not reading the dashes but that’s my punctua-
tion settings. That’s my own fault.” — P8 (punctuation
set to some)

The above quotes reveal how the dot and the subtraction (an-
nounced as dash) operators are treated as if they are being used in
a text document and not in a coding environment. P10 reasoned
that characters like dot and dash are “used for many purposes”. For
instance, he shared that not putting whitespaces around the dash

operator also mutes its announcement, possibly because it implies
a range (e.g., 15-10). Taking into account all of these scenarios is
difficult and screen reader developers might have felt that “not an-
nouncing them would make sense” (P10) in some and most settings.

Lastly, single quote (‘tick’ on NVDA; ‘apostrophe’ on JAWS) was
only announced when punctuation was set to all; double quote
(‘quote’ on both NVDA and JAWS) was announced for most and all
settings. We noted a strong preference for double quotes among
participants because it required less disambiguation and was more
likely to be announced. For instance, in the docstring example (Rule
#1.1.2 in Appendix A), the screen reader did not announce the single
quotes to participants who had not set their punctuation to all. They
had to do character-level navigation to verify whether the line was
indeed blank or it had characters relevant to code reading:

“I was sure something is there, but I couldn’t read and
I tried to go back. Then I understood there is an apos-
trophe, like single quotes [...] If it is not saying blank,
there is something but it is not readable [to the screen
reader]” — P11

4.3 Impact of Navigation on Readability
We identified 5 kinds of navigation that participants used to skim
and read the code in detail: (1) character-level, (2) word-level, (3)
line-level, (4) entity-level, (5) editor’s search feature. Prior work
has investigated the latter two [9, 42, 56]. We are the first study to
describe how the first three shaped readability.

4.3.1 Character-level navigation. The previous sections discussed
how the lack of punctuation information or too much verbosity
meant participants had to parse each character of a line to verify
details such as spelling and use of special characters. Presence of
whitespaces further slowed down participants by increasing the
total characters they had to navigate. For the very reason, major-
ity of our participants preferred tabs over spaces to indent code
blocks in Python. They could “go over a tab with just one press” (P1)
while spaces were four characters. Besides, whitespaces introduced
verbosity at character-level navigation:

“I usually don’t put spaces, because I think that kind of
makes it more time consuming. It’s going to keep saying
‘space space and space’ whatever.” — P2

However, participants agreed that whitespaces facilitated better
word-level navigation (discussed next). A few participants men-
tioned that presence of whitespaces prevented over-editing or ac-
cidentally deleting characters by acting like buffer. Furthermore,
whitespaces around mathematical operators improved the readabil-
ity for their sighted colleagues, which they prioritized by either
using whitespaces while authoring code or reformatting the code
using a code formatter according to coding standards.

Figure 4: Options presented to understand use of whitespaces



Towards Inclusive Source Code Readability Based on the Preferences of Programmers with Visual Impairments CHI ’24, May 11–16, 2024, Honolulu, HI, USA

4.3.2 Word-level navigation. Participants shared that presence of
whitespaces tended to improve word navigation by acting as “word
boundaries” (P1). Some participants also shared that statements
comprising slice operations were “read slowly because of the spaces”
(P12) (see Listing 4). However, whitespaces could cause tensions
with one’s punctuation setting. For instance, with whitespaces
present and the punctuation set to some, the screen reader did not
announce the colon character. Thus, the operation performed in the
statement was not communicated. But without the whitespaces, the
colon ended up acting as the word boundary and was output by the
screen reader, enabling participants to understand the operation
without having to resort to character-level navigation:

“With my [punctuation] setting, if there’s no space be-
tween the colon and the words, it is reading the colon
as well the plus sign. So it’s reading the entire thing
properly. But in the first one, it’s not announcing the
colon symbol in ‘some’ setting, and it’s treating it as a
pause. ‘Lower’, then a pause, then ‘upper’.” — P10

We noticed similar tension when snake case was used for vari-
able names. Underscores acted as word boundaries and allowed
participants to jump across individual words despite increasing
typing effort and verbosity (when punctuation was set to ‘most’ or
‘all’). P1 shared how he had started preferring camel case once he
discovered an NVDA addon that enabled navigation just like snake
case did:

“3–4 years ago someone made an NVDA addon called
WordNav, which stops control arrows even in camel case.
So in a word, it’s not like you navigate with control-
right/left arrows. With this addon, it stops after the first
and second word even though they are not separated by
anything” — P1

In conclusion, while whitespaces made character-level naviga-
tion and typing slower, they improved word-level navigation by
acting as boundaries between words. Punctuation and special char-
acters could also act as boundaries but it depended on one’s punc-
tuation setting.

4.3.3 Line-level navigation. We have already discussed how par-
ticipants were able to pause at will when lengthy code lines were
split. By down arrowing through code chunks, they were able to
process the code better and avoid word-level or even character-level
navigation. In this section, we discuss how the use of indentation
and line breaks shaped overall navigation and code skimming.

NVDA allows four options for indentation reporting: (1) none,
(2) tones where higher pitch implies greater indentation (3) speech
(e.g., “twelve space” or “four tab”), (4) both speech and tones1. 5 par-
ticipants did not use any indent reporting whereas 13 participants
had it turned on (see Table 2). We noted that the choice of setting
influenced participants’ presentation choices for nested dictionaries
but not so much for docstrings. Typically, participants used inden-
tation reporting to “visualize where the things are, how far in they
are” (P7). Thus, option 1 was more preferable for Rule #1.1.1. They
could down arrow to key-value pairs at the same nested levels and
navigate past heavily nested items using the audio cues:

1Only P11 and P14 used JAWS in our study. Both did not use indent reporting. They
and a few other participants mentioned that JAWS does not offer indent reporting.

