

ConstraintJS: Programming Interactive Behaviors
for the Web by Integrating Constraints and States

Stephen Oney, Brad Myers
Carnegie Mellon University
Pittsburgh, PA 15213 USA
{soney, bam}@cs.cmu.edu

Joel Brandt
Advanced Technology Labs, Adobe

San Francisco, CA 94103 USA
joel.brandt@adobe.com

ABSTRACT
Interactive behaviors in GUIs are often described in terms of
states, transitions, and constraints, where the constraints only
hold in certain states. These constraints maintain relation-
ships among objects, control the graphical layout, and link
the user interface to an underlying data model. However, no
existing Web implementation technology provides direct
support for all of these, so the code for maintaining con-
straints and tracking state may end up spread across multiple
languages and libraries. In this paper we describe Con-
straintJS, a system that integrates constraints and finite-state
machines (FSMs) with Web languages. A key role for the
FSMs is to enable and disable constraints based on the inter-
face’s current mode, making it possible to write constraints
that sometimes hold. We illustrate that constraints combined
with FSMs can be a clearer way of defining many interactive
behaviors with a series of examples.
Author Keywords Constraints; Finite-state Machines; Bind-
ings; Web Development; User Interface Technology
ACM Classification Keywords
H.5.2 [Information Interfaces and Presentation]: User Interfaces
– Interaction styles.

INTRODUCTION
The World Wide Web is perhaps today’s most widely used
GUI platform. On the Web, HTML, CSS, and JavaScript define
a page’s content, style, and interactivity respectively. These
three languages interact with each other through a shared
representation of the page called the Document Object Mod-
el (DOM). JavaScript code defines interactive behaviors with
callbacks that modify the DOM using side effects — a para-
digm used by most GUI frameworks. However, this paradigm
of using callbacks and side effects often results in developers
writing interdependent, opaque, and error-prone “spaghetti-
code,” a problem that was identified over 20 years ago [13].
Constraints
Researchers have shown that constraints — relationships
that are declared once and automatically maintained — can
help developers avoid writing spaghetti code [10,13]. How-
ever, constraints have only caught on in GUI programming in
two special-purpose ways: 1) data bindings for frameworks
that use the Model-View-Controller (MVC) or related design
patterns to keep the GUI view in sync with its model (e.g.,
[20,21,22]) and 2) special-purpose graphical constraints that
control the layout of graphical elements (e.g., [4]). Android’s
Java SDK, for instance, contains both a constraint-based ap-
proach for specifying UI layout and a completely separate set
of Java classes for several pre-defined types of data bindings.
Similarly, for Web programming, CSS offers a limited con-
straint language for specifying graphical layout, and sepa-
rately, there are several JavaScript-based data-binding librar-

 1 friends = cjs.async(fb_request("/me/friends"));
 2 pics = friends.map(function(friend) {
 3 return cjs.async(fb_request("/" + friend.id
 4 + "/picture"));
 5 });
 6
 7 //...
 8
 9 {{#diagram friends.state}}
10 {{#state pending }} Loading friends...
11 {{#state rejected}} Error
12 {{#state resolved}}
13 {{#each friends friend i}}
14 {{#diagram pics[i].state}}
15 {{#state pending }}
16 {{#state resolved}}
17 {{#state rejected}}
18 {{/diagram}}
19 {{friend.name}}
20 {{/each}}
21 {{/diagram}}

Figure 1: The code on the right produces the interface on the left. Here, asynchronous calls are made to the Facebook API using the
fb_request function to fetch a list of friends (line 1) and a profile picture for each friend (lines 2—5). These values are placed into the friends
and pics constraint variables respectively. Lines 9—21 declare a template that depends on these variables. As the list of friends is loading,
friends.state will be pending, so the message “Loading friends…” is displayed (line 10). After the list of friends has loaded (lines 12—20) the
picture for each friend is displayed alongside their name. While the application is waiting for the Facebook API to return a picture URL for a
friend, a loading image (loading.gif) is displayed (line 15). The code also correctly notifies the user of any errors (lines 11, 17).

Karen Collins Eric Marshall

Sarah Kelly Keith Malcom

Ellyn ToddCorey Smith

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UIST ’12, October 7–10, 2012, Cambridge, Massachusetts, USA.
Copyright 2012 ACM 978-1-4503-1580-7/12/10...$15.00.

ies [20,21,22]. While both of these types of constraints are
useful to programmers, they are often limited in expressive-
ness, and further are almost entirely distinct and unaware of
each other, despite their conceptual similarities. For instance,
while current JavaScript data binding libraries allow devel-
opers to create constraints to set the content of DOM nodes,
they do not allow them to create constraints that control CSS
or DOM attributes.
States in GUIs
One of the main differentiators of interactive behaviors from
general programming is that GUIs are often stateful [9] – the
application state determines its appearance and behavior.
Indeed, when thinking about graphical layouts and data bind-
ings, interaction designers often think in terms of states,
along with constraints [12]. As an example, consider the
requirement: “when the toolbar is docked, it is displayed
above the workspace; when it is dragging, it follows the
mouse.” Here, each constraint (“the toolbar is above the
workspace” or “the toolbar follows the mouse”) applies in
different application states (“when the toolbar is docked” or
“when the toolbar is being dragged”). Transitions describe
when and how the application changes state – e.g., when the
user presses the toolbar header in docked mode, it enters
dragging mode.
ConstraintJS
In this paper, we describe the design and implementation of
ConstraintJS1 (CJS), a system that provides constraints that
can be used both to control content and control display, and
integrates these constraints with the three Web languages –
HTML, CSS, and JavaScript. CJS is designed to take advantage
of the declarative syntaxes of HTML and CSS: It allows the
majority of an interactive behavior to be expressed concisely
in HTML and CSS (see Figure 1), rather than requiring the
programmer to write large amounts of JavaScript.
In addition, we go beyond the existing constraint literature
by integrating the notion of state into our constraint system,
allowing developers to write constraints that sometimes hold.
We show that the development of interactive behaviors in
GUIs can be simplified by integrating finite-state machines
(FSMs) with constraints in ConstraintJS. Not only can we
create more expressive constraints; we can also create many
interactive behaviors using only FSMs and constraints, with-
out extra JavaScript. The example in Figure 1, for instance,
requires almost no imperative code. Furthermore, we find
that state-oriented constraints integrate well with existing
event architectures, including JavaScript’s.
Contributions
• We provide a new constraint model by integrating FSMs

with constraints, allowing programmers to easily enable
and disable constraints depending on the application
state. This model further enables 1) support for the asyn-

