
39

Creating Guided Code Explanations with chat.codes

STEVE ONEY∗, The University of Michigan, USA
CHRISTOPHER BROOKS, The University of Michigan, USA
PAUL RESNICK, The University of Michigan, USA

Effective communication is crucial for programmers of all skill levels. However, communicating about code can
be difficult, particularly in asynchronous settings where one user writes an explanation for another user to read
and understand later on. Communicating about code is uniquely difficult for two reasons. First, code-related
explanations are dichotomous, containing fragments of code and associated natural language descriptions
that are not necessarily sequential. Second, instructions’ explanations of code often involve multiple stages of
modifying code in steps throughout their explanation, but these intermediate steps are difficult to capture. This
paper introduces chat.codes, a new tool for creating guided explanations about code, meant to be consumed
asynchronously. chat.codes introduces three features that make it easier to communicate about code. First,
it introduces deictic code references, which allow users to reference specific region of code in parts of their
explanations. Second, it tracks and summarizes code edits in-line with messages, allowing users to create
explanations in stages. Third, it tracks every version of code, enabling future users to back-track to previous
version of code to reconstruct the context for code references. An evaluation showed that these features were
beneficial for both instructors and students in an introductory programming course.

ACM Reference Format:
Steve Oney, Christopher Brooks, and Paul Resnick. 2010. Creating Guided Code Explanations with chat.codes.
ACM Trans. Web 9, 4, Article 39 (January 2010), 20 pages. https://doi.org/0000001.0000001

1 INTRODUCTION
Communication is a fundamentally collaborative act where two (or more) parties try to reach
“common ground” [14, 15]. Communication about code poses several unique challenges. First,
communication is typically about specific parts of the code, and it is difficult to establish common
ground about which part of code is being discussed. Second, the code being discussed may change
during the conversation, which complicates any reuse of the conversation history, either within
the session or at a later time.
We developed a tool called chat.codes to address some of the challenges of discussing code. As

with some other tools for communicating about code [13, 28], it provides side-by-side windows
for code and natural language explanations. Its novel contribution is the integration of three
other features: deictic code pointers, code versioning, and inline code diffs. Pointers allow for chat
messages to reference to specific segments of code. Versioning maintains a version history for the
code, and ties the chat contents (including code pointers) to specific versions. Diffs are automated
summaries, in the chat window, of code changes between versions of the code.
∗This is the corresponding author

Authors’ addresses: Steve Oney, The University of Michigan, 105 S State St. Ann Arbor, MI, 48103, USA, soney@umich.edu;
Christopher Brooks, The University of Michigan, 105 S State St. Ann Arbor, MI, 48103, USA, brooksch@umich.edu; Paul
Resnick, The University of Michigan, 105 S State St. Ann Arbor, MI, 48103, USA, presnick@umich.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2010 Copyright held by the owner/author(s). Publication rights licensed to ACM.
1559-1131/2010/1-ART39 $15.00
https://doi.org/0000001.0000001

ACM Trans. Web, Vol. 9, No. 4, Article 39. Publication date: January 2010.

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001

39:2 Oney et al.

chat.codes can be used in several alternative workflows. One is synchronous chat (where par-
ticipants are involved in the conversation at the same time), sharing the code and chat windows
between multiple remote users. It can also be used asynchronously, where one user writes an
explanation meant to be read later (either by a single user or multiple users). The two modes can
also be combined, with people dropping in and out of participation and with later participants
“catching up” on the conversation and possibly adding to it.

In this paper, we describe the tool and report on the first stage of evaluating the tool, assessing
whether it is usable and useful in the simplest (but arguably one of the most important) workflows
— in creating guided explanations, which we define to be a one-stage asynchronous communication
where an instructor constructs an explanation for a chunk of code and learners consume that
explanation later on. In particular, in a qualitative study with four experienced programmers,
they quickly learned to use the features to create guided explanations. In a second study, nine
students from an introductory programming course were each exposed to both conventional text
explanations and explanations that take advantage of the pointers, versioning, and diff features
of chat.codes; all of them preferred the chat.codes explanations. In a third study, twenty-four
freelancers with some programming experience were randomly assigned to use either chat.codes
explanations or video-based code explanations with the exact same content; performance with
chat.codes was better on average, but the results were not statistically significant.

In summary, the main contribution of this paper is a description of the key features of chat.codes
and some of the lessons learned from the design iterations. The user studies serve to validate that
the features are indeed usable and useful. In particular, design contributions include:

(1) a markup language for making explicit references to code, and an interaction paradigm for
creating and editing them via mouse operations in a code window;

(2) a way to link the code version history and chat log, so that the chat log can be used to
navigate the code history; and

(3) a feature that automatically inserts summaries of diffs between code versions into the chat
log.

2 RELATEDWORK
chat.codes builds on prior work in HCI, CSCW, and Software Engineering.

2.1 Improving Collaboration with Deictic References
Effective communication in collaborative tasks requires grounding conversation through shared
context [14, 15]. Deictic expressions reference the time, place, or situation in which someone
is speaking. For example, someone might say “over there” or “that one”; the meaning of these
references depend on a shared context. chat.codes uses deictic references to ground chat messages
with code context. Deictic references have been studied and used to improve communication in a
variety of other contexts, including remote collaboration in shared workspaces [23] and on physical
tasks [16], where it has been shown that they can help communication by grounding messages in a
shared context.
Korero [10] allows users to make deictic references to point to course-related materials (such

as a specific time in a video). Although Korero also works with documents, it assumes that the
content of the materials being referenced is static, an assumption that does not hold with many
code discussions, where the code content dynamically changes. chat.codes instead works with code
that evolves throughout the course of the discussion while ensuring that code references never
become stale.

ACM Trans. Web, Vol. 9, No. 4, Article 39. Publication date: January 2010.

Creating Guided Code Explanations with chat.codes 39:3

C

B

A

Fig. 1. chat.codes is a communication tool for programmers that combines a shared editor (left) with syn-
chronous text chat (right). Users can click on any given message to see the state of the code when that
message was sent (A). chat.codes also allows programmers to see when code was edited by displaying edit
messages in-line with chat messages (B). These messages can be expanded to reveal a full diff (Figure 5 shows
what clicking the ‘(more)’ button displays). Users can also easily “point” to regions of code through a simple
highlighting interaction (as Figure 3 illustrates).

Annotations — notes or comments that are attached to a shared workspace — are one of the
most common form of deictic references in computer interfaces. Many commercial collaborative
document editors, including Google Docs and Microsoft Word, allow users to annotate content via
comments that are attached to specific portions of text. Annotations have also been explored in the
context of multimedia artifacts [44], 3D space [40], and online course materials [47].
Annotations have also been explored for code explanations. WebEx [5] allows programmers

to annotate lines of programming examples. Although annotations can be helpful in associating
a comment with its relevant location, they are not as useful for guided code explanations or
synchronous or asynchronous discussion. This is because whereas the natural order of annotation
consumption matches the order of the text in a document (from the first line to the last), guided
code explanations often involve a walkthrough that is non-sequential with respect to the code being
discussed. Further, annotations can be difficult to interpret in the context of evolving code, where
it is unclear if an annotation refers to an old version of code or the current version. chat.codes
addresses both of these problems when creating guided code explanations by enabling code pointers
to be part of a larger coherent explanation that does not need to be sequential and can involve
multiple code versions.

2.2 Tools for Discussing Code
Other researchers have recognized the need for programmers to be able to communicate with each
other and have created tools to allow them to do so. Prior work in this area can be divided into
synchronous and asynchronous tools.