“If the indentation is consistent, I could just skip past,
like let’s say there’s a list in here. If I don’t need that, I
can just skip past that to the next block.” — P2

Participants who did not use indentation reporting were divided
in their preferences. They compared the effort it took to write well-
indented code with the improvements to readability. Usually, they
wrote the code without indentation and formatted it later for the
benefit of sighted developers. They felt the lack of announcements
led to “a lot of confusion when dealing with more nested structures”
(P14) but keeping it turned on interfered with other aspects of
their work such as emails, document writing, etc. However, even
without indent announcement, a few people preferred option 1 for
nested data structures. The placement of parentheses on its own
line clearly indicated the beginnings and ends of a nested level. P14
said she left small inline comments after each closing brace to serve
as checkpoints. These helped her keep track of nested structures
and helped her skim faster. Furthermore, the key bindings in code
editors helped participants to jump quickly to opening or closing
parentheses. Some participants used addons like IndentNav, which
allowed skipping to statements that shared the same nesting level.
In Python, it could be used to jump across entities, conditionals,
and loops:

“NVDA has this add on called IndentNav, which basi-
cally just lets me navigate past code blocks. So some-
times when I’m skimming and if a block does something
and I know what it does, I don’t need to go in there, I’ll
just skip past the indentation. Go to the next block or
whatever, skip past the loop and stuff like that. ”

Majority of the participants preferred no indentation in multiline
docstrings irrespective of indent reporting. Since docstrings were
similar in nature to comments, they were likely to be read only a
handful of times. They preferred going through them quickly to get
to the main body of the code. Even while writing docstrings, partic-
ipants preferred spending as little time as possible in formatting the
text compared to other aspects of source code. P14 mentioned using
the autoDocstring plugin for VS Code, which provided placeholders
for populating details about a class or function. The plugin not only
ensured correct formatting but also saved her writing time.

5 DISCUSSION
Prior accessibility research has focused on communicating the in-
formation encoded in visual markup such as syntax highlighting,
code structure, etc. Our research detaches the source code text from
its visual appearance. We find that while it is vital to translate the
information available in visual markup, the source code itself is
not entirely available on screen readers. We answer RQ1 and show
that the attributes of source code such as line length, spacing, etc.
are warped in screen reader navigation and the programming envi-
ronment, thereby shaping readability preferences. In this section,
we update Table 1 from related work to move towards an inclusive
taxonomy for code readability (see Table 3). We also make recom-
mendations for programming tools and code standards, thereby
answering RQ2.



CHI ’24, May 11–16, 2024, Honolulu, HI, USA Maulishree Pandey, Steve Oney, and Andrew Begel

Factor Sub-Factor Code Type GUI Screen Readers
Recommended
Practice

Skimming Focused
Reading

Recommended
Practice

Non-Linear
Skimming

Linear
Skimming

Focused
Reading

Spacing Indentation Nested Data
Structures

Follow consistent
indenting

Yes No Follow consistent
indenting

Yes (with
addons)

Yes (with
indent reporting)

No

Docstrings Indent docstring
arguments

Yes No Do not indent docstring
arguments

N/A Yes No

Separate
Closing Parentheses

- Separate parentheses
and key-value pairs

N/A N/A Separate parentheses
and key-value pairs

Yes Yes Yes

Segmenting - Use 2 blank lines to
separate entities

Yes No Use single blank line
to separate entities

N/A Yes No

Whitespaces Slice and Math
Operators

Surround operators
with whitespaces

N/A Yes Surround operators
with whitespaces

N/A Yes Yes

Identifiers Word
Boundaries

- Use snake case N/A Same
effect

Use camel case N/A N/A Yes

Length - Short variable names N/A Yes Consider syllable count N/A Yes Yes

Intent of Use - Convey intent in either
prefix or suffix

N/A Yes Use consistent suffixes N/A Yes Yes

Line Length -
Function Calls,
Signatures,
Chains

Render arguments on
separate lines

Yes Yes Render arguments on
separate lines

N/A Yes Yes

- Binary
Operations

Place line break before
the operator

Yes Yes Place line break before
the operator or same line

N/A Yes Yes

- Comments Wrap comments Yes Yes Do not split comments N/A Yes Yes

- Imports Place imports on
different lines

Yes Yes Either is fine N/A Yes Yes

String Quotes Quote
Character

- Use quotes
consistently

N/A N/A Use double
quotes

N/A Yes Yes

Table 3: Taxonomy for Code Readability on GUIs and Screen Readers

5.1 Moving Towards an Inclusive Taxonomy for
Code Readability

5.1.1 Line Length. Splitting long lines (e.g., function chains, func-
tion signatures, etc.) helps both sighted and BVI developers. Sighted
developers do not need to horizontally scroll; BVI developers have
to process smaller chunks as they read the code. It also improves
their navigation experience. They need not listen to the entire line
before moving to the following line. It is worth pointing out that
sighted developers can toggle on word wrapping, which prevents
horizontal scrolling. However, word wrapping produces no effect
on BVI developers. In fact, the feature is disabled in IDEs like VS
Code if it detects the screen reader [33]. Either IDEs should enable
an equivalent audio wrapping for screen readers, or they should
offer settings to enforce code splitting consistently.

Syntax highlighting helps sighted developers identify regions
of interest [54]. Researchers have attempted to use audio cues to
communicate the visual cues available to sighted developers in
code editors. However, audio cues take time to memorize [30].
We find that audio cues for indent reporting also interfere with
tasks of emailing, document editing, etc for BVI developers. Our
findings also show that the type of codematters. Everyone preferred
splitting call chains, the opinion was divided on breaking function
signatures, and long imports and comments were least likely to
affect readability. These findings help us decide what programming
constructs should be highlighted using audio.

5.1.2 Programming Environment and Screen Reader Settings. The
manner in which code is written interacts with screen reader set-
tings and affects output. Consider the example where we asked
participants whether they prefer inserting line breaks before or
after the binary operator. We found that developers were likely to
miss operators at the end of lines when skimming too fast or if
the punctuation setting was set to most or some. Similarly, screen
readers did not announce single quotes in less granular punctu-
ation settings; using double quotes to quote string variables and
docstrings was better. Lastly, collaborators may capitalize names
differently (e.g., API vs. Api), changing the pronunciation entirely
on screen readers. These differences do not affect sighted develop-
ers – a quote character is read and interpreted as a quote, missing
operators are easy to catch, and API and Api are visually processed
the same way. While BVI developers pick up on the code styling
preferences of sighted developers easily, sighted developers do not
reciprocate similar awareness. We recommend incorporating the
readability preferences of BVI developers in code styling guidelines,
such as PEP8 [63]. For instance, the above examples can be used
to educate the larger programming community about how screen
readers may announce different code snippets.