1 We invite our readers to read the full documentation and down-

load ConstraintJS at www.constraintjs.com.

chronous behaviors which are inherent in Web program-
ming, and 2) the full control provided by one-way con-
straints that programmers desire [11], but with much of
the expressiveness provided by multi-way dataflow(con-
straint solvers [16].

• We show in our ConstraintJS system that constraints and
FSMs can be effectively integrated with three Web lan-
guages – JavaScript, CSS, and HTML.

• We illustrate the effectiveness of the design and imple-
mentation of ConstraintJS with example applications.

CONSTRAINTJS OVERVIEW
ConstraintJS uses one-way$constraints [18]. A constraint is a
relationship that is declared once and maintained by the sys-
tem automatically. For instance, if a is constrained to b+1
(expressed as a <- b+1), then changes to b affect a. One-way
constraints compute the value of a variable based on others,
but not vice-versa, and are therefore like spreadsheet formu-
las (a <- b+1 solves for a). This is in contrast with multi-way
constraints, where relationships can be calculated in any di-
rection [16] (a <-> b+1 solves for a or b).
CJS combines one-way constraints with FSMs in order to
make constraints more expressive. An FSM describes a be-
havior in terms of the states or modes that the behavior can
be in, and the triggers (or events) that cause transitions
among the states. Surveys have shown that FSMs are com-
monly used by designers and programmers when they are
specifying how an interface should look and behave [12].
Multiple independent FSMs are often required to describe the
look and feel of a single interactive element. Consider the
everyday example of radio buttons that may be selected with
the mouse or keyboard. Each radio button is controlled by a
combination of many states: if the radio button has keyboard
focus, it should have an outline around it, and there are vari-
ous events that change which button has keyboard focus.
Separately, if the radio button is currently checked, it should
have a dot in the center. Finally, the radio button changes its
look while it is being interacted with using the mouse, based
on whether it is idle, being hovered over, if the mouse is
pressed down, or if it is pressed down and moved outside
while pressed. Combining all of these independent states into
a single diagram would require 2×2×4 = 16 states, many of
which will be semantically un-intuitive (e.g., mouse pressed
and outside with keyboard focus and checked). CJS allows
the programmer to instead create multiple independent FSMs
to control GUI behavior and appearance by enabling or disa-
bling constraints while allowing for a much more under-
standable and maintainable set of states.
MOTIVATING EXAMPLE
To help concretely illustrate our contribution, consider the
example shown in Figure 1, which uses the Facebook API to
pull in a list of Facebook friends and display their names
alongside their pictures. The Facebook API makes this a
three-step process: First, the code must retrieve a list of
friend IDs. This is done using one Facebook API call, which
returns a list of friend IDs and names. After the list of friends

has been retrieved, the second step is to take this list of
friend names and retrieve a URL pointing to a picture for each
friend. This means that the code must make another Face-
book API call for each friend the user has. Finally, once these
data are retrieved, they must all be correctly displayed.
To further complicate matters, every Facebook API call is
asynchronous. This means that when a call is made to the
Facebook API, Facebook does not provide a return value im-
mediately. Instead, a callback function is executed at a later
point when the data are ready. This introduces three types of
complications. First, the system must wait for the initial API
call (which fetches the list of friends) to finish before at-
tempting to make API calls for each friend the user has. Se-
cond, when fetching the friends’ pictures, the code cannot
rely on the API to send return values back in the same order
in which they are requested. For example, if the code asks
for pictures for Alice and then Bob, the Facebook API might
return Bob’s picture before Alice’s. The developer must take
measures to ensure that the right friend is mapped to the right
picture. Finally, the code must gracefully handle the failure
of any of these asynchronous calls.
The fact that the API calls are asynchronous means that in a
naïve implementation, the user will have to wait for all three
steps to be completed in series: first, for the list of friends to
load, then for the URL for each friend's photo, and finally for
the image located at that URL to load. To provide a good user
experience, however, the system should indicate progress by
displaying whatever information is available: The applica-
tion should start with a “loading” screen, then add in the
name and a picture-loading graphic when it has a friend’s
name but not a picture, and finally replace the loading icon
with the photo when it has a photo URL.
Implementing this in JavaScript without ConstraintJS re-
quires writing a large amount of error-prone code: It would
require multiple nested callbacks and scope checking to en-
sure that the pictures are loaded and displayed in the right
places, that the friends’ pictures do not attempt to load before
they are ready, and that images and text indicating loading
delays and errors are properly displayed for every profile. It
would also require significant code to ensure that the view
stays in sync with the model – that the place-holder symbols
show up and then disappear when a picture is available, that
the list of friends and pictures is in the right order, and that
each picture is linked properly to each friend. Standard Ja-
vaScript requires around 20 lines of code to replicate the
functionality of lines 1–5 in Figure 1, including four nested
callbacks and is generally unclean, spaghetti-like interde-
pendent code that would be difficult to adapt to UI specifica-
tion changes. The root of this problem isn't JavaScript's syn-
tax (addressed by CoffeeScript and others) or its lack of
built-in functions (addressed by libraries like jQuery). It's the
fundamental callback/side-effect mechanism that JavaScript
requires. ConstraintJS represents a better alternative.
With ConstraintJS, things are much easier. The code is
shown in Figure 1. At a high level, this code sets up a con-