2.2.1 Synchronous Code Chat Tools. Many programming Integrated Development Environ-
ments (IDEs) and tools have integrated synchronous discussion mechanisms as a way to allow
remote programmers to communicate. All of these tools build on shared editors that allow any
number of participants to edit code simultaneously. Some of these tools enable text-based chat
between participants [20–22, 27, 42]. Others offer video and voice communication [13, 29]. As the

ACM Trans. Web, Vol. 9, No. 4, Article 39. Publication date: January 2010.

39:4 Oney et al.

introduction describes, chat.codes goes beyond these tools by tightly coupling messages with the
code they are discussing. This allows conversations to be re-contextualized by future readers.

Prior research has also explored additional communication channels for remote communication
between programmers. D’Angelo and Begel found sharing gaze information from eye trackers
could improve communication in remote collaborative programming sessions by making it easier
to communicate about locations in code [11]. Although this can help resolve ambiguity, it requires
specialized hardware (an accurate eye tracker). Further, although the ambiguity and error rate that
is inherent to using gaze to infer a code location might be acceptable in synchronous discussion
settings (where ambiguity can be resolved through discussion) but might be less acceptable for
explanations that could be read asynchronously, as chat.codes explanations and discussions can.

2.2.2 Asynchronous Discussion Tools. There are also many asynchronous communication tools
for programmers. Despite being less natural than synchronous communication, asynchronous
communication tools have the benefit of easing coordination costs between discussion participants,
as they do not need to be involved at the same time. Ginosar et al. proposed a technique for creating
asynchronous multi-stage code examples [18]. This system helps authors to construct a series of
code examples that build to a complete solution, propagating changes in one code version forward
or backward to other versions. However, it does not provide a way for text explanations to link to
code versions or particular parts of them, as chat.codes does.
Many programming support tools rely on asynchronous discussion forums to provide scalable

support [3, 30, 36, 41]. These discussion forums are useful even for programmers who do not partic-
ipate in a discussion because they build “accumulated knowledge” [1, 2, 32], meaning programmers
can find answers to their questions by looking at previous discussions. Previous studies have shown
that most of the usage of discussion forums come from reading answers to previous questions
[4, 26, 33, 35].
In order to build accumulated knowledge through posts, many forums define strict posting

guidelines [32]. Stack Overflow, for example, has a set of guidelines and recommendations on how
to ask a “good” question. According to these guidelines, good posts should contain concise and
accurate descriptions of the problem and often should include a “minimal, complete, and verifiable
example” [36]. For novice and learning programmers, however, it can be difficult to summarize a
problem or to know which portions of their code base might be problematic. Such users benefit
from synchronous discussions [7] where they can walk through their problem with the help of
a remote helper [25]. chat.codes aims to provide natural synchronous communication while also
allowing previous discussions to be useful for other programmers.

2.2.3 Blending Synchronous and Asynchronous Support. Previous researchers have proposed
blending the best features of synchronous and asynchronous communication [37]. Codeon [7] uses
a “semi-synchronous” communication model where programmers ask questions using synchronous
mechanisms (voice and text) but remote helpers respond to requests asynchronously. However,
Codeon’s asynchronous model relies on using different types of communication for the programmer
(who uses voice) and remote helpers (who use annotations, code changes, and textual explanations).
In this model, developers cannot tie textual explanations to regions of code as they can in chat.codes
and helpers must rely on annotations to point out specific locations in code.

2.3 Version Control Systems
GitHub and other Version Control Systems (VCSs) tools enable formal discussions of code. Profes-
sional programmers often use commit messages, pull requests, and issue trackers to communicate
with collaborators. However, VCSs are often too heavy-weight for explanatory discussions because
they require actively committing and labeling code changes. Azurite [45, 46] and CodePilot [42]

ACM Trans. Web, Vol. 9, No. 4, Article 39. Publication date: January 2010.

Creating Guided Code Explanations with chat.codes 39:5

in-IDE view
(Atom)

Web view

Fig. 2. chat.codes is implemented as a website and as a plugin for the Atom IDE. Atom users can use chat.codes
in their IDE, which will automatically converts their editor into a shared editor. Programmers can click a
button to create a unique shareable URL that helpers can then visit. Helpers can then access the requester’s
IDE over the web by visiting that URL.

have explored ways of making the features of VCSs more lightweight. Azurite provides a visual
timeline view to explore the history of code changes. CodePilot [42] included the automatic posting
of notification of version control events such as new commit messages into a chat log, a feature
that some software development teams also include in their use of the commercial product Slack.
Prior work, however, has not investigated how to inject useful summaries of code diffs into the
chat stream.

2.4 Improving Scalability for Programming Support Tools
One of the benefits of allowing conversations to be re-used is that it helps create more scalable
support. Previous work has explored alternative ways to provide more scalable support for pro-
gramming courses. Codeopticon [21] improves instructors’ ability to monitor many students in
real-time to detect when students need assistance in the context of large courses. When an in-
structor detects that a student needs assistance, they can synchronously chat with that student.
OverCode [19] enables more scalable programming support by allowing instructors to group stu-
dent’s solutions to programming exercises and allowing instructors to give feedback to multiple
students simultaneously.

3 CHAT.CODES DESIGN
Our design goals for chat.codes’s interface were:

• To minimize its learning curve by ensuring that all of the same interactions and conventions
in standard chat tools[13] also work with chat.codes,

• to prevent the kinds of information overload that advanced change-tracking systems (like VCSs)
can introduce, and

• to reduce the burden for programmers to provide context by automatically tracking context
when possible (which is crucial to allowing programmers to later reconstruct this context).

chat.codes is implemented as both a standalone web application and as a plugin for the Atom
[28] IDE, as Figure 2 illustrates. Users can create chat channels from either interface. Both interfaces
have the same interactions, but the figures in this paper and evaluations use the web interface.
chat.codes includes a multi-user code editor and a text-base chat interface. Like other shared

editors, users can see other users’ cursors and cursor selections in real-time, simultaneously
edit the same code, and chat in real-time. Users can create a new discussion channel by visiting
https://chat.codes/ and clicking “New Channel”. This generates a one-word channel name, which

ACM Trans. Web, Vol. 9, No. 4, Article 39. Publication date: January 2010.

https://chat.codes/

39:6 Oney et al.

Fig. 3. chat.codes enables programmers to point to regions of code in their messages through a Markdown-
based syntax. Users can also easily specify what region of code they want to refer to by simply highlighting
that region in the code window, which automatically inserts an appropriate code pointer.

other users can join by visiting https://chat.codes/[channel name]. Every channel name is a random
short English word, to make it easy to verbally share a channel name.

3.1 Code Pointers
One novel interaction that chat.codes introduces is “code pointers”, which allow programmers to
add deictic references to regions of code in their messages. For example, in Figure 1C, Mallory
writes “this part always gives True for me”. When another programmer hovers over “this part”,
the region of code that Mallory is referring to is highlighted (Figure 1C). Code pointers allow
programmers to create code references that never become invalid, even if the region of code they
point to is later modified or removed.
In other shared-context chat tools (e.g., Google Docs, [13, 27]) when users want to point to a

region of a document, they must send their message while highlighting the relevant region and
assume that the remote collaborator is paying attention at the right time. However, this convention
does not allow outside observers to determine what region of code a given user is referencing from
the chat log alone. Further, users cannot ensure that the message recipient actually saw the region
of code they highlighted.
Some tools also allow users to add annotations or inline comments associated with regions of

code. However, these are not a substitute for code pointers because: 1) they are not temporally linked
with the users’ discussion, meaning that step-by-step explanations that walk programmers through
distributed portions of code are not practical with inline comments, 2) they can be invalidated if
the region of text associated with the inline comment is changed or removed, and 3) code pointers
allow users to reference multiple regions of code in the context of a single message whereas inline
comments require one message per code region.