We find that code editor plugins and screen reader addons can
greatly reduce typing effort while improving readability. For in-
stance, P14 was among the few participants who did not mind
indenting docstrings because she used the autoDocstring plugin.
Similarly, participants who used addons like IndentNav achieved
more efficient non-linear navigation. IDEs like VS Code were more
popular because of their accessibility features and ability to apply



Towards Inclusive Source Code Readability Based on the Preferences of Programmers with Visual Impairments CHI ’24, May 11–16, 2024, Honolulu, HI, USA

consistent indentation, parentheses, and quoting. Such plugins and
features improved readability as one wrote the code and not after
the fact by requiring the use of code formatters. We recommend
that teams designing code editors should explore ways to extend
the programming environment. The work can be abstracted out
at several levels. For examples, JAWS currently does not support
indent reporting but IDEs could offer indent reporting through their
plugins. IDEs could also provide quick toggles between coding stan-
dards suitable for collaboration as well as for personal readability.

Prior research is divided on the use of snake case and camel case
for sighted developers [14, 52]. PEP8 recommends snake case for
variables [63]. But an overwhelming majority of our participants
preferred camel case over snake case for verbosity reasons. We also
show that developers ought to consider the syllable count when
shortening variable names (e.g., button instead of btn; checkbox
instead of chkBx) to avoid verbose output. Lastly, developers are
encouraged to create meaningful variable names by encoding the
intent. In such cases, sighted developers should consider where to
place the word representing the intent (e.g, menuColorForeground
vs. foregroundColorMenu) to ensure ease of remembrance and
code skimming. The decisions should be informed by categories
of variables (e.g., foreground colors, background colors, etc), the
total number of variables in the code, and the number of words
composing the identifier.

5.1.3 Granularity of Navigation. We add to the prior empirical stud-
ies on code navigation with screen readers [5, 9, 44]. We find that
high verbosity and ambiguous announcement of special characters
forces people to perform word-level and character-level navigation.
These are slower forms of navigation, which impede code reading.
Ideally, the lexicon and the layout of the code should be such that it
can be understood by line-level navigation. Lines should be chun-
ked such that they are easy to process while reading and easy to
recall while navigating backwards. The findings have implications
for programming language design. For instance, using complex and
verbose keywords can force people to stop skimming and look at
the line more closely.

Our finding contradicts past finding on nested code structures [5].
We find that participants used indentation for navigation, which
was further improved through the use of screen reader addons. We
further find that separating parentheses (Option 1 of Rule # 1.1.1)
instead of grouping multiple parentheses together (Option 2 of Rule
# 1.1.1) is more useful in jumping nested code blocks. Lastly, we
find that tabs are better than spaces for indentation because they
improve character-level navigation.

When it comes to vertical spacing or segmentation, PEP8 rec-
ommends keeping 2 blank lines between entities [63]. While a
few participants preferred 2 blank lines to delineate between code
blocks, most preferred a single line to reduce linear navigation.
We believe the choice of vertical spacing can be left up to BVI
developers. Code editors could provide shortcuts to reduce blank
lines if they detect screen readers to facilitate efficient line-level
navigation.

Lack of whitespaces around operators makes the code less read-
able for sighted developers. For BVI developers, the statement may

get read without discernible pauses and may affect word-level nav-
igation due to poor separation of words. Thus, surrounding opera-
tors with whitespaces is useful for both groups. Code editors could
provide mechanisms to reformat selected group of statements to
reduce the typing effort for BVI developers, which they described
as the primary reason that deters them from using whitespaces
while authoring code.

5.2 Limitations and Future Work
We studied participants’ preferences for one programming language
(Python). Because readability preferences must exist within lan-
guages’ syntactic rules, some of our findings might not generalize to
other programming languages. For example, in Python, indentation
is an enforced part of the syntax that carries semantic meaning.
This is in contrast with most other languages, where indentation is
a stylistic choice that can be customized according to developers’
preferences. Python is also closer to English, with some calling it
executable pseudocode [20]. However, most of our findings relate
to syntactic elements that are common across many widely-used
programming languages and thus could be generally applicable.
However, future work could contrast our results with languages
closer to C-style syntax that have been reported to present barriers
to novice programmers [59].

Participants actual coding practices may differ and are likely to
be shaped by existing coding standards and collaboration. Thus,
there may be differences in our findings and preferences one may
observe in mixed-ability teams.

The remote nature of our study prevented us from observing
code reading on braille displays. Only 3 participants reported using
braille displays but they did not use them during the study. In
future work, we would examine the factors that constitute code
readability on braille displays and pin-matrix tactile displays that
even display 2D graphics [16]. Furthermore, visual impairments
exist on a spectrum. We did not analyze how the nature of visual
impairment and its onset correlates with participants’ preferences.
Consistent with prior accessibility research, instead of focusing on
the visual impairment we have derived our recommendations for
assistive technologies and programming languages [40, 43].

Despite our efforts, our study sample was heavily skewed to-
wards men and fell within a narrow age range, likely due to the
lack of equitable gender and age representation in the software
engineering field [37, 38]. Its effect is amplified for BVI women and
non-binary developers, who are also marginalized due to ableism
and accessibility barriers.

6 CONCLUSION
Code editors and IDEs provide features such as syntax highlighting,
vertical rulers, etc., to support code skimming and focused reading
among sighted developers. However, we do not know what consti-
tutes good code readability for BVI developers. We conducted an
exploratory qualitative study with 16 BVI developers. We presented
them with two differently formatted options for 15 functionally
equivalent Python code snippets and asked them to choose the
option that improved code readability for them. The snippets were
created to investigate the effect of indentation, line length, iden-
tifier names, and quotation characters. We found similarities and



CHI ’24, May 11–16, 2024, Honolulu, HI, USA Maulishree Pandey, Steve Oney, and Andrew Begel

differences in how these factors shaped the readability of BVI and
sighted developers. Based on the findings, we contribute an inclu-
sive taxonomy for code readability that considers code reading on
GUIs and screen readers.

ACKNOWLEDGMENTS
This study would not have been possible without our participants.
We are grateful to them for sharing their experiences and insights
with us. We also thank Sile O’Modhrain and Hrishikesh Rao for
their time and feedback at various points in this research. The work
was supported by a gift from Google.