straint variable (friends) whose value is the list of friends
(line 1). This variable will have no value until the list of
friends has been fetched. It then declares a constraint varia-
ble (pics) with a picture URL for each of these friends. pics
will not have a value until friends returns a value. When
friends returns a list of friends, pics takes that list and returns
a list of picture URLs for each friend (lines 2–5). Before any
of these constraint variables have values, we create an
HTML/Handlebars template [23] whose value depends on
friends and pics (lines 9–21). This template looks at every
friend and their state. If friends has not loaded, it displays the
text “Loading friends…” (line 10) When friends has loaded,
it displays the name of each friend (lines 12–20). For each
friend, if the picture URL has not been loaded yet, then the
code displays a loading image (line 15). If it has been loaded,
then it displays the friend's photo (line 16).
Overall implementing this example with constraints produc-
es relatively clear and straightforward code. Another benefit
of using constraints is that if our list of friends were a chang-
ing entity (i.e. the code intermittently updates the list of
friends) the code in Figure 1 would automatically update
(and not completely replace) the list of friends to reflect any
changes over time. We will go over the components this ex-
ample in more detail in the “API” section below.
RELATED WORK
Because ConstraintJS integrates multiple models, its design
is informed by work in several domains, including con-
straints, finite-state machines, and event architectures.
Constraints in Imperative Languages
Several systems have enabled constraint programming in
imperative languages. Kaleidoscope [5] mixes imperative
and constraint programming by treating variables as streams
that are programmatically advanced and allowing program-
mers to specify time intervals when constraints hold. Con-
straintJS uses a model more suited for interactive applica-
tions. Rather than allowing constraints to be switched on and
off by treating them as streams, CJS switches constraints on
and off based on application state.
Several data-binding libraries are also available for JavaS-
cript. Knockout [22], Ember [20], and Backbone [21] are
JavaScript libraries that enable declarative bindings between
JavaScript objects and DOM objects. They contain templating
features that allow DOM nodes created by these templates to
be automatically updated when a property’s value changes.
However, none of them includes states or FSMs in their tem-
plating or binding syntaxes. In addition, they do not allow
programmers to attach bindings to control attributes or CSS
values of arbitrary DOM nodes. Data binding libraries are also
available for the related ActionScript language [24]. Tangle
[25] also allows for limited types of bindings to be used to
affect DOM properties. However, the types of constraints that
can be set are limited and once constraints are installed, they
are permanent.
Finally, CCSS extends CSS by enabling hierarchical arithmetic
constraints to be set on CSS properties [2]. While these types

of constraints increase the flexibility of CSS, they do not pro-
vide any way to add constraints from JavaScript variables to
specify behavior. Standard CSS also has limited support for
some device-dependent constraints. For example, media que-
ries allow CSS rules to depend on the user’s display size.
States in Imperative Languages
The use of FSMs in user interface toolkits has a very long
history (e.g., see [14]). More recently, Chasm [19] has used a
tiered representation to describe 3D user interfaces while
allowing developers to specify finite state machines as part
of the paradigm. However, Chasm does not include any
mechanism for specifying constraints or permanent relation-
ships among objects.
IntuiKit [25] allows interface designers to specify how an
image should appear in different states but does not enable
interaction, constraints, or any other primitives necessary for
interaction. Similarly HsmTk [3] allows state diagrams to be
used to define interactivity in the context of an imperative
language (C++) but has no notion of constraints or relation-
ships between the underlying data and the view. SwingStates
[1] also integrates state diagrams into the Java Swing toolkit.
It features parallel state diagrams (the ability to have multi-
ple diagrams affect one object) and fits well with the stand-
ard Java syntax. SwingStates does not have any notion of
constraints or dependencies among objects.
Adobe Flex [24] includes mechanisms for customizing views
based on states using its MXML language and also includes
the ability to bind data to attributes. However, the notion of
states in Flex is specific to components, which makes it dif-
ficult for a widget’s behavior to depend on other states such
as the application or parent widget’s state. Also, in Flex, data
bindings are restricted to MXML attributes and require extra
syntax for dealing with collections of objects.
Dealing with Events
ConstraintJS utilizes events to trigger the transitions between
states of an FSM. Event-action mechanisms have a long histo-
ry in GUI programming [14]. Recently, FlapJax [10], a lan-
guage implemented as a JavaScript library, introduced an
architecture that allows events and constraints to share simi-
lar models and syntaxes. Proton [8] also introduced a declar-
ative syntax for describing sequences of events for touch-
based devices. The focus of both of these systems is on
building more intuitive and understandable event architec-
tures. The focus of ConstraintJS is related, but different: to
focus on ways that constraints can help build highly state-
oriented interactive behaviors. For this reason, CJS integrates
FSMs into its constraint model. Although we opted to build
on JavaScript’s standard event architecture, CJS and both of
these event architectures could be complimentary.
Visualization Tools
Several libraries for producing HTML-based visualizations
[4,7] include a limited form of constraints for specifying
dependencies between underlying data and graphical visuali-
zations of those data. For example, D3 [4] is a library for
creating visualizations in JavaScript, manipulating DOM

properties based on data. D3 allows designers to create visu-
alizations of data by creating data bindings from the data to
DOM properties. ConstraintJS borrows some of the ideas
from the ways these systems deal with collections of data.
The focus of these libraries is on producing visualizations,
whereas CJS is focused on using constraint to help write in-
teractive behaviors.
THE API OF CONSTRAINTJS
The following sections describe the ConstraintJS application
programming interface (API). All of ConstraintJS’s function-
ality is accessed via a global cjs() JavaScript function2 to
avoid potential conflicts with other libraries.
Basics: Creating Constrainable Variables
Any JavaScript object or widget may be turned into a con-
strainable variable using the cjs function with the JavaScript
variable as a parameter. For instance, this code snippet cre-
ates x as a constrainable variable whose value is 1:

var x = cjs(1); // x <- 1

The .get() function fetches the value of a constrainable vari-
able and .set(value) sets its value:

x.get(); // = 1
x.set(2); // x <- 2
x.get(); // = 2

Dynamically computed variables can be created by passing a
function as the parameter:

var y = cjs(function() {
 return x.get() + 1; // y <- x + 1
});

x.get(); // = 2
y.get(); // = 3
x.set(9); // x <- 9
y.get(); // = 10

Constrainable variables also have several utility methods to
create new dependent variables. For instance, the declaration
of y above may seem cumbersome but the same thing can be
achieved with:

y = x.add(1); // y <- x + 1

In this case, .add() is a built-in function that creates a new
constrainable variable. Custom constraint functions may also
be created, as we describe in “Convenience Methods” below.
Constraints may be “conditional” if an object with a
“condition” property is passed in:

var z = cjs({ condition: x.gt(0) // if x > 0
 , value: x } // z <- x
 { condition: "else" // else
 , value: x.mul(-1)}); // z <- x*-1

Constraints from UI Widgets
Developers can also create constrainable variables tied to
user widgets. For example, suppose a developer wants to
create a constrainable variable whose value is always the
value of the jQuery UI slider widget shown in Figure 2,

2 In JavaScript, function objects may have properties, so although

cjs is a callable function, it also has subfields (e.g., cjs.mouse).

called jq_ui. The constrainable variable s will have a getter
function that returns the slider’s value using the jQuery UI
syntax:

var s = cjs(function() {
return jq_ui.slider.option("value");

});

The variable s now knows how to compute its value but it
does not know when to compute its value. One possible an-
swer is to get its value whenever it is requested. However,
for many constrainable variables, recomputing the value is
expensive and it is best to avoid recomputing values more
than necessary. For this reason, when a constrainable varia-
ble’s value is requested, its value is cached and not recom-
puted until the cached value has been invalidated using the
.invalidate() function. Invalidation and evaluation are cov-
ered further in the “implementation” section, but the takea-
way is that ConstraintJS must be told when the slider should
invalidate its cached value, again using the jQuery UI syntax:

jq_ui.on("slide change", s.invalidate);

Thus, it only takes four lines to create a variable whose value
always represents the slider’s value. This can now be treated
just like any other constrainable variable and have any num-
ber of other variables, including DOM elements (as shown
below) depend on it.
ConstraintJS includes several built in variables:
• cjs.mouse.x – current mouse x position
• cjs.mouse.y – current mouse y position
• cjs.keyboard.pressed – an array of the keys that are

 currently pressed
• cjs.keyboard.modifiers – alt, ctrl, and shift are true

 if pressed, false otherwise
• cjs.touches – an array of finger presses on touchscreens
• cjs.time – milliseconds since midnight 1/1/1970
Constraining DOM objects to variables
We have shown how to create constrainable variables from
regular JavaScript variables. However, to affect any user-
visible behaviors, these constraint variables must be linked to
the Document Object Model (DOM), the underlying represen-
tation for every element on a webpage.
Suppose a developer wants to create the color selection inter-
face shown in Figure 3. As the user selects a color with the
sliders, the background color of the .container3 element and
the text value in .hexval automatically update. Three of the

3 A web page’s DOM objects have an optional “class” attribute,

which can have any number of user-set values. In the standard
HTML selector syntax, we can refer to an element with class name
“x” as .x so here the class is the “container”.

sliders shown in Figure 2 and implemented in the previous
section are used, named r, g, and b. A constrainable variable
named hex will hold the hexadecimal color value:

// decimalToHex converts an integer to hex
var hex = cjs(function() {
 return "#" + decimalToHex(r.get())
 + decimalToHex(g.get())
 + decimalToHex(b.get());
 });

Now, a constraint is created from hex to .container (back-
ground color) and .hexval (text). The code must first search
for the appropriate DOM objects, using cjs.$. This function
takes in a query string as a parameter and outputs a con-
strainable variable with an array of DOM elements that match
that query4. As the DOM changes, the value of the array
changes automatically5. Any of several built-in functions
will modify these DOM objects:
• .class(value) – set the class name of a DOM object
• .attr(attr_name,value) – set any attribute of the DOM obj.
• .css(attr_name,value) – set a CSS attribute of the DOM obj.
• .text(value) – set the text value of a DOM obj.
• .val(text) – set the value of a text input obj.
• .children(value) – set the child nodes of a DOM obj.

 value may be an array.
In this example,.css() sets the background color of .container
and the .text() value of .hexval:
 cjs.$(".container")

 .css("background-color", hex);
cjs.$(".hexval").text(hex);

4 In JavaScript, “$” is a legal variable name. The JavaScript library

jQuery (jquery.com) popularized the convention of having a func-
tion named “$” to search for DOM objects with a query string.

5 .snapshot() can be used to return a non-updating array

Figure 3: A color selector that uses constraint variables to automati-
cally update the preview color and hex value text. A constraint varia-
ble tracks the values for each of the red, green, and blue sliders (r, g,
and b respectively.) A fourth constraint variable (hex) computes a hex
color value. Finally, constraints update the background color and text
of the color selector to reflect the slider values.

Figure 2: An illustration of a jQuery UI slider widget. Constraint vari-
ables can be attached to track the value of this widget.