3.1.1 Creating Code Pointers. We use a syntax for code pointers that is based on Markdown
[34] links: [text](URL). chat.codes uses three subcategories of code pointers for:

• an individual line: [this line](code.js:L24),
• a range of lines: [these lines](code.js:L23-L42),
• or any range: [this code](code.js:L24,0-L24,3)

However, we felt that requiring users to enter code pointer manually was unnecessarily difficult
and unnatural. Thus, chat.codes also allows programmers to write code pointer by simply selecting

ACM Trans. Web, Vol. 9, No. 4, Article 39. Publication date: January 2010.

Creating Guided Code Explanations with chat.codes 39:7

1 no text selected in chat input

this line of code

2 full code pointer is selected in chat input

[this line of code](file-1:L24)

3 text is selected, not part of a code pointer

this line of code

4 text is selected, part of code pointer

[this](file-1:L24) line of code

 c_file = open(CF, 'w')
 c_file.write(json.dumps(CD))
 c_file.close()

23
24
25

user selects no code:

user selects code:
 c_file = open(CF, 'w')
 c_file.write(json.dumps(CD))
 c_file.close()

23
24
25

user selects code:
 c_file = open(CF, 'w')
 c_file.write(json.dumps(CD))
 c_file.close()

23
24
25

user selects code:
 c_file = open(CF, 'w')
 c_file.write(json.dumps(CD))
 c_file.close()

23
24
25

 c_file = open(CF, 'w')
 c_file.write(json.dumps(CD))
 c_file.close()

23
24
25

user selects no code:

user selects code:
 c_file = open(CF, 'w')
 c_file.write(json.dumps(CD))
 c_file.close()

23
24
25

pointer updated
pointer updated

Fig. 4. In order to allow users to easily create code pointers in chat messages, we designed a set of interactions
that depend on the state of the chat input box. These interactions are described in more detail in section 3.1.

regions of code in their editor (see Figure 3). Effectively designing this feature was surprisingly
challenging because a naïve approach would result in users’ typed messages being overwritten
whenever they selected code. Through a rounds of pilot testing with users, we arrived at a nuanced
set of interactions that depend on the state of the chat input box. These states are illustrated in
Figure 4 and described below:
(1) no text is selected in the chat input box (or the chat input box is empty):

When the user selects a region of code, the system will insert a new code pointer that points
to the user’s code selection and whose text is the first 10 characters of their code selection.
Then, it will select the full code pointer text (putting them in state 2).

(2) a code pointer is selected in the chat input box: [this line of code](file-1:L24):
When the user selects a region of code, the system will replace the selected code pointer with
a new code pointer that points to the user’s new code selection and whose text is the first 10
characters of their new code selection. Then, it will select the full code pointer text (stay in
state 2). If the user has an empty code selection, then remove the complete code pointer (go
back to state 1).

(3) text is selected but it is not part of a code pointer: this line of code
When the user selects a region of code, the system will add a link that points to the selected
code and whose text content was the word that was previously selected in the chat input box.
Then, it will select the same text in the chat input box. In the above example, “this” would
remain selected but a code pointer would be added around it (putting them in state 4).

(4) text is selected that is part of a code pointer1: [this](file-1:24) line of code
When the user selects a region of code, the system will update the code pointer but not the
text. The previously selected text also remains selected (remain in state 4).
If the user has an empty code selection, then it will remove the code pointer portion while
keeping the selected chat input text (putting them back in state 3).

Despite the complexity of these rules, we found that they were intuitively understandable with
a minimal learning curve for users in our evaluation. To illustrate why, consider the following
interactions:
1 This also applies for selections that partially overlap code pointers (e.g., “[this line of code](file-1:L24)”)

ACM Trans. Web, Vol. 9, No. 4, Article 39. Publication date: January 2010.

39:8 Oney et al.

• Alice wants to insert a new code pointer into an empty message (state 1). She intuitively starts
by highlighting code (putting her into state 2). As she continues to drag her code selection,
the code pointer in the chat window updates. If she clears her code selection, the code pointer
is removed, which leaves the content of the chat input box as it started (back in state 1).

• Bob wants to add a code pointer to a portion of his message. He intuitively highlights the
portion of the message he wants by selecting “this” in “what does this mean?” (state 3). As
he selects code, a code pointer is automatically inserted “this” (putting him in state 4). If he
clears his code selection, the pointer is removed, which leaves Bob where he started: with
“what does this mean?” selected (back in state 3).

3.1.2 Code Pointers to previous versions of code. chat.codes’s code pointing feature benefits from
(and integrates with) its other features. Specifically, the fact that chat.codes allows users to navigate
to previous versions of code allows code pointers to remain “valid”, even if the portion of code it
links to is later removed or if the file it references is deleted. Every code pointer is associated with
the specific version of code when the code pointer was created. If a user creates a code pointer and
that code is edited later on, the original version of code (when the pointer was created) is restored
when that code pointer is referenced. Sections 3.2 and 6 discuss this in further detail.

3.2 Navigating Through Time and Code
Per our goal of minimizing its learning curve, by default, chat.codes behaves like every other shared
text editor with integrated chat; users can send messages and see the current state of code through a
shared editor. However, unlike previous code discussion tools, chat.codes also allows programmers
to navigate to earlier versions of code by clicking on messages or edits (see Figure 1A). This allows
them to easily reconstruct the context of a given message.

Users can navigate through the code history in two ways:
• by clicking on any message, which will show them the state of code when that message was
sent or

• by selecting a code pointer, which restores the version of code with which the pointer is
associated and highlights the region of code that it references, allowing users to see the full
context in which that code was referenced.

There is a danger that navigation through code versions will lead to confusion, both to other
users sharing the code editor and even to the navigator. We made two design design choices to
minimize that potential confusion. First, when a user looks at a previous version of code, that
user enters into a non-shared mode; it does not affect the code view of other users. Second, the
non-shared editor is set to read-only, indicated by the subtle lock in the background of the code
window in Figure 1. This prevents the user from making changes without realizing that the changes
will not be visible to others. The code can still be executed, and elements can be copied for pasting
back into the shared live version when the user returns to it. To ensure the navigator understands
what version of code is shown, chat.codes highlights the message they clicked, greys out messages
that were sent later, and displays a message above the code window with information about what
code version they are looking at and a button that allows them to return to the current code version.
For example, in Figure 1, Bob is looking at a version of code from 29 minutes ago, which he accessed
by clicking Mallory’s message.

3.3 Summarizing Code Diffs and Edits
chat.codes displays code edits as status notifications in the chat window (see Figure 1B). Code
edits are “grouped” together if they occur sufficiently close in time (no longer than 5 minutes
between the first to last edit) and if there are not chat messages between edits. By default, these

ACM Trans. Web, Vol. 9, No. 4, Article 39. Publication date: January 2010.

Creating Guided Code Explanations with chat.codes 39:9

Fig. 5. In chat.codes, code edit summaries are displayed inline with chat messages. By default these summaries
only indicate which user changed which files. They can also be expanded to reveal a full diff, as shown above.

diff summaries are concise and only display information about who edited which files when (e.g.,
“Alice and Bob edited file-1, file-2, and file-3 (3 minutes ago)”). However, they can also be expanded
to reveal more information about what edits were made, as Figure 5 illustrates.
In our evaluation, we found that some programmers would leverage these inline code diffs

by interleaving code edits with explanatory messages. By doing this, they create a step-by-step
explanation of their code edits. For programmers looking at earlier discussions, these diffs help
them understand how code is changing over time.