REFERENCES
[1] K.K. Aggarwal, Y. Singh, and J.K. Chhabra. 2002. An integrated measure of

software maintainability. In Annual Reliability and Maintainability Symposium.
2002 Proceedings (Cat. No.02CH37318). IEEE Press, Seattle, USA, 235–241. https:
//doi.org/10.1109/RAMS.2002.981648

[2] Faisal Ahmed, Yevgen Borodin, Andrii Soviak, Muhammad Islam, I.V. Ramakr-
ishnan, and Terri Hedgpeth. 2012. Accessible skimming: faster screen reading
of web pages. In Proceedings of the 25th Annual ACM Symposium on User In-
terface Software and Technology (Cambridge, Massachusetts, USA) (UIST ’12).
Association for Computing Machinery, New York, NY, USA, 367–378. https:
//doi.org/10.1145/2380116.2380164

[3] AirBnb. 2022. Airbnb React/JSX Style Guide. https://airbnb.io/javascript/react/
[4] Khaled Albusays and Stephanie Ludi. 2016. Eliciting programming challenges

faced by developers with visual impairments: exploratory study. In Proceedings
of the 9th International Workshop on Cooperative and Human Aspects of Software
Engineering (Austin, Texas) (CHASE ’16). Association for Computing Machinery,
New York, NY, USA, 82–85. https://doi.org/10.1145/2897586.2897616

[5] Khaled Albusays, Stephanie Ludi, and Matt Huenerfauth. 2017. Interviews and
observation of blind software developers at work to understand code navigation
challenges. In Proceedings of the 19th International ACM SIGACCESS Conference
on Computers and Accessibility. Association for Computing Machinery, New York,
NY, USA, 91–100.

[6] Ameer Armaly and Collin McMillan. 2016. An empirical study of blindness
and program comprehension. In Proceedings of the 38th International Conference
on Software Engineering Companion (Austin, Texas) (ICSE ’16). Association for
Computing Machinery, New York, NY, USA, 683–685. https://doi.org/10.1145/
2889160.2891041

[7] Ameer Armaly, Paige Rodeghero, and Collin McMillan. 2018. A comparison of
program comprehension strategies by blind and sighted programmers. In Pro-
ceedings of the 40th International Conference on Software Engineering. Association
for Computing Machinery, New York, NY, USA, 788–788.

[8] R. Baecker. 1988. Enhancing program readability and comprehensibility with
tools for program visualization. In Proceedings of the 10th International Conference
on Software Engineering (Singapore) (ICSE ’88). IEEE Computer Society Press,
Washington, DC, USA, 356–366.

[9] CatherineM. Baker, Lauren R.Milne, and Richard E. Ladner. 2015. StructJumper: A
Tool to Help Blind Programmers Navigate and Understand the Structure of Code.
In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing
Systems (Seoul, Republic of Korea) (CHI ’15). Association for Computing Machin-
ery, New York, NY, USA, 3043–3052. https://doi.org/10.1145/2702123.2702589

[10] Mark S Baldwin, Jennifer Mankoff, Bonnie Nardi, and Gillian Hayes. 2020. An
activity centered approach to nonvisual computer interaction. ACM Transactions
on Computer-Human Interaction (TOCHI) 27, 2 (2020), 1–27.

[11] Jennifer Bauer, Janet Siegmund, Norman Peitek, Johannes C. Hofmeister, and
Sven Apel. 2019. Indentation: simply a matter of style or support for program
comprehension?. In Proceedings of the 27th International Conference on Program
Comprehension (ICPC ’19). IEEE Press, Montreal, Quebec, Canada, 154–164. https:
//doi.org/10.1109/ICPC.2019.00033

[12] Jeffrey P. Bigham, Irene Lin, and Saiph Savage. 2017. The Effects of "Not Knowing
What You Don’t Know" on Web Accessibility for Blind Web Users. In Proceedings
of the 19th International ACM SIGACCESS Conference on Computers and Accessi-
bility (Baltimore, Maryland, USA) (ASSETS ’17). Association for Computing Ma-
chinery, New York, NY, USA, 101–109. https://doi.org/10.1145/3132525.3132533

[13] Dave Binkley, Marcia Davis, Dawn Lawrie, Jonathan I Maletic, Christopher
Morrell, and Bonita Sharif. 2013. The impact of identifier style on effort and
comprehension. Empirical software engineering 18 (2013), 219–276.

[14] Dave Binkley, Marcia Davis, Dawn Lawrie, and Christopher Morrell. 2009. To
camelcase or under_score. In 2009 IEEE 17th International Conference on Program
Comprehension. IEEE, Vancouver, BC, Canada, 158–167.

[15] Barry Boehm and Victor R Basili. 2001. Defect reduction top 10 list. Computer
34, 1 (2001), 135–137.

[16] Jens Bornschein, Denise Bornschein, and Gerhard Weber. 2018. Blind Pictionary:
Drawing Application for Blind Users. In Extended Abstracts of the 2018 CHI
Conference on Human Factors in Computing Systems (Montreal, QC, Canada)
(CHI EA ’18). Association for Computing Machinery, New York, NY, USA, 1–4.
https://doi.org/10.1145/3170427.3186487

[17] Raymond PL Buse and Westley R Weimer. 2009. Learning a metric for code
readability. IEEE Transactions on software engineering 36, 4 (2009), 546–558.

[18] Mitchell H Clifton. 1978. A technique for making structured programs more
readable. ACM Sigplan Notices 13, 4 (1978), 58–63.

[19] Lionel E Deimel Jr. 1985. The uses of program reading. ACM SIGCSE Bulletin 17,
2 (1985), 5–14.

[20] Charles Dierbach. 2014. Python as a first programming language. Journal of
Computing Sciences in Colleges 29, 3 (2014), 73–73.

[21] RodrigoMagalhães dos Santos andMarco Aurélio Gerosa. 2018. Impacts of coding
practices on readability. In Proceedings of the 26th Conference on Program Compre-
hension (Gothenburg, Sweden) (ICPC ’18). Association for Computing Machinery,
New York, NY, USA, 277–285. https://doi.org/10.1145/3196321.3196342

[22] Carolyn D Egelman, Emerson Murphy-Hill, Elizabeth Kammer, Maggie Morrow
Hodges, Collin Green, Ciera Jaspan, and James Lin. 2020. Pushback: Characteriz-
ing and Detecting Negative Interpersonal Interactions in Code Review. In Pro-
ceedings of the 42nd International Conference on Software Engineering. IEEE/ACM,
174–185.

[23] James L Elshoff and Michael Marcotty. 1982. Improving computer program
readability to aid modification. Commun. ACM 25, 8 (1982), 512–521.