Then, as the user moves the slider, the background color and
text of the surrounding box also change. Now suppose that if
the variable changes values too quickly, the developer does
not actually want to update our DOM element every time the
constraint changes, but limit it to a certain number of chang-
es per second. All of the six methods mentioned take an op-
tional argument specifying the maximum update interval:

cjs.$(".hexval").text(hex, 500);

This will ensure that there is at least a 500 millisecond delay
between consecutive updates to .hexval but that .hexval al-
ways has the latest constraint value.
Finite State Machines
Because many pages have properties and graphics that de-
pend on the current state, ConstraintJS integrates its FSMs
with constraints and the page’s HTML and CSS. To illustrate,
suppose a developer wanted to implement the behavior
shown in Figure 4. Here, there are two DOM elements and
hovering over one has the effect of highlighting the other
element. The code to create the FSM shown in the right side
of Figure 4 is shown below6:

var block_a_fsm =
cjs .fsm()

.add_state("idle")
 .add_transition(cjs.on("mouseover", block_a)
 , "myhover")
.add_state("myhover")
 .add_transition(cjs.on("mouseout", block_a)
 , "idle")
.starts_at("idle");

This snippet uses “chaining,” a convention in JavaScript
where an object property performs an operation on that ob-
ject and returns the object back. Here, cjs.fsm() creates an
FSM and .add_state("idle") adds a new state named “idle” to
that FSM and returns the FSM back. The .add_transition()
method then creates a transition from the last state added to
any other state. Its first argument specifies when the transi-
tion should occur. ConstraintJS has several built in event
types, including cjs.on(<event>, <element>), which listens for
<event> to occur on <element>. Custom events may also be
created. The second argument to .add_transition() is the state
to which the FSM will transition when the event occurs. Fi-
nally, .starts_at specifies the initial state of the FSM.
Binding Constraint Values to FSM states
The developer would then create variables and constraints
that depend on this FSM. The two blocks shown in Figure 4
would require two FSMs: block_a_fsm and block_b_fsm. The
behavior for block_a would be as follows (the code for
block_b is analogous):

block_a.css("background-color",
 block_b_fsm, {
 "idle": "black",
 "myhover": "yellow"

 });

6 The state name myhover is used in this example instead of hover to

emphasize that this is not the standard CSS built-in hover.

The second parameter passed into block_a.css is an FSM. The
third parameter is an object where the keys ("idle" and
"myhover") represent states in the FSM passed in7. The values
("black" and "yellow" respectively) represent the value for the
constraint in the different states. Alternatively, we could cre-
ate a constraint for the hover color to be whatever color is
shown in the hex variable in Figure 3:

 block_a.css("background-color",
 block_b_fsm, {
 "idle" : "black",
 "myhover": hex
 });

Every FSM also has a variable called .state whose value is
the name of its current state. For instance,
block_b_fsm.state.get() returns either "idle" or "myhover" de-
pending on the current state of block_b_fsm. This allows an
alternate implementation approach: the class attribute of
block_a and block_b could be constrained to the value of state.
Then, custom CSS for the classes idle and myhover could be
used to specify how the block is displayed visually:

// JavaScript
block_a.class(block_b_fsm.state);
block_b.class(block_a_fsm.state);

// CSS
.idle { background-color: black; }
.myhover { background-color: yellow; }

Asynchronous Constraints
In JavaScript, developers often have to deal with asynchro-
nous calls: requests that do not provide a return value right
away, but instead use a callback to provide the return value
at some later time. The Facebook API described earlier in the
paper uses asynchronous callbacks. For example, the
fb_request function takes a query (e.g., "/me" to fetch the in-
formation of whomever is logged in) and a callback function
that will be called whenever the return value is ready. Some-
times, the asynchronous callback will receive an error, (e.g.
if we passed in an incorrectly formatted query in the initial
call) or might not return at all (e.g., if there was a network
problem). To handle these cases in conventional JavaScript
code, a developer would need to both create custom error

7 Multiple states may be selected by joining them with a comma:

"idle, myhover" or with wildcards: "*". Transitions may also be
used to instantaneously set constraint values: "idle -> myhover".

Figure 4: (Left) An illustration of an interactive behavior where hov-
ering over one block highlights the other block. (Right) the FSM used
by both blocks to track their state.

handling code inside the callback and also manage a timeout
after which time a query is considered failed.
Constraints are particularly well-suited to handling asyn-
chronous values because they automatically propagate values
when values become available. ConstraintJS handles asyn-
chronous values with a combination of a built-in FSM and a
constrainable variable that depends on that FSM. The FSM for
asynchronous constraints has three states:

• "pending" – waiting for a result
• "resolved" – a result was successfully returned
• "rejected" – an error occurred

Asynchronous constraints are created with the cjs.async()
method, which automatically creates the FSM in Figure 5 to
track the state of the constraint. cjs.async() returns a con-
straint whose .state property is the FSM in Figure 5. This
constraint can be treated just the same as normal constraints;
we can depend on them, set up dependencies in them, etc.
However, the variable will not have a value until the asyn-
chronous callback has returned. If we want to update the
variable’s value, we can call its .refresh() method.
Templates
ConstraintJS also allows HTML templates to be declared in
the syntax similar to Handlebars.JS [23] or Ember [20] with
values that update with the constraint variables. We extend
the syntax of Handlebars by allowing states to be included in
the template declaration. These templates accept snippets of
HTML code with constraints that automatically update the
values of parameters. Templates are created with the
cjs.template function and variables are specified using dou-
ble curly braces ({{x}}). For instance, this template creates a
<div> element whose text is constrained to the variables
firstname and lastname:

<script id="greeting" type="cjs/template">
 <div>Hello {{firstname}} {{lastname}}</div>
</script>
//...

var fn = cjs("Mary")
 , ln = cjs("Parker");
cjs.template("#greeting"
 , {firstname: fn, lastname: ln});

These templates may also include conditionals (omitting the
<script/> tag in subsequent examples):