3.4 Code Execution and Results
The interface for chat.codes allows users to test and execute a their code using a terminal (in the
bottom left of Figure 1). Unlike the code editor, this terminal is not shared between users, a design
decision we made after recognizing that programmers might want to execute different versions of
code (for example, if a programmer wants to run an older version of the code).

4 EVALUATIONS OF CHAT.CODES FORWRITING AND READING EXPLANATIONS
In evaluating chat.codes, wewanted to understand its ability to handle different aspects of explaining
code. To this end, we carried out three studies to determine 1) the ease of explaining concepts using
chat.codes, 2) the usefulness of code references and edit history, and 3) to compare explanations in
chat.codes with video-based explanations.

4.1 Study 1: Explaining Code
As previous work has shown, remote coordinators are adept at adapting their communication
strategies for nearly any fidelity of shared information [17, 31]. In order to better understand how
chat.codes affects programmers’ ability to communicate, we conducted a qualitative evaluation
with chat.codes and three alternative communication channels.

ACM Trans. Web, Vol. 9, No. 4, Article 39. Publication date: January 2010.

39:10 Oney et al.

4.1.1 Setup. We recruited four experienced programmers and asked them to write and explain
a piece of code for caching web requests. This task involved writing, modifying, and explaining
code. In this study, we asked every participant to explain the same concept with four different
communication channels:

• chat.codes through the its web interface;
• a synchronous chat and shared editor interface, analogous to [20–22, 27, 42];
• a synchronous video screencast with voice communication, analogous to [13, 29]; and
• an asynchronous forum posting, analogous to StackOverflow [36].

We randomized the ordering of conditions between participants and asked them to adapt their
descriptions to be appropriate for whichever communication channel they were using. Before every
stage of the study, we gave participants a five minute introduction to the communication tool they
would use in that stage. For the chat.codes stage, this five minute introduction walked them through
the process of creating code pointers and looking at previous versions of code. After every stage of
the study, we asked participants to complete a short survey to evaluate the pros and cons of the
communication tool. At the end of the study, we interviewed participants about their experience
using each of the tools. Each study was performed in person and lasted approximately 1.5 hours.

4.1.2 Results. Usage Patterns: We observed two types of usage patterns between participants
(but these differences were only apparent in the video and chat.codes conditions). Most (three
of four) participants interleaved code edits with explanations in both cases. In chat.codes and in
video, they made incremental code edits and explained their edits (in messages for the chat.codes
condition and verbally in the video condition). Participants in the chat.codes condition did this
interleaving frequently; every participant sent an average of 3.9 messages between every code
edit. The other participant made more significant edits to their code that were not accompanied by
explanations, and then went back to explain their edits step-by-step (in both the chat.codes and the
video conditions).

We found that the ability to reference specific portions of codewas important but that participants’
methods for doing so varied by medium. In the chat.codes condition, every participant used code
pointers to indicate regions of code (on average, they used one code reference every 2.5 messages).
In the video condition, every participant highlighted code regions to indicate which region of code
they were talking about. In the standard chat and forum conditions, participants typically referred
to regions of code by description (e.g., “in the first if statement”) or by referring to line numbers.

Reported Preferences and Comparisons: Two of the four participants reported that they preferred
chat.codes the most (with video being the second most preferred). The other two participants
reported that they preferred video the most (with chat.codes being the second most preferred).
Every participant rated standard chat as third most preferred and forum postings as the least
preferred. We did not observe any noticeable effect from task ordering on users’ preferences.

chat.codes vs. video: For participants who rated the video condition highest, the most important
feature of video was that it enabled communication through two mediums simultaneously by
allowing them to write code and speak at the same time. However, for the other two participants,
this aspect of video communication was actually a drawback. Neither was used to typing and
talking at the same time and both found it difficult to get their timing right. One participant found
that they frequently needed to backtrack in their video to correct something that they phrased
incorrectly earlier. Chen et al. found a similar variation between users’ preference for video vs.
shared chat and noted that non-native speakers often preferred text chat over video [8] (all of our
participants were native English speakers).
chat.codes vs. standard chat: All four participants independently identified code pointers and

the ability to revert back to previous versions of code as being helpful and as the primary reason

ACM Trans. Web, Vol. 9, No. 4, Article 39. Publication date: January 2010.

Creating Guided Code Explanations with chat.codes 39:11

they rated chat.codes above standard chat. As one participant said, code links “help me be sure
that the other person is looking at the right thing”. They also expressed concern with the fact that
in standard chat, there was no easy way to “catch up” if they fell behind in an explanation. One
participant also found chat.codes’s diff tracking feature useful for themselves. As they were making
code edits, they made a mistake and used chat.codes’s diff tool to go back to a previous version of
their code.
Further, participants reported a minimal learning curve for chat.codes. Explanations for code

pointers and code history took under five minutes and none of our participants reported difficulty
using either feature. Every participant in their post-task survey also agreed that most people would
learn to use chat.codes very quickly.
chat.codes vs. forum posts: Every participant reported asynchronous forum posts to be their

least preferred communication channel. Participants found it to be cumbersome to refer to regions
of code and found it frustrating that forum posts did not provide an intuitive way to “point to
anything”. Thus, they found non-linear explanations (explanations that require jumping to various
parts of the code) to be cumbersome in forum posts.

4.2 Study 2: Reading Explanations
We conducted a second study to better understand how students would interact with chat.codes’s
code pointers and code history.

4.2.1 Creating Equivalent Explanations. In order to understand how students would interact with
code pointers and code history, we first wanted to create two equivalent explanations of the same
concept: one that used these features (“chat.codes” explanations) and one that did not (“standard”
explanations). In order to do this, we recruited an “instructor” participant and asked them to write
two explanations for two pieces of example code (for a total of four explanations). The first piece
of example code code was for the “Shannon Guessing Game”, where a program tries to guess the
next letter in a sequence of letters by storing bigrams from previous examples (for example, if the
input is ‘q’, the output should likely be ‘u’). The second piece of example code estimated the value
of π using a Monte Carlo method (throwing “darts” at a rectangle and calculating how many land
in a circle). The first example was 25 lines of Python; the second example was 15 lines of Python.
Both required a combination of conceptual knowledge about the problem solving strategy and
programming knowledge to fully understand the solution.

For both examples, we asked the instructor participant to write two explanations: (1) an explana-
tion that uses chat.codes’s code references and code history, using some of the usage techniques
that instructors in Study 1 used and (2) another explanation as if they were writing an explanation
for a discussion board that did not have code reference and history features. We asked the instructor
to make both of these explanations as comparable as possible — to write explanations that were
optimal for the given medium but to also ensure that both explanations had equivalent content. We
then slightly modified this instructor’s explanation by 1) adding pictures for the π approximation
task in both explanations and 2) modifying some of the wording to ensure that both explanations
were equivalent. Finally, we ensured that participants in the “standard” condition could find the
correct code by adding any missing line numbers to the explanation (matching the convention that
instructors used in study 1. In order reduce the “experimenter demand” bias where participants
know which condition is the “treatment” condition, we presented both explanations (chat.codes
and standard) within chat.codes (except the standard explanation did not use the code pointer
or history features). Our four modified explanations (one with code versions and references, one
without for each of the two code samples, π approximation and Shannon Guesser) were then used
for the second part of the study, described below.

ACM Trans. Web, Vol. 9, No. 4, Article 39. Publication date: January 2010.

39:12 Oney et al.