[24] Sarah Fakhoury, YuzhanMa, Venera Arnaoudova, and Olusola Adesope. 2018. The
effect of poor source code lexicon and readability on developers’ cognitive load.
In Proceedings of the 26th Conference on Program Comprehension (Gothenburg,
Sweden) (ICPC ’18). Association for Computing Machinery, New York, NY, USA,
286–296. https://doi.org/10.1145/3196321.3196347

[25] Joan M. Francioni and Ann C. Smith. 2002. Computer science accessibility for
students with visual disabilities. SIGCSE Bull. 34, 1 (Feb 2002), 91–95. https:
//doi.org/10.1145/563517.563372

[26] Freedom Scientific. 2022. JAWS for Windows. Vispero. https://www.
freedomscientific.com/products/software/jaws/

[27] Google. 2022. ESLint shareable config for the Google JavaScript style guide.
https://github.com/google/eslint-config-google

[28] Robert Green and Henry Ledgard. 2011. Coding guidelines: Finding the art in
the science. Commun. ACM 54, 12 (2011), 57–63.

[29] Nuzhat J Haneef. 1998. Software documentation and readability: a proposed
process improvement. ACM SIGSOFT Software Engineering Notes 23, 3 (1998),
75–77.

[30] Joe Hutchinson and Oussama Metatla. 2018. An Initial Investigation into Non-
visual Code Structure Overview Through Speech, Non-speech and Spearcons.
In Extended Abstracts of the 2018 CHI Conference on Human Factors in Comput-
ing Systems (Montreal, QC, Canada) (CHI EA ’18). Association for Computing
Machinery, New York, NY, USA, 1–6. https://doi.org/10.1145/3170427.3188696

[31] Tom Love. 1977. An experimental investigation of the effect of program structure
on program understanding. ACM SIGSOFT Software Engineering Notes 2, 2 (1977),
105–113.

[32] Richard J Miara, Joyce A Musselman, Juan A Navarro, and Ben Shneiderman.
1983. Program indentation and comprehensibility. Commun. ACM 26, 11 (1983),
861–867.

[33] Microsoft. 2020. Accessibility in Visual Studio Code. https://code.visualstudio.
com/docs/editor/accessibility#_screen-readers

[34] Matthew Miles, A. Michael Huberman, and Michael Saldaña. 2013. Qualitative
Data Analysis: A Methods Sourcebook. Sage Publications, Thousand Oaks, CA.

[35] NV Access. 2022. Nonvisual Desktop Access. NV Access. https://www.nvaccess.
org/

[36] Delano Oliveira, Reydne Santos, Fernanda Madeiral, Hidehiko Masuhara, and
Fernando Castor. 2023. A systematic literature review on the impact of formatting
elements on code legibility. Journal of Systems and Software 203 (2023), 111728.

[37] Stack Overflow. 2021. Stack overflow developer survey 2021. https://insights.
stackoverflow.com/survey/2021

[38] Stack Overflow. 2022. Stack Overflow Developer Survey 2022. https://survey.
stackoverflow.co/2022/#technology

[39] Stack Overflow. 2023. Stack Overflow Developer Survey 2023. https://survey.
stackoverflow.co/2023/#technology

[40] Maulishree Pandey, Sharvari Bondre, Sile O’Modhrain, and Steve Oney. 2022.
Accessibility of UI Frameworks and Libraries for Programmers with Visual Im-
pairments. In 2022 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC). IEEE Press, Rome, Italy, 1–10.

[41] Maulishree Pandey, Vaishnav Kameswaran, Hrishikesh V. Rao, Sile O’Modhrain,
and Steve Oney. 2021. Understanding Accessibility and Collaboration in Program-
ming for People with Visual Impairments. Proc. ACM Hum.-Comput. Interact. 5,
CSCW1, Article 129 (apr 2021), 30 pages. https://doi.org/10.1145/3449203

[42] Vanessa Petrausch and Claudia Loitsch. 2017. Accessibility analysis of the eclipse
ide for users with visual impairment. In Harnessing the Power of Technology to
Improve Lives. IOS Press, 922–929.

https://doi.org/10.1109/RAMS.2002.981648
https://doi.org/10.1109/RAMS.2002.981648
https://doi.org/10.1145/2380116.2380164
https://doi.org/10.1145/2380116.2380164
https://airbnb.io/javascript/react/
https://doi.org/10.1145/2897586.2897616
https://doi.org/10.1145/2889160.2891041
https://doi.org/10.1145/2889160.2891041
https://doi.org/10.1145/2702123.2702589
https://doi.org/10.1109/ICPC.2019.00033
https://doi.org/10.1109/ICPC.2019.00033
https://doi.org/10.1145/3132525.3132533
https://doi.org/10.1145/3170427.3186487
https://doi.org/10.1145/3196321.3196342
https://doi.org/10.1145/3196321.3196347
https://doi.org/10.1145/563517.563372
https://doi.org/10.1145/563517.563372
https://www.freedomscientific.com/products/software/jaws/
https://www.freedomscientific.com/products/software/jaws/
https://github.com/google/eslint-config-google
https://doi.org/10.1145/3170427.3188696
https://code.visualstudio.com/docs/editor/accessibility#_screen-readers
https://code.visualstudio.com/docs/editor/accessibility#_screen-readers
https://www.nvaccess.org/
https://www.nvaccess.org/
https://insights.stackoverflow.com/survey/2021
https://insights.stackoverflow.com/survey/2021
https://survey.stackoverflow.co/2022/#technology
https://survey.stackoverflow.co/2022/#technology
https://survey.stackoverflow.co/2023/#technology
https://survey.stackoverflow.co/2023/#technology
https://doi.org/10.1145/3449203


Towards Inclusive Source Code Readability Based on the Preferences of Programmers with Visual Impairments CHI ’24, May 11–16, 2024, Honolulu, HI, USA

[43] Venkatesh Potluri, Maulishree Pandey, Andrew Begel, Michael Barnett, and Scott
Reitherman. 2022. CodeWalk: Facilitating Shared Awareness in Mixed-Ability
Collaborative Software Development. In Proceedings of the 24th International
ACM SIGACCESS Conference on Computers and Accessibility (Athens, Greece)
(ASSETS ’22). Association for Computing Machinery, New York, NY, USA, Article
20, 16 pages. https://doi.org/10.1145/3517428.3544812

[44] Venkatesh Potluri, Priyan Vaithilingam, Suresh Iyengar, Y. Vidya, Manohar
Swaminathan, and Gopal Srinivasa. 2018. CodeTalk: Improving Programming
Environment Accessibility for Visually Impaired Developers. In Proceedings of
the 2018 CHI Conference on Human Factors in Computing Systems (Montreal QC,
Canada) (CHI ’18). Association for Computing Machinery, New York, NY, USA,
1–11. https://doi.org/10.1145/3173574.3174192

[45] Program-l. 2023. Program-l: V.I. Programmers Discussion List. https://www.
freelists.org/archive/program-l/

[46] Darrell R Raymond. 1991. Reading source code.. In CASCON, Vol. 91. 3–16.
[47] Phillip A Relf. 2005. Tool assisted identifier naming for improved software

readability: an empirical study. In 2005 International Symposium on Empirical
Software Engineering, 2005. IEEE, Noosa Heads, QLD, Australia, 10–pp.