{{#if logged_in}}
<div>Hello {{firstname}}
 {{lastname }}</div>

{{#else}}
Log in

{{/if}}

and iterations through collections:
 {{#each people person}}
 <div>Hello {{person.firstname}}
 {{person.lastname }}</div>
 {{/each}}

and state diagrams:
 {{#diagram selected_lang}}
 {{#state english}}
 <div>Hello {{firstname}}
 {{lastname }}</div>
 {{#state french}}
 <div>Bonjour {{firstname}}
 {{lastname }}</div>
 {{/diagram}}

Arrays
ConstraintJS has several functions for dealing with con-
straints involving arrays. The .map() function creates an array
whose values depend on the values of a constraint based on
another array. For instance:

var x = cjs([1,2,3]);
var y = x.map(function(val) {
 return val + 1;
 });
y.get(); // = [2,3,4]

When the source array (x) changes, .map() computes the dif-
ference from the previous value in terms of items removed,
items added, and items moved. If the value of x changes to
[3,4], then y should get the value [4, 5]. .map() will detect
that 3 was already in the source array and so it only computes
the mapped value for 4. The same difference mechanism is
used in the .children() method (described above in “Con-
straining DOM objects to variables”) to avoid removing and
re-adding DOM child nodes unnecessarily.
Animations
ConstraintJS also includes support for JavaScript animations.
Animations are “attached” to any variable using .anim(). The
resulting variable has the same value as the original variable,
but changes are now animated. Animations are currently
supported for colors and numbers (which includes objects’
positions). For instance, this snippet creates a variable that
animates from red to blue over one second:

var mycolor = cjs("#FF0000");
var animated_color = mycolor.anim({
 duration: 1000
 });
var third_color = cjs(animated_color) ;
mycolor.set("#0000FF");

// mycolor is immediately set to blue
// animated_color and third_color
// animate from red to blue over one second

Convenience Methods
We previously showed that CJS provides a convenience
method for add, as in: x = y.add(z). Suppose a developer
wanted to be able to express power functions in the same
way, as in:

Figure 5: The FSM of asynchronous constraints in ConstraintJS.
Asynchronous constraints are constraints that don’t have a value
until after some delay period, e.g. data returned from network or file
system queries. While the constraint is waiting for a value, the FSM
is in the “Pending” state. When it successfully receives a value, it
enters the “Resolved” state. If there is an error or the request times
out, it enters the “Rejected” state.

var x = cjs(2); // x <- 2
var y = x.pow(3); // y <- x^3
y.get(); // = 8
x.set(3); // x <- 3
y.get(); // = 27

The developer can define this method as follows:
cjs.constraint.mixin("pow",

function(value, to_the) {
 return Math.pow(value, to_the);

});

Here, the first parameter to cjs.constraint.mixin is the name
of the method for all constrainable variables and the second
is a function whose first argument is the incoming value
from the referenced variable (x in the snippet above), and the
other arguments are whatever are passed into the method.
Working with Third Party Libraries
So far, we have described how to attach constraints to regu-
lar DOM objects but JavaScript has a number of libraries that
do not use standard DOM objects. We have already extended
ConstraintJS to work with the jQuery UI library, as explained
above, but we could never provide support for every possible
future library ourselves. Therefore, we provide an extension
mechanism so that developers can easily get ConstraintJS’s
constraints, FSMs and other features to work with new librar-
ies. For instance, suppose a developer wants to attach con-
straints to elements in the RaphaelJS drawing library (found
at raphaeljs.com), which uses its own graphics primitives.
RaphaelJS objects use the .attr(prop, val) method to change
display properties, as in:

circle.attr("fill", "red");
A natural way of expressing a constraint on a RaphaelJS
graphics primitive might be:

cjs(circle).raphael_attr("fill", constraint_var);

ConstraintJS supports this through the function:
cjs.binding.bind(context, attr_val, setter, max_updates)

which accepts an object (context), a value or constrainable
value to set that object to (attr_val), a function to call to set
the object value (setter), and an optional maximum update
interval (max_updates). This provides an easy way to augment
the types of constraints that can be made with the
cjs.binding.mixin function, where the first parameter is the
name of the property we are creating and the second is a
function that creates a constraint:

cjs.binding.mixin("raphael_attr",
 function(obj, attr_name, val, max_updates) {
 var setter = function(obj, val) {
 obj.attr(attr_name, val.get());
 };

 return cjs.binding.bind(context, val
 , setter, max_updates);
});

These ten lines of code are all that is necessary to extend
ConstraintJS to work with RaphaelJS graphics primitives.
ConstraintJS can be extended to work with any number of
third party libraries in a similar fashion.
EXAMPLE APPLICATIONS
We further illustrate ConstraintJS through a series of exam-
ples, which we briefly describe below. For the sake of space,

we do not include the full example code, but only the rele-
vant snippets. In full, these examples are relatively small,
with each example being roughly 200 lines of code.
Bubble Cursor (Custom Graphics)
Although the most of examples explained in the API section
have been standard interaction techniques, constraints and
FSMs can also be used to more easily define novel interac-
tions. In this example, we implement a bubble cursor [6] – a
cursor that searches for the nearest target (represented as
grey-filled circles) to the mouse within a maximum radius
(the dotted grey circle outline in Figure 6-A). The targets are
animated to move continuously, and when there is a single
target sufficiently near to the mouse, the dotted outline
around the mouse is red and the selected target is a darker
grey (shown in Figure 6-B). All of the interaction, including
the display colors, position, and movement of the targets and
cursor, are defined using constraints. Additionally, this ex-
ample uses the extensions for the RaphaelJS drawing library,
explained in the previous section. In contrast with the equiv-
alent imperative version, the constraint version of the code
for the bubble cursor is shorter and uses less interdependent
components. For instance, the code to set the radius and col-
or of the cursor is relatively self-contained:
// max_bubble_select_distance is a constraint in case
// we want it to vary based on mouse speed
// select_cursor_radius is a constraint that
// depends on closest_target
cjs(cursor_halo)