Monte Carlo π Shannon Guessing Game
Time (min) Understanding Time (min) Understanding
x σ x σ x σ x σ

standard 7.15 2.12 3.75 0.43 6.54 1.10 3.75 1.09
chat.codes 4.93 1.30 3.5 1.12 4.77 2.48 4.25 0.43

Table 1. The means and standard deviations for each task attempted and system condition used. Four people
performed each task in the chat.codes condition and the other four in the standard (control) condition; each
person switched conditions for the other task.

4.2.2 Study Setup. We recruited eight additional “student” participants (seven female, one male)
from two university courses to evaluate the understandability of these explanations. All of these
participants were students in an introductory Python programming course (3 participants were
in a graduate Python course, 5 participants were in a different undergraduate Python course).
Every participant had approximately 3 months of programming experience. Participants were
given a short (approximately 2 minutes, self-guided) tutorial of the chat.codes interface, which they
interacted with through their own personal computer. Each study was conducted in person.
We used a within-participants design — every student participant performed two tasks, one

for the Monte Carlo π estimate and one for the Shannon Guessing Game. One explanation used
chat.codes’s code references and version history and one did not. We randomized which explanation
used code references and counter-balanced the order in which tasks were done to account for
learning effects and differences in task difficulty. After each explanation, we asked the participant
to answer three questions that assessed whether they fully understood the code. We also asked
them to fill out a survey with a self-assessment of their understanding of the explanation and the
benefits and drawbacks of each explanation. After participants completed both sets of tasks, we
then conducted a short interview where we clarified any points they raised in the surveys and we
asked for additional feedback, including a comparison of which explanation style they preferred.
Participants viewed both explanations within chat.codes, but we refer to the explanations that used
code version history and references as the chat.codes condition in the experiment.

4.2.3 Results. All student participants correctly answered all the questions, so our analysis
focuses on time to complete the tasks and students perceived understanding. Every student com-
pleted the task in the chat.codes condition faster, regardless of which task (Monte Carlo π or the
Shannon Guessing Game) they had in that condition. For each student, we computed time_diff
as the difference between the time the user spent doing the chat codes task and the time the user
spent doing the other task. A summary of the means and standard deviations for each task type
(Monte Carlo π or Shannon Guessing Game) by condition is shown for the outcomes of both time
the user spent on the task and their reported understanding of the task on a 5 point Likert scale.
The overall mean difference between the chat.codes and standard conditions was 1.99 minutes. The
difference was significant in a paired t-test (p < .01). Because students took a little longer on average
to complete the Shannon task, we also estimated a linear regression predicting time taken with
task and condition as independent variables and fixed effects (dummy variables) for the individual
users. Again, the 1.99 minute coefficient for the chat.codes condition was significant (p < .01); the
coefficient for task was not significant. Thus, we can conclude with confidence that the chat.codes
reduced overall task time.

Similarly, we modeled the understanding of the learner as self-reported on a 5 point Likert scale
using a similar regression model. In this case, no significant difference was found.

ACM Trans. Web, Vol. 9, No. 4, Article 39. Publication date: January 2010.

Creating Guided Code Explanations with chat.codes 39:13

When asked which explanation they preferred, all nine participants indicated that they preferred
the “chat.codes” explanation, which made use of code references and code history. This is especially
notable given that it was independent of task type and order and because participants used the
chat.codes system for both tasks.
We also analyzed our collected data to find patterns in how participants used code pointers.

Every participant except for one chose to inspect almost every code pointer as they went through
the explanations, with some back-tracking. The participant who did not make use of these features,
opting to instead read the explanation without code references or viewing intermediate pieces of
code (this participant had a self-assessed understanding of 5/5), which highlights the flexibility
students have in how they choose to read and understand explanations in chat.codes.

4.2.4 Participant Feedback. Every participant appreciated the ability to view intermediate ver-
sions of code in the chat.codes condition and made use of them. Every participant except one made
use of the code references and history features, running intermediate versions of code an average
of 18.1 times per task.
In interviews, nearly every participant expressed that their favorite feature of chat.codes was

the ability to view intermediate versions of code (which many participants referred to as having
“chunks” of explanation):

P2 (on chat.codes): “It was helpful to see the example built out ... to have it split up and
be able to try the code out in different states of building.”
P5 (comparing explanation styles): “What stood out was [the chat.codes explanation] was
chunked, had pictures, and connected explanation to code. The [standard explanation] was
detailed about each line of code like comments, but [the] difference was it didn’t highlight
it and couldn’t run it along the way, so it doesn’t show you what the dictionary actually
shows up....preference for the first one, even though it wasn’t line by line; it was easier to
understand”

Participants also appreciated the code reference feature:
P6 (on chat.codes): “When you hover over things it will highlight them that was easier in
terms of painting a picture”
P8 (on the standard explanation): “At first [it] was confusing to follow to know which
explanation was for which part of the code.”

4.3 Study 3: Comparison with Video Explanations
We conducted a third study to compare explanations in chat.codes with video explanations. Like
chat.codes (but unlike regular chat and forum posts), recorded video sessions capture a full edit
history. We recruited 48 participants through an online freelancing site. We selected for participants
with at least some programming experience.

Every participant was randomly assigned to one of two conditions: chat.codes or video (a between
subjects setup). Explanations in both conditions had the exact same content. In the chat.codes
condition, that content was in textual form (with code pointers highlighting regions of code). In
the video condition, that content was in audio/video form (with regions of code being highlighted
in the video). The same series of code versions was used in both conditions. The explanation that
participants looked was a tutorial on how to use the Turtle framework2.
After reading the explanations, participants were then asked to write code that uses the Turtle

framework to change pen colors and draw a shape. A correct solution was approximately ten lines
of code. Each participants was given these either the chat.codes or video explanation as reference
2https://docs.python.org/3.3/library/turtle.html?highlight=turtle

ACM Trans. Web, Vol. 9, No. 4, Article 39. Publication date: January 2010.

https://docs.python.org/3.3/library/turtle.html?highlight=turtle

39:14 Oney et al.

pa

rti
ci

pa
nt

s

0
1
2
3
4
5
6
7

Time to complete task (in minutes)
0-2 2-4 4-6 6-8 8-10 10-12 12-20

Video chat.codes

> 20

Fig. 6. The results of an evaluation of chat.codes and equivalent video tutorials with 40 participants who
completed the task (study 3). chat.codes participants’ results are shown in red (on the right) and video
participants’ results are shown in blue (on the left).

and was asked to perform a task with Turtle that required them to understand the explanations.
Each study was performed remotely.

4.3.1 Results. Results are summarized in Figure 6. In each condition, four subjects failed to
complete the task. 40 subjects completed the task and are included in our data analysis. For subjects
who successfully completed the task, the outcome measure was total time to complete the task. In
the chat.codes condition, the mean time was 7.18minutes (sd 6.63). In the video condition, the mean
time was 9.47 minutes (sd 5.24). However, the effects observed were not statistically significant at
α ≤ 0.05 when applying an independent samples t-test (p = 0.24). Thus, we cannot conclude with
confidence whether chat.codes leads to improved performance on average.

5 KEY FINDINGS FROM USER STUDIES
We summarize the key findings of all three evaluations:

• Authors and readers both appreciated the ability to refer to regions of code. For
authors (instructors in our study), adding code references was easier thanmanually explaining
which regions of code they were referring to. They also appreciated the fact that explicit code
references ensured that anyone reading their description later on would be able to look at the
right place. These references also allowed readers to feel confident that they were correctly
interpreting an explanation.