[48] Caitlin Sadowski, Emma Söderberg, Luke Church, Michal Sipko, and Alberto Bac-
chelli. 2018. Modern code review: a case study at google. In Proceedings of the 40th
International Conference on Software Engineering: Software Engineering in Practice
(Gothenburg, Sweden) (ICSE-SEIP ’18). Association for Computing Machinery,
New York, NY, USA, 181–190. https://doi.org/10.1145/3183519.3183525

[49] Isabel Braga Sampaio and Luís Barbosa. 2016. Software readability practices
and the importance of their teaching. In 2016 7th International Conference on
Information and Communication Systems (ICICS). IEEE Press, Irbid, Jordan, 304–
309.

[50] Jaime Sánchez and Fernando Aguayo. 2005. Blind learners programming through
audio. In CHI ’05 Extended Abstracts on Human Factors in Computing Systems
(Portland, OR, USA) (CHI EA ’05). Association for Computing Machinery, New
York, NY, USA, 1769–1772. https://doi.org/10.1145/1056808.1057018

[51] Simone Scalabrino, Gabriele Bavota, Christopher Vendome, Mario Linares-
Vásquez, Denys Poshyvanyk, and Rocco Oliveto. 2017. Automatically assessing
code understandability: How far are we?. In 2017 32nd IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, Urbana, IL, USA,
417–427.

[52] Bonita Sharif and Jonathan I Maletic. 2010. An eye tracking study on camelcase
and under_score identifier styles. In 2010 IEEE 18th International Conference on
Program Comprehension. IEEE Press, Braga, Portugal, 196–205.

[53] Ben Shneiderman and Don McKay. 1976. Experimental Investigations of Com-
puter Program Debugging and Modification. Proceedings of the Human Fac-
tors Society Annual Meeting 20, 24 (1976), 557–563. https://doi.org/10.1177/
154193127602002401 arXiv:https://doi.org/10.1177/154193127602002401

[54] Janet Siegmund, Norman Peitek, Chris Parnin, Sven Apel, Johannes Hofmeister,
Christian Kästner, Andrew Begel, Anja Bethmann, and André Brechmann. 2017.
Measuring neural efficiency of program comprehension. In Proceedings of the 2017
11th Joint Meeting on Foundations of Software Engineering (Paderborn, Germany)
(ESEC/FSE 2017). Association for Computing Machinery, New York, NY, USA,
140–150. https://doi.org/10.1145/3106237.3106268

[55] Charles Simonyi. 1999. Hungarian notation.
[56] Ann C. Smith, Justin S. Cook, Joan M. Francioni, Asif Hossain, Mohd Anwar, and

M. Fayezur Rahman. 2003. Nonvisual tool for navigating hierarchical structures.
In Proceedings of the 6th International ACM SIGACCESS Conference on Computers
and Accessibility (Atlanta, GA, USA) (Assets ’04). Association for Computing Ma-
chinery, New York, NY, USA, 133–139. https://doi.org/10.1145/1028630.1028654

[57] Diomidis Spinellis. 2003. Reading, Writing, and Code: The key to writing readable
code is developing good coding style. Queue 1, 7 (2003), 84–89.

[58] Andreas Stefik. 2008. On the design of program execution environments for
non-sighted computer programmers. Washington State University (2008).

[59] Andreas Stefik and Susanna Siebert. 2013. An empirical investigation into pro-
gramming language syntax. ACM Transactions on Computing Education (TOCE)
13, 4 (2013), 1–40.

[60] Floyd Sykes, Raymond T Tillman, and Ben Shneiderman. 1983. The effect of
scope delimiters on program comprehension. Software: Practice and Experience
13, 9 (1983), 817–824.

[61] Yahya Tashtoush, Zeinab Odat, Izzat M Alsmadi, and Maryan Yatim. 2013. Impact
of programming features on code readability. International Journal of Software
Engineering and its Applications 7 (2013), 441–458.

[62] Ted Tenny. 1988. Program readability: Procedures versus comments. IEEE
Transactions on Software Engineering 14, 9 (1988), 1271–1279.

[63] Guido van Rossum, Nick Coghlan, and Barry Warsaw. 2001. PEP 8 – Style Guide
for Python Code. https://peps.python.org/pep-0008/

[64] Xiaoran Wang, Lori Pollock, and K Vijay-Shanker. 2011. Automatic segmentation
of method code into meaningful blocks to improve readability. In 2011 18th
Working Conference on Reverse Engineering. IEEE, Limerick, Ireland, 35–44.

[65] Silvia Zuffi, Carla Brambilla, Giordano Beretta, and Paolo Scala. 2007. Human
computer interaction: Legibility and contrast. In 14th International Conference on
Image Analysis and Processing (ICIAP 2007). IEEE, Modena, Italy, 241–246.

A READABILITY RULES
This section contains code rules and snippets correspond to the factors detailed in
Table 1. Next section shows a sample markdown presented to one of the participants.

# Code Formatting Rules

## 1. Spacing

### 1.1 Indentation

#### 1.1.1 Nested Data Structures

Option 1: Keep parentheses and key-value pairs on separate lines
```
{

"menu": {
"id": "file",
"value": "File",
"popup": {
"menuitem": [
{
"value": "New",
"onclick": "CreateNewDoc()"

},
{
"value": "Open",
"onclick": "OpenDoc()"

},
{
"value": "Close",
"onclick": "CloseDoc()"

}
]

}
}

}
```
Option 2: Match key-value pairs and parentheses
```
{"menu": {

"id": "file",
"value": "File",
"popup": {
"menuitem": [
{"value": "New", "onclick": "CreateNewDoc()"},
{"value": "Open", "onclick": "OpenDoc()"},
{"value": "Close", "onclick": "CloseDoc()"}

]}
}}
```

#### 1.1.2 Multiline docstrings

Option 1: Doctring is not indented
```
def add_binary(a, b):

'''
Returns the sum of two decimal numbers in binary digits.

Parameters:
a (int): A decimal integer
b (int): Another decimal integer

Returns: binary_sum (str): Binary string of the
sum of a and b

'''
binary_sum = bin(a+b)[2:]
return binary_sum