.raphael_attr("stroke", cjs({ // stroke color
 condition: closest_target.isNull()
 , value: "grey"
 }, {
 condition: "else"

, value: "red"
 }))
.raphael_attr("r", cjs({ // radius
 condition: closest_target.isNull()
 , value: max_bubble_select_distance
 }, {
 condition: "else"
 , value: select_cursor_radius

}));

In contrast, in a conventional implementation, this function-
ality would necessarily be spread across callbacks that lis-

Figure 6: An illustration of Bubble Cursors [6]. Clickable “targets” are
light grey-filled circles. When the cursor is too far from any of the
targets, a grey dotted halo appears around the cursor (A). When a
target is in range (B), the halo becomes red and shrinks enough that
it intersects the target, which turns dark grey. The ConstraintJS im-
plementation of this application allows all of this behavior to be ex-
pressed declaratively.

tened for changes to the closest target and maximum selec-
tion distance.
Scatter Plots (Multi-Way Constraints)
As explained earlier, ConstraintJS uses a one-way constraint
solver, as opposed to a multi-way constraint solver. Multi-
way constraint solvers have been touted as a way to repre-
sent some useful constraints that could not be represented as
one-way constraints [15]. In particular, multi-way constraints
have been claimed to make it easier to create variables with
dependencies that go both ways. Take the scatterplot applica-
tion in Figure 7. When a data point is being dragged, a con-
straint sets the model’s value for that data point depending
on its current display position, which in turn is constrained to
follow the mouse. When the user releases the point, a con-
straint in the opposite direction maintains the x and y display
positions based on the underlying model, so if the underlying
model’s data changes, the point will be updated.
This example was originally used to demonstrate the ad-
vantages of multi-way constraints over conventional one-
way constraints [15,16]. However, by combining one-way
constraints with FSMs, ConstraintJS makes this example easy
to implement without the overhead of a multi-way solver. In
the default state for every point, a constraint sets the display
position based on an underlying data model, where the data
model consists of constrainable variables (A). When the user
starts to drag a point (B), its state changes, so a different set
of constraints are enforced that compute the model’s values
based on the graphics. When the dragging stops, the state
reverts to the default. This is expressed with the following
constraint (div and sub are convenience methods for division
and subtraction respectively):

cjs(dot_fsm, {
 "init, idle": x.div(scale_x),
 "dragging" : (cjs.mouse.x).sub(offset.x) });

A similar pattern is used for the axes and changing the scale.
Note that dataflow multi-way solvers required developers to
write the constraints in both directions [15,16], just as Con-
straintJS does – those solvers just select which set of con-
straints to use. However, developers often found that they
needed to extra features, such as constraint hierarchies [16]
to control the direction. In ConstraintJS, FSMs (which are
likely to be more understandable and controllable for devel-
opers [11,12]) keep track of the dragging state for each point
and axis and manages enabling and disabling constraints.
Multi-touch Moveable/Resizable Image (Tablets)
Although all of the examples we have discussed so far are
based on mouse and keyboard input, ConstraintJS is not lim-
ited to desktop applications. ConstraintJS works with any
kind of user input that can be translated into JavaScript
events. Figure 8 illustrates a simple multi-touch photo ma-
nipulation interface for tablet devices we built with Con-
straintJS. In this application, users can move and manipulate
photos in a virtual workspace. Touching a photo with one
finger drags the photo within the workspace. Manipulating a
photo with two fingers changes the rotation, scale, and posi-
tion of the photo. When a photo is touched with two fingers,
a red slider widget that controls the photo’s opacity appears
and may be manipulated with a third finger. The slider indi-
cates the current value by its position and text.
The layout of every component in this application is con-
trolled by constraints – photo position, scale, rotation, &
opacity and the position, visibility & text of the opacity slid-
er. Compared to an implementation of this example that does
not use constraints, the ConstraintJS implementation requires
fewer lines of code and fewer callbacks.
IMPLEMENTATION
The constraints in ConstraintJS are “pull” constraints, mean-
ing that a constraint’s value is never computed until it is
asked for. We based our algorithm on the pointer-constraints
algorithm outlined by Vander Zanden et. al [17], modifying
it to enable more control over when constraints are evaluated

Figure 7: A scatterplot application implemented with ConstraintJS.
By default, constraints set the position of every data point to reflect
the values of an underlying data model (A). When a point is dragged
(B), a constraint in the opposite direction updates the underlying data
model based on the position of the point, which in turn, is con-
strained to the mouse’s position. The axes may also be dragged (C)
and constraints automatically update the axis labels to reflect its
position. Finally, axes’ scales may be changed (D) by dragging a
point while holding SHIFT. This example illustrates how one-way con-
straints in ConstraintJS may be combined with FSMs to enable func-
tionality that was previously only possible with multi-way constraints.

Figure 8: An illustration of a touchscreen-based application written
with ConstraintJS. Constraints control the position, scale, and angle
of photos, which users can manipulate with one or two fingers. When
two fingers touch a photo, a red slider appears that controls the pho-
to’s opacity and can be changed using a third finger. Constraints set
the position and text of the slider.