• Instructors can use code diffs as a self-explanatory description. Instructor participants
in our first study used chat.codes in several unexpected ways. One of the most noteworthy
ways was by treating inline code diffs as self-explanatory descriptions, where an author
would describe the high-level purpose of a change (why they are making it) and then make
the change in code. For example, an instructor might write “now, we’re going to make it
work with negative numbers” and change the code appropriately. By capturing code edits,
chat.codes makes it easy to associate the set of code changes with the high-level stated goal.
This type of granular explanation could previously only be captured by VCSs (which are not
conversational).

• Tracking code edits made it easy for instructors to create instructive “intermediate”
steps, which readers appreciated. Every “student” participant in our second study reported
liking the explanation that tracked code history because it grouped the explanation into steps.
Participants could run code in intermediate steps to get a clearer picture of the final result.

ACM Trans. Web, Vol. 9, No. 4, Article 39. Publication date: January 2010.

Creating Guided Code Explanations with chat.codes 39:15

• Explanations in chat.codes are self-paced, giving users flexibility in how to read
them. One benefit of chat.codes is that it gives readers the ability to go at whatever pace
is appropriate. For example, one chat.codes participant in study 2 chose to read message
descriptions without using code pointers or intermediate code versions. This type of self-
paced reading is difficult in video-based explanations.

6 IMPLEMENTATION
chat.codes is implemented in two parts: a server and a web-based client. The source code for our
implementation of chat.codes is publicly available3.

6.1 Server-Side Implementation
The server-side chat.codes code is a Node.js4 web server. The server is responsible for tracking
the state of any number of simultaneous, multi-user conversations. The server also tracks users —
which users are involved in a given conversation and which users edited portions of code. In order to
handle nearly simultaneous code edits frommultiple remote users, chat.codes uses ShareDB5, which
uses Operational Transformations (OTs) [12]. OTs allows remote clients to avoid merge conflicts—
conflicts that occur when two or more users edit the same region of code simultaneously—by
managing and resolving these conflicts automatically. Several widely-deployed collaboration tools,
including Google Docs, have successfully used Operational Transformations to enable real-time
collaborations at scale. chat.codes stores code and chat history using a MongoDB6 database.

6.2 Client-Side Implementation
The client-side chat.codes code is written in TypeScript using the AngularJS7 web framework.
chat.codes uses the web-baced Ace8 as its code editor. Edits made in the code editor are translated
into OTs, which are then sent to the server. The server merges these OTs with those from other
users and sends updates to every client.

6.2.1 Computing Code Diffs. Every chat.codes client maintains a full history of code edits that
occurred since a given conversation started. Instead of storing multiple complete copies of the
code, chat.codes stores the changes to minimize the space that is used on the client. In other words
chat.codes stores code by storing an initial version of the code: (codestart) and an ordered list of
edits: (edit1, edit2, . . . , editlatest). These edits are fine-grained, typically character-level insertions
and deletions. For example, editN might represent an insertion of the character ‘x’ at position 42
in the file-1.js. Every edit also stores a timestamp to allow chat.codes to accurately display chat
messages and code edits in the order in which they happened.
The code diffs (like the one shown in Figure 5) are computed client-side. If a diff involves code

versions codediffStart to codediffEnd, the client code computes codediffStart by starting with codestart
and simulating edits edit1 to editdiffStart. It then computes codediffEnd by starting with codediffStart
and simulating edits editdiffStart+1 to editdiffEnd. chat.codes then computes the line-level diff between
codediffStart and codediffEnd using the Ratcliff-Obershelp diff algorithm [38].
Although coarse-grained diffs are displayed client-side, every client can still compute more

finely-grained diffs. Future versions of chat.codes could take advantage of this to allow individuals

3https://github.com/(anonymized_for_submission)
4https://nodejs.org/
5https://github.com/share/sharedb
6https://www.mongodb.com/
7https://angularjs.org/
8https://ace.c9.io/

ACM Trans. Web, Vol. 9, No. 4, Article 39. Publication date: January 2010.

https://github.com/(anonymized_for_submission)
https://nodejs.org/
https://github.com/share/sharedb
https://www.mongodb.com/
https://angularjs.org/
https://ace.c9.io/

39:16 Oney et al.

to customize the granularity of edits they want to be displayed. Despite the fact that the bulk
of computations to compute diffs are done client-side in chat.codes, we did not see a noticeable
performance degradation, even in longer (approximately 1 hour) discussion and code editing
sessions.

6.2.2 Code Pointer Implementation. Every code pointer consists of three pieces of information:
the file that the pointer refers to, the specific region of code within that file, and the code version that
the pointer refers to. The file and region of code are explicitly stored as part of the code pointer
message (e.g., [this code](file3.js:L42,0-L44,3)) although they are not displayed in the chat
window. The code version is inferred from the timestamp of the message relative to the timestamps
of code edits. When a user selects a code pointer (by either hovering or clicking it), chat.codes
determines which region of code should be highlighted by applying every code edit before the code
pointer’s message (starting with codestart and applying edit1 to editn where editn is the last edit
before the message). It then displays this code in the Ace code editor and highlights the relevant
code region.

7 LIMITATIONS & FUTUREWORK
The evaluations described in this paper assess only one use case for chat.codes, instructor authored
explanations intended to be consumed at a later time by learners. We intend to explore other use
cases, involving a synchronous as well as asychronous use, two-way and multi-way conversation,
peer to peer communication as well as expert to novice. We expect that additional design challenges
will emerge as we conduct that exploration. Some of the anticipated challenges and potential
approaches to resolving them are described below.

7.1 Encouraging Exploration and Experimentation
The most requested feature for chat.codes from participants in our second study was the ability to
“branch” off from previous versions of code in order to experiment and run the code with different
parameter values. This feature could be especially useful in courses that encourage students to
build an understanding of code by “tinkering” with it. The major design challenges here will be
keeping users oriented as they navigate through multiple branches of code revision, and helping
users to develop a mental model of when their code window is shared versus individual.

7.2 References to Internal Program State
Although chat.codes allows users to point at regions of code, some explanations refer to aspects
of a program’s runtime state or output, as is possible with tools like Codechella [22]. We plan to
explore ways to enable these kinds of references in future versions of chat.codes. The major design
challenge is that up until now execution windows have been private, not shared; changing this will
require providing users with a mental model of when execution state is shared and when it is not.

7.3 Conversation Search and Summary
Our evaluations indicate that chat.codes logs can be reused by other programmers. However, we
do not know if conversations between users will be useful to later viewers in the same way that
logs designed to serve as explanations are. Moreover, previous conversations can only be useful
if users can find them. We plan to explore effective ways to allow programmers to find previous
conversations that answer a given question by searching through previous codebases or messages.

ACM Trans. Web, Vol. 9, No. 4, Article 39. Publication date: January 2010.

Creating Guided Code Explanations with chat.codes 39:17

7.4 Applications in MOOCs and Software Programming Teams
The growing demand for programming-related jobs has led to an increased demand for programming
education [9]. Many institutions are finding it difficult to scale instructional resources to match the
pace of rapidly growing enrollments in computer science courses [43]. Although Massive Open
Online Courses (MOOCs) aim to provide better access to computer science education, they lack the
type of personalized support that in-person courses provide [24]. However, it can be difficult to
provide synchronous support at the scale of MOOCs or large traditional programming courses [6].
We plan to explore whether chat.codes can help instructors in MOOCs provide scalable personalized
support by creating a searchable repository of chat.codes conversations for a given course.