```

Option 2: Doctring is indented
```
def add_binary(a, b):

'''
Returns the sum of two decimal numbers in binary digits.

Parameters:
a (int): A decimal integer

https://doi.org/10.1145/3517428.3544812
https://doi.org/10.1145/3173574.3174192
https://www.freelists.org/archive/program-l/
https://www.freelists.org/archive/program-l/
https://doi.org/10.1145/3183519.3183525
https://doi.org/10.1145/1056808.1057018
https://doi.org/10.1177/154193127602002401
https://doi.org/10.1177/154193127602002401
https://arxiv.org/abs/https://doi.org/10.1177/154193127602002401
https://doi.org/10.1145/3106237.3106268
https://doi.org/10.1145/1028630.1028654
https://peps.python.org/pep-0008/


CHI ’24, May 11–16, 2024, Honolulu, HI, USA Maulishree Pandey, Steve Oney, and Andrew Begel

b (int): Another decimal integer

Returns:
binary_sum (str): Binary string of the

sum of a and b
'''
binary_sum = bin(a+b)[2:]
return binary_sum

```

### 1.2 Segmenting

#### 1.2.1 Line breaks in source code

Option 1: Use double empty lines to separate
functions, conditionals, and classes
```
def factorial(num):

fact = 1
for i in range(1, num+1):

fact = fact * i
return fact

if condition:
print("This condition was TRUE")

class Point:
x: int
y: int

```

Option 2: Use single empty lines between functions, conditionals,
and classes
```
def factorial(num):

fact = 1
for i in range(1, num+1):

fact = fact * i
return fact

if condition:
print("This condition was TRUE")

class Point:
x: int
y: int

```

### 1.3 Whitespaces

#### 1.3.1 Whitespaces in operators

Option 1: Avoid whitespaces before and after operators
```
b = config.base**5.2
submitted+=1
hypot2 = x*x+y*y
```

Option 2: Surround operators with whitespaces
```
b = config.base ** 5.2
submitted += 1
hypot2 = x*x + y*y
```

#### 1.3.2 Whitespace in slice operators

Option 1: Use whitespaces
```
ham[lower : upper + offset]
```

Option 2: Avoid whitespaces

```
ham[lower:upper+offset]
```

## 2. Identifiers

### 2.1 Naming style for variables

Option 1: Use snake case
```
primary_address_apartment = ""
```

Option 2: Use camel case
```
primaryAddressApartment = ""
```

### 2.2 Length preference for variable names

Option 1: Long names
```
radioButtonHeight = "20"
```

Option 2: Short names
```
radioBtnHt = "20"
```

### 2.3 Consistency in variable names

Option 1: Use consistent prefixes
```
foregroundColorMenu = ""
foregroundColorBody = ""
foregroundColorFooter = ""
```

Option 2: Use consistent suffixes
```
menuForegroundColor = ""
bodyForegroundColor = ""
footerForegroundColor = ""
```

## 3. Line Length

### 3.0.1 Formatting function calls

Option 1: Render arguments on the same line
```
ImportantClass.important_method(exc, limit, lookup_lines, capture_locals,
extra_argument)
```

Option 2: Render arguments on separate lines
```
ImportantClass.important_method(

exc,
limit,
lookup_lines,
capture_locals,
extra_argument

)
```

### 3.0.2 Formatting function signatures

Option 1: Render arguments on separate lines
```
# Applies `variables` to the `template` and writes to `file`
def very_important_function(



Towards Inclusive Source Code Readability Based on the Preferences of Programmers with Visual Impairments CHI ’24, May 11–16, 2024, Honolulu, HI, USA

template: str,
*variables,
file: os.PathLike,
engine: str,
header: bool = True,
debug: bool = False,

):
with open(file, 'w') as f:
...

```

Option 2: Render arguments on the same line
```
# Applies `variables` to the `template` and writes to `file`
def very_important_function(template: str, *variables, file: os.PathLike,
engine: str, header: bool = True, debug: bool = False):

with open(file, 'w') as f:
...

```

### 3.0.3 Call chains

Option 1: Treat dot operator as a delimiter
```
def example(session):

result = (
session.query(models.Customer.id)
.filter(models.Customer.account_id == account_id)
.order_by(models.Customer.id.asc())
.all()

)
```

Option 2: Do not treat dot operator as a delimiter
```
def example(session):

result = (session.query(models.Customer.id).filter(models.Customer.
account_id == account_id).order_by(models.Customer.id.asc()).all())

```

### 3.0.4 Line breaks with binary operators

Option 1: Place line break after the operator
```
income = (gross_wages +

taxable_interest +
(dividends - qualified_dividends) -
ira_deduction -
student_loan_interest)

```

Option 2: Place operator after the line break
```
income = (gross_wages

+ taxable_interest
+ (dividends - qualified_dividends)
- ira_deduction
- student_loan_interest)

```

### 3.0.5 Comments

Option 1: Wrap comments across lines
```
from collections import defaultdict

def get_top_cities(prices):
top_cities = defaultdict(int)

# Count number of times the city was searched for each price range,
# get the top 3 cities, and add to dictionary
return dict(top_cities)

```

Option 2: Do not wrap comments

```
from collections import defaultdict

def get_top_cities(prices):
top_cities = defaultdict(int)

# Count number of times the city was searched for each price range, get
the top 3 cities, and add to dictionary
return dict(top_cities)

```

### 3.0.6 Imports

Option 1: Place imports on different lines
```
import os
import sys
import random
import json
```

Option 2: Place imports on the same line
```
import os, sys, random, json
```

## 4. String Quotes

### 4.1 Use of quotation marks in docstrings

Option 1: Use single quotation marks
```
def square(n):

'''Takes in a number n, returns the square of n'''
return n**2

```

Option 2: Use double quotation marks
```
def square(n):

"""Takes in a number n, returns the square of n"""
return n**2

```

B STUDY STIMULUS
This shows a markdown with order of rules and options randomized. The markdown
was given to one of the participants as part of the study.
# Code Formatting Rules

## 1. Length preference for variable names

Option 1: Long names
```
radioButtonHeight = "20"
```

Option 2: Short names
```
radioBtnHt = "20"
```

## 2. Consistency in variable names

Option 1: Use consistent prefixes
```
foregroundColorMenu = ""
foregroundColorBody = ""
foregroundColorFooter = ""
```