(e.g., immediately after FSM state changes). Using this algo-
rithm, dependencies between variables are automatically
computed and values are cached until they are invalidated.
Most data-binding libraries have opted for the “push” model,
where whenever a constraint’s value changes, updates are
“pushed” to any constraint that depends upon it. However, in
ConstraintJS, constraints may be turned on and off depend-
ing on application state, meaning that the “push” implemen-
tation for constraints might do unnecessary work if values
are pushed to constraint variables that are turned off and do
not currently affect the DOM. With the pull model for con-
straints, we can create any number of constraints, but if they
do not affect any DOM objects on screen and are not specifi-
cally requested, they will not be updated and therefore will
not hinder the performance of the application.
Another potential problem with push-based constraints is
that cycles may cause an infinite loop if not handled careful-
ly. With pull-based constraints, we do not have this problem.
Cycles are automatically computed using a “once around”
algorithm (which evaluates each constraint in the cycle only
once per invalidation), which has been shown in previous
systems to be understandable and useful for developers [18].
Size & Performance
The current version of ConstraintJS is a 25 KB file when
compressed using UglifyJS and Gzip. It can be included in
any JavaScript application, including phone/tablet web
browsers and server-side JavaScript applications that use the
Node platform. In testing the current version of ConstraintJS
inside the Safari web browser on a 2.6 GHz Core 2 Duo pro-
cessor, our system was able to handle without any noticeable
delay on the order of 1,000 simultaneously evaluated con-
straints all affecting DOM objects and simultaneously
smoothly animate around 200 DOM properties. This is clearly
more than any real interactive behavior is likely to need.
CONCLUSIONS AND FUTURE WORK
We have presented ConstraintJS, a system that integrates
constraints and finite-state-machines (FSMs) with Web lan-
guages. ConstraintJS can be included in any JavaScript ap-
plication without browser modifications and it can interoper-
ate with other JavaScript libraries. By integrating constraints
and FSMs, ConstraintJS can help simplify the development of
interactive behaviors. In fact, many interactive behaviors can
be built entirely as a combination of FSMs and constraints,
which can both be specified declaratively. For future work,
we plan on building an interactive tool to enable non-
programmer designers to develop custom behaviors as com-
binations of FSMs and constraints. However, we feel that in
its current form, developers will find that the ConstraintJS
language and toolkit is a clearer way to program interactive
behaviors for the Web.
ACKNOWLEDGEMENTS
Funding for this research comes from a Microsoft SEIF
award, a grant from Adobe, a Ford Foundation Fellowship,
and from NSF grant IIS-1116724. Any opinions, findings

and conclusions or recommendations are those of the authors
and do not necessarily reflect those of any of the sponsors.
REFERENCES
1. Appert, C. and Beaudouin-Lafon, M. SwingStates: Adding state

machines to Java and the Swing toolkit. Software: Practice and
Experience 38, 11 (2008), 1149-1182.

2. Badros, G.J., Marriott, K., Borning, A., & Stuckey, P. Con-
straint Cascading Style Sheets for the Web. UIST,(1999), 73-82.

3. Blanch, R., Beaudouin-lafon, M., and Futurs, I. Programming
Rich Interactions using the Hierarchical State Machine Toolkit.
AVI, (2006), 51-58.

4. Bostock, M., Ogievetsky, V., and Heer, J. D3: Data-Driven
Documents. Visualization and Computer Graphics 17, 12
(2011), 2301-9.

5. Freeman-Benson, B. Kaleidoscope: Mixing Objects, Con-
straints, and Imperative Programming. OOPSLA, (1990), 77-88.

6. Grossman, T. and Balakrishnan, R. The Bubble Cursor: En-
hancing Target Acquisition by Dynamic Resizing of the Cur-
sor’s Activation Area. CHI, (2005), 281-290.

7. Heer, J. and Bostock, M. Declarative language design for inter-
active visualization. Visualization and Computer Graphics 16, 6
(2010), 1149-56.

8. Kin, K., Hartmann, B., DeRose, T., and Agrawala, M. Proton:
Multitouch Gestures as Regular Expressions. CHI, (2012).

9. Letondal, C., Chatty, S., Phillips, W.G., and André, F. Usability
requirements for interaction-oriented development tools. PPIG,
(2010), 12-26.

10. Meyerovich, L., Guha, A., and Baskin, J. Flapjax: A Program-
ming Language for Ajax Applications. OOPSLA, (2009), 1-20.

11. Myers, B., Hudson, S.E., and Pausch, R. Past, Present, and Fu-
ture of User Interface Software Tools. TOCHI 7, 1 (2000), 3-28.

12. Myers, B., Park, S.Y., Nakano, Y., Mueller, G., and Ko, A.
How Designers Design and Program Interactive Behaviors.
VL/HCC, (2008), 177-184.

13. Myers, B.A. Separating Application Code from Toolkits: Elim-
inating the Spaghetti of Callbacks. UIST, (1991), 211-220.

14. Olsen, D.R. User Interface Management Systems: Models and
Algorithms. Morgan Kaufmann, San Mateo, CA, 1992.

15. Sannella, M. and Borning, A. Multi-Garnet: Integrating Multi-
Way Constraints with Garnet. UW Technical Report, (1992).

16. Sannella, M. SkyBlue: A Multi-Way Local Propagation Con-
straint Solver for User Interface Construction. UIST, (1994),
137-146.

17. Vander Zanden, B.T., Myers, B.A., Giuse, D.A., and Szekely,
P. Integrating Pointer Variables into One-Way Constraint Mod-
els. TOCHI l, 2 (1994), 161-213.

18. Vander Zanden, B.T., Richard, H., Myers, B.A., et al. Lessons
Learned About One-Way, Dataflow Constraints in the Garnet
and Amulet Graphical Toolkits. TOPLAS 23, 6 (2001), 776-796.

19. Wingrave, C.A., Laviola Jr, J.J., and Bowman, D.A. A natural,
tiered and executable UIDL for 3D user interfaces based on
Concept-Oriented Design. TOCHI 16, 4 (2009), 21.

20. Ember. http://emberjs.com/.
21. Backbone. http://documentcloud.github.com/backbone/.
22. KnockoutJS. http://knockoutjs.com/.
23. Handlebars.JS. http://handlebarsjs.com/.
24. Adobe Flex. http://www.adobe.com/products/flex.html.
25. Tangle. http://worrydream.com/Tangle/.