We also believe that the features of chat.codes could be useful for programming teams — particu-
larly distributed programming teams where project experts explain code to project newcomers.
Like in the MOOC setting, these discussions could be useful for future project contributors. Thus,
we also plan to explore how chat.codes could be useful in the context of programming teams and
how it could integrate into their existing workflows and tools.
One difference between educational settings and programming teams is that in educational

settings it may be desirable for students to find conversations that help reason about a problem
without revealing a complete solution. We will explore ways to limit the provision of complete
solutions, while still making chat.codes useful for question answering, debugging, and deepening
student understanding.

7.5 System Features
We are also considering specific changes to the chat.codes interface based on feedback from our
user studies. For example, we are considering adding features to help track targeted regions of
code through edits, as Ginosar et al. have explored [18]. We are also investigating alternative ways
to allow programmers to cluster sets of changes into groups. One possibility would be to allow
programmers to explicitly specify a group of changes as being atomic. This convention might allow
programmers to “point” at code deltas in a fashion similar to chat.codes’s code pointers. We also
plan to explore ways to allow programmers to manage permissions and code visibility (for example,
so that observers can only read or edit limited portions of their codebase).

8 CONCLUSION
chat.codes is a communication tool for programmers that builds on state-of-the-art code com-
munication tools by tightly coupling discussions with the code being discussed. By allowing
programmers to add code pointers, to see the state of a code when any given message was sent, and
to see summaries of code changes along with explanations, chat.codes enhances communication
between programmers and allows conversations to be reused later on to improve both synchronous
and asynchronous communication. In three evaluations, we found that chat.codes is effective for
writing and for reading explanations about code. Instructors using chat.codes were adept at taking
advantage of its features in writing explanations, and readers performed as well or better with
chat.codes explanations as with text-only or video explanations.

One major hurdle in designing chat.codes was finding a way to embed deictic code references in
human-readable chat logs in a way that they could be authored and edited either by typing text in
the chat window or by clicking a mouse in the code window. It will be interesting to see how well
this approach generalizes to other kinds of deictic references. For example, software tutorials might
include references to particular screen elements; it is not clear whether our markdown approach
would translate well to that situation.

ACM Trans. Web, Vol. 9, No. 4, Article 39. Publication date: January 2010.

39:18 Oney et al.

We have opened up the design space for interfaces that use a linear text with embedded references
to navigate through the history of some other artifact, in our case a code file. Other artifacts with
multiple versions where this approach might be useful could include architectural blueprints and
legislative bills. As described in the previous section, a major challenge still remains in using a
linear text to navigate a branching history tree of artifacts rather than a single sequence of artifacts.

In the early days of CSCW, the Xerox Colab project articulated a fundamental tension around the
degree of coupling between what multiple users experiences [39]. They articulated the What You
See Is What I See (WYSIWIS) abstraction but also identified needs for individual work that would
not be immediately visible to everyone. Among other things, they identified an issue of granularity
of sharing that still echoes through the design of all collaborative tools. For example, in chat.codes
and most chat systems, chat messages are shared only upon message completion, not a character a
time. In most shared document editors, synchronization happens a character at a time and cursor
movements are shared but mouse movements are not.
This fundamental design challenge of what is shared and not shared in a collaborative tool

emerges in chat.codes with the code window. In the current design, only users looking at the latest
version of the code share a code editor; when they look at a past code version, they temporarily
exit WYSIWIS mode to see a private read-only view. Other rules for entering and leaving a shared
editing mode are possible and deserve exploration, both in the context of shared code editing and
collaboration activities with other artifacts that have version histories.

9 ACKNOWLEDGEMENTS
We thank all of our participants across all three studies and our reviewers for their valuable feedback.
This material is based upon work supported by the National Science Foundation under Grant No
IIS 1755908.

REFERENCES
[1] Mark S Ackerman. 1998. Augmenting organizational memory: a field study of answer garden. ACM Transactions on

Information Systems (TOIS) 16, 3 (1998), 203–224.
[2] Mark S Ackerman and Thomas W Malone. 1990. Answer Garden: A tool for growing organizational memory. In COCS

’90 Proceedings of the ACM SIGOIS and IEEE CS TC-OA conference on Office information systems, Vol. 11. ACM. Issue 2-3.
[3] Zane L Berge. 1999. Interaction in post-secondary web-based learning. EDUCATIONAL TECHNOLOGY-SADDLE

BROOK NJ- 39 (1999), 5–11.
[4] Lori Breslow, David E Pritchard, Jennifer DeBoer, Glenda S Stump, Andrew D Ho, and Daniel T Seaton. 2013. Studying

learning in the worldwide classroom: Research into edX’s first MOOC. Research & Practice in Assessment 8 (2013).
[5] Peter Brusilovsky. 2001. WebEx: Learning from Examples in a Programming Course.. In WebNet, Vol. 1. 124–129.
[6] Lisa Chamberlin and Tracy Parish. 2011. MOOCs: Massive Open Online Courses or Massive and Often Obtuse Courses?

eLearn 2011, 8, Article 1 (Aug. 2011). https://doi.org/10.1145/2016016.2016017
[7] Yan Chen, Sang Won Lee, Yin Xie, YiWei Yang, Walter S Lasecki, and Steve Oney. 2017. Codeon: On-Demand Software

Development Assistance. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. ACM.
[8] Yan Chen, Steve Oney, andWalter Lasecki. 2016. Towards providing on-demand expert support for software developers.

In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM.
[9] Parmit K Chilana, Celena Alcock, Shruti Dembla, Anson Ho, Ada Hurst, Brett Armstrong, and Philip J Guo. 2015.

Perceptions of non-CS majors in intro programming: The rise of the conversational programmer. In Visual Languages
and Human-Centric Computing (VL/HCC), 2015 IEEE Symposium on. IEEE, 251–259.

[10] Soon Hau Chua, TONI-JAN KEITH MONSERRAT, Dongwook Yoon, Juho Kim, and Shengdong Zhao. 2017. Korero:
Facilitating Complex Referencing of Visual Materials in Asynchronous Discussion Interface. interface 1 (2017), 6.

[11] Sarah D’Angelo and Andrew Begel. 2017. Improving communication between pair programmers using shared gaze
awareness. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. ACM, 6245–6290.

[12] Clarence A Ellis and Simon J Gibbs. 1989. Concurrency control in groupware systems. In Acm Sigmod Record, Vol. 18.
ACM, 399–407.

[13] Floobits. 2015. https://floobits.com/ Accessed: September, 2017.

ACM Trans. Web, Vol. 9, No. 4, Article 39. Publication date: January 2010.

https://doi.org/10.1145/2016016.2016017
https://floobits.com/

Creating Guided Code Explanations with chat.codes 39:19

[14] Susan R Fussell and Robert M Krauss. 1992. Coordination of knowledge in communication: Effects of speakers’
assumptions about what others know. Journal of personality and Social Psychology 62, 3 (1992), 378.

[15] Susan R Fussell, Robert E Kraut, and Jane Siegel. 2000. Coordination of communication: Effects of shared visual context
on collaborative work. In Proceedings of the 2000 ACM conference on Computer supported cooperative work. ACM, 21–30.

[16] Susan R Fussell, Leslie D Setlock, Jie Yang, Jiazhi Ou, Elizabeth Mauer, and Adam DI Kramer. 2004. Gestures over video
streams to support remote collaboration on physical tasks. Human-Computer Interaction 19, 3 (2004), 273–309.

[17] Darren Gergle, Robert E Kraut, and Susan R Fussell. 2013. Using visual information for grounding and awareness in
collaborative tasks. Human–Computer Interaction 28, 1 (2013), 1–39.

[18] Shiry Ginosar, De Pombo, Luis Fernando, Maneesh Agrawala, and Bjorn Hartmann. 2013. Authoring multi-stage code
examples with editable code histories. In Proceedings of the 26th annual ACM symposium on User interface software and
technology. ACM, 485–494.