Option 2: Use consistent suffixes
```
menuForegroundColor = ""
bodyForegroundColor = ""
footerForegroundColor = ""



CHI ’24, May 11–16, 2024, Honolulu, HI, USA Maulishree Pandey, Steve Oney, and Andrew Begel

```

## 3. Whitespace in slice operators

Option 1: Use whitespaces
```
ham[lower : upper + offset]
```

Option 2: Avoid whitespaces
```
ham[lower:upper+offset]
```

## 4. Line breaks with binary operators

Option 1: Place operator after the line break
```
income = (gross_wages

+ taxable_interest
+ (dividends - qualified_dividends)
- ira_deduction
- student_loan_interest)

```

Option 2: Place line break after the operator
```
income = (gross_wages +

taxable_interest +
(dividends - qualified_dividends) -
ira_deduction -
student_loan_interest)

```

## 5. Formatting function signatures

Option 1: Render arguments on the same line
```
# Applies `variables` to the `template` and writes to `file`
def very_important_function(template: str, *variables,
file: os.PathLike,

engine: str, header: bool = True, debug: bool = False):
with open(file, 'w') as f:
...

```

Option 2: Render arguments on separate lines
```
# Applies `variables` to the `template` and writes to `file`
def very_important_function(

template: str,
*variables,
file: os.PathLike,
engine: str,
header: bool = True,
debug: bool = False,

):
with open(file, 'w') as f:
...

```

## 6. Naming style for variables

Option 1: Use snake case
```
primary_address_apartment = ""
```

Option 2: Use camel case
```
primaryAddressApartment = ""
```

## 7. Imports

Option 1: Place imports on the same line
```
import os, sys, random, json

```

Option 2: Place imports on different lines
```
import os
import sys
import random
import json
```

## 8. Use of quotation marks in docstrings

Option 1: Use double quotation marks
```
def square(n):

"""Takes in a number n, returns the square of n"""
return n**2

```

Option 2: Use single quotation marks
```
def square(n):

'''Takes in a number n, returns the square of n'''
return n**2

```

## 9. Line breaks in source code

Option 1: Use double empty lines to separate functions, conditionals,
and classes
```
def factorial(num):

fact = 1
for i in range(1, num+1):

fact = fact * i
return fact

if condition:
print("This condition was TRUE")

class Point:
x: int
y: int

```

Option 2: Use single empty lines between functions, conditionals, and
classes
```
def factorial(num):

fact = 1
for i in range(1, num+1):

fact = fact * i
return fact

if condition:
print("This condition was TRUE")

class Point:
x: int
y: int

```

## 10. Formatting function calls

Option 1: Render arguments on the same line
```
ImportantClass.important_method(exc, limit, lookup_lines, capture_locals,
extra_argument)
```

Option 2: Render arguments on separate lines
```
ImportantClass.important_method(

exc,
limit,
lookup_lines,



Towards Inclusive Source Code Readability Based on the Preferences of Programmers with Visual Impairments CHI ’24, May 11–16, 2024, Honolulu, HI, USA

capture_locals,
extra_argument

)
```

## 11. Splitting parentheses

Option 1: Keep parentheses and key-value pairs on separate lines
```
{

"menu": {
"id": "file",
"value": "File",
"popup": {
"menuitem": [
{
"value": "New",
"onclick": "CreateNewDoc()"

},
{
"value": "Open",
"onclick": "OpenDoc()"

},
{
"value": "Close",
"onclick": "CloseDoc()"

}
]

}
}

}
```

Option 2: Match key-value pairs and parentheses
```
{"menu": {

"id": "file",
"value": "File",
"popup": {

"menuitem": [
{"value": "New", "onclick": "CreateNewDoc()"},
{"value": "Open", "onclick": "OpenDoc()"},
{"value": "Close", "onclick": "CloseDoc()"}

]}
}}
```

## 12. Multiline docstrings

Option 1: Doctring is indented
```
def add_binary(a, b):

'''
Returns the sum of two decimal numbers in binary digits.

Parameters:
a (int): A decimal integer
b (int): Another decimal integer

Returns:
binary_sum (str): Binary string of the sum of a and b

'''
binary_sum = bin(a+b)[2:]
return binary_sum

```

Option 2: Doctring is not indented
```
def add_binary(a, b):

'''
Returns the sum of two decimal numbers in binary digits.

Parameters:
a (int): A decimal integer
b (int): Another decimal integer

Returns: binary_sum (str): Binary string of the sum of a and b
'''

binary_sum = bin(a+b)[2:]
return binary_sum

```

## 13. Comments

Option 1: Do not wrap comments
```
from collections import defaultdict

def get_top_cities(prices):
top_cities = defaultdict(int)

# Count number of times the city was searched for each price range,
get the top 3 cities, and add to dictionary
return dict(top_cities)

```

Option 2: Wrap comments across lines
```
from collections import defaultdict

def get_top_cities(prices):
top_cities = defaultdict(int)

# Count number of times the city was searched for each price range,
# get the top 3 cities, and add to dictionary
return dict(top_cities)

```

## 14. Call chains

Option 1: Treat dot operator as a delimiter
```
def example(session):

result = (
session.query(models.Customer.id)
.filter(models.Customer.account_id == account_id)
.order_by(models.Customer.id.asc())
.all()

)
```

Option 2: Do not treat dot operator as a delimiter
```
def example(session):

result = (session.query(models.Customer.id).filter(models.Customer.
account_id == account_id).order_by(models.Customer.id.asc()).all())
```

## 15. Whitespaces in operators

Option 1: Surround operators with whitespaces
```
b = config.base ** 5.2
submitted += 1
hypot2 = x*x + y*y
```

Option 2: Avoid whitespaces before and after operators
```
b = config.base**5.2
submitted+=1
hypot2 = x*x+y*y
```


	Abstract
	1 Introduction
	2 Related Work
	2.1 Code Reading on Screen Readers
	2.2 Factors Affecting Code Readability for Sighted Developers

	3 Study Design
	3.1 Participants
	3.2 Stimuli
	3.3 Procedure
	3.4 Analysis

	4 Findings
	4.1 Impact of Line Length on Readability
	4.2 Impact of Programming Environment on Readability
	4.3 Impact of Navigation on Readability

	5 Discussion
	5.1 Moving Towards an Inclusive Taxonomy for Code Readability
	5.2 Limitations and Future Work

	6 Conclusion
	Acknowledgments
	References
	A Readability Rules
	B Study Stimulus