[19] Elena L Glassman, Jeremy Scott, Rishabh Singh, Philip J Guo, and Robert C Miller. 2015. OverCode: Visualizing
variation in student solutions to programming problems at scale. ACM Transactions on Computer-Human Interaction
(TOCHI) 22, 2 (2015), 7.

[20] Max Goldman, Greg Little, and Robert C Miller. 2011. Real-time collaborative coding in a web IDE. In Proceedings of
the 24th annual ACM symposium on User interface software and technology. ACM, 155–164.

[21] Philip J Guo. 2015. Codeopticon: Real-Time, One-To-Many Human Tutoring for Computer Programming. In Proceedings
of the 28th Annual ACM Symposium on User Interface Software & Technology. ACM, 599–608.

[22] Philip J Guo, Jeffery White, and Renan Zanelatto. 2015. Codechella: Multi-User Program Visualizations for Real-
Time Tutoring and Collaborative Learning. In Visual Languages and Human-Centric Computing (VL/HCC), 2015 IEEE
Symposium on. IEEE.

[23] Carl Gutwin and Saul Greenberg. 2002. A descriptive framework of workspace awareness for real-time groupware.
Computer Supported Cooperative Work (CSCW) 11, 3-4 (2002), 411–446.

[24] Mark Guzdial. 2014. Limitations of MOOCs for Computing Education-Addressing our needs: MOOCs and technology
to advance learning and learning research (Ubiquity symposium). Ubiquity 2014, July (2014), 1.

[25] Rebecca A Hines and Cynthia E Pearl. 2004. Increasing interaction in web-based instruction: Using synchronous chats
and asynchronous discussions. Rural special education Quarterly 23, 2 (2004), 33.

[26] Jonathan Huang, Anirban Dasgupta, Arpita Ghosh, Jane Manning, and Marc Sanders. 2014. Superposter behavior in
MOOC forums. In Proceedings of the first ACM conference on Learning@ scale conference. ACM, 117–126.

[27] Cloud9 IDE Inc. 2010. Cloud9 IDE. https://c9.io Accessed: September, 2017.
[28] GitHub Inc. 2014. Atom Editor. https://atom.io/ Accessed: September, 2017.
[29] HackHands Inc. 2015. Hack.hands(). https://hackhands.com/ Accessed: September, 2017.
[30] David H Jonassen. 2004. Handbook of research on educational communications and technology. Taylor & Francis.
[31] Robert E Kraut, Darren Gergle, and Susan R Fussell. 2002. The use of visual information in shared visual spaces:

Informing the development of virtual co-presence. In Proceedings of the 2002 ACM conference on Computer supported
cooperative work. ACM, 31–40.

[32] Lena Mamykina, Bella Manoim, Manas Mittal, George Hripcsak, and Björn Hartmann. 2011. Design lessons from the
fastest q&a site in the west. In Proceedings of the SIGCHI conference on Human factors in computing systems. ACM,
2857–2866.

[33] J Manning and M Sanders. 2013. How widely used are MOOC forums? A first look. Signals: Thoughts on Online
Learning (2013).

[34] Markdown. 2004. https://daringfireball.net/projects/markdown/ Accessed: September, 2017.
[35] Robert McGuire. 2013. Building a sense of community in MOOCs. Campus Technology 26, 12 (2013), 31–33.
[36] Stack Overflow. 2015. Stack Overflow. https://stackoverflow.com/ Accessed: September, 2017.
[37] Murat Oztok and Clare Brett. 2011. Social presence and online learning: A review of research. International Journal of

E-Learning & Distance Education 25, 3 (2011).
[38] John W Ratcliff and David E Metzener. 1988. Pattern-matching-the gestalt approach. Dr Dobbs Journal 13, 7 (1988), 46.
[39] M. Stefik, D. G. Bobrow, G. Foster, S. Lanning, and D. Tatar. 1987. WYSIWIS Revised: Early Experiences with Multiuser

Interfaces. ACM Trans. Inf. Syst. 5, 2 (April 1987), 147–167. https://doi.org/10.1145/27636.28056
[40] Michael Tsang, George W Fitzmaurice, Gordon Kurtenbach, Azam Khan, and Bill Buxton. 2002. Boom chameleon:

simultaneous capture of 3D viewpoint, voice and gesture annotations on a spatially-aware display. In Proceedings of
the 15th annual ACM symposium on User interface software and technology. ACM, 111–120.

[41] Chih-Hsiung Tu and Michael Corry. 2003. Designs, management tactics, and strategies in asynchronous learning
discussions. Quarterly Review of Distance Education 4, 3 (2003), 303–15.

[42] Jeremy Warner and Philip J Guo. 2017. CodePilot: Scaffolding End-to-End Collaborative Software Development
for Novice Programmers. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. ACM,
1136–1141.

ACM Trans. Web, Vol. 9, No. 4, Article 39. Publication date: January 2010.

https://c9.io
https://atom.io/
https://hackhands.com/
https://daringfireball.net/projects/markdown/
https://stackoverflow.com/
https://doi.org/10.1145/27636.28056

39:20 Oney et al.

[43] Chris Wilcox. 2015. The role of automation in undergraduate computer science education. In Proceedings of the 46th
ACM Technical Symposium on Computer Science Education. ACM, 90–95.

[44] Dongwook Yoon, Nicholas Chen, Bernie Randles, Amy Cheatle, Corinna E Löckenhoff, Steven J Jackson, Abigail Sellen,
and François Guimbretière. 2016. RichReview++: Deployment of a Collaborative Multi-modal Annotation System for
Instructor Feedback and Peer Discussion. In Proceedings of the 19th ACM Conference on Computer-Supported Cooperative
Work & Social Computing. ACM, 195–205.

[45] YoungSeok Yoon and Brad A Myers. 2015. Semantic zooming of code change history. In Visual Languages and
Human-Centric Computing (VL/HCC), 2015 IEEE Symposium on. IEEE, 95–99.

[46] Young Seok Yoon and Brad A Myers. 2015. Supporting selective undo in a code editor. In Proceedings of the 37th
International Conference on Software Engineering-Volume 1. IEEE Press, 223–233.

[47] Sacha Zyto, David Karger, Mark Ackerman, and Sanjoy Mahajan. 2012. Successful classroom deployment of a social
document annotation system. In Proceedings of the sigchi conference on human factors in computing systems. ACM,
1883–1892.

Received February 2007; revised March 2009; accepted June 2009

ACM Trans. Web, Vol. 9, No. 4, Article 39. Publication date: January 2010.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Improving Collaboration with Deictic References
	2.2 Tools for Discussing Code
	2.3 Version Control Systems
	2.4 Improving Scalability for Programming Support Tools

	3 chat.codes Design
	3.1 Code Pointers
	3.2 Navigating Through Time and Code
	3.3 Summarizing Code Diffs and Edits
	3.4 Code Execution and Results

	4 Evaluations of chat.codes for Writing and Reading Explanations
	4.1 Study 1: Explaining Code
	4.2 Study 2: Reading Explanations
	4.3 Study 3: Comparison with Video Explanations

	5 Key Findings from User Studies
	6 Implementation
	6.1 Server-Side Implementation
	6.2 Client-Side Implementation

	7 Limitations & Future Work
	7.1 Encouraging Exploration and Experimentation
	7.2 References to Internal Program State
	7.3 Conversation Search and Summary
	7.4 Applications in MOOCs and Software Programming Teams
	7.5 System Features

	8 Conclusion
	9 Acknowledgements
	References

