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Figure 1: System preview of FlowMatic. (a) shows the edit mode. (i) is a palette menu attached to the left controller that allows
users to browse, search, and import 3D models into the scene. (ii) is a toolbox for the user to add programming primitives such as
operators and data sources into the Functional Reactive Programming (FRP) Diagram in (iii). (b) shows the run mode where users
can evaluate the application in real time by hiding all the programming primitives.

ABSTRACT
Immersive authoring is a paradigm that makes Virtual Re-
ality (VR) application development easier by allowing pro-
grammers to create VR content while immersed in the vir-
tual environment. In this paradigm, programmers manipulate
programming primitives through direct manipulation and get
immediate feedback on their program’s state and output. How-
ever, existing immersive authoring tools have a low ceiling;
their programming primitives are intuitive but can only ex-
press a limited set of static relationships between elements
in a scene. In this paper, we introduce FlowMatic, an im-
mersive authoring tool that raises the ceiling of expressive-
ness by allowing programmers to specify reactive behaviors—
behaviors that react to discrete events such as user actions,
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system timers, or collisions. FlowMatic also introduces prim-
itives for programmatically creating and destroying new ob-
jects, for abstracting and re-using functionality, and for import-
ing three-dimensional (3D) models. Importantly, FlowMatic
uses novel visual representations to allow these primitives to
be represented directly in VR. We also describe the results of
a user study that illustrates the usability advantages of Flow-
Matic relative to a two-dimensional (2D) authoring tool and we
demonstrate its expressiveness through several example appli-
cations that would be impossible to implement with existing
immersive authoring tools. By combining a visual program
representation with expressive programming primitives and a
natural User Interface (UI) for authoring programs, FlowMatic
shows how programmers can build fully interactive virtual
experiences with immersive authoring.

INTRODUCTION
For decades, the idea of being able to immerse ourselves in
computer-generated worlds has captured the popular imagina-
tion. With rapid advances and increasing commercialization
of Virtual Reality (VR) technologies, this idea is closer than
ever to becoming reality. A wide range of VR applications has
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emerged for entertainment [47], education [43], collaboration
[33], productivity [48], and social purposes [27].

VR applications are uniquely compelling for end users be-
cause they enable natural and intuitive interactions in a three-
dimensional (3D) space. For novice developers, however, VR
applications are uniquely difficult to program because they
require advanced knowledge of imperative programming, 3D
modeling, geometry, and reactive programming. Even desktop-
based Visual Programming Languages (VPLs) built for non-
experts, such as Unreal Blueprints [45], require that users
mentally translate between two-dimensional (2D) and 3D rep-
resentations and predict how their code will execute in VR.

One possible solution to these challenges is a paradigm called
immersive authoring, in which users create, edit, and evaluate
3D content directly while immersed in the VR world. Immer-
sive authoring enables a faster, more intuitive workflow by
allowing users to manipulate programming primitives in VR
through direct manipulation [38]. Immersive authoring also
enables a more fluid workflow by offering immediate feedback
as the user designs and programs a virtual scene. Several im-
mersive authoring tools allow users to create static 3D models
or sketches [34, 3, 13, 31], and others allow programmers to de-
clare dynamic relationships between object properties [40, 22,
12, 52]. However, existing immersive authoring systems can-
not express reactive behaviors, a fundamental requirement for
most practical VR applications. Reactive behaviors are behav-
iors where the application responds to events like user actions,
system events, or collisions. Typically, programming reactive
behaviors requires writing text-based imperative event-action
code, which is difficult to represent effectively in VR.

In order to raise the ceiling of what immersive authoring
systems can express, we introduce FlowMatic, which allows
novice programmers to define reactive behaviors and prototype
interactive VR scenes. Our techniques build on Functional Re-
active Programming (FRP), a declarative paradigm that treats
discrete events (e.g., user input) as first-class data that can be
referenced, managed, and transformed along with “signals”,
which represent continuous values (e.g., the user’s position).
We also introduce techniques for dynamically creating new ob-
jects in the environment, abstracting and re-using functionality,
visually representing types, and easily importing 3D models
into a scene. We also propose interaction techniques that
take advantage of the intuitive and direct interactions that VR
affords. The contributions of this paper are:

• Techniques to raise the ceiling of the expressiveness of
immersive authoring tools, including the ability to create re-
active behaviors and to programmatically create and destroy
objects in a scene.

• The first visual representation of FRP primitives and the first
immersive authoring system that integrates FRP.

• A set of dynamic operations, intuitive interactions, and
visual representations for defining reactive behaviors.

• A qualitative comparative study of the system demonstrat-
ing its usability and benefits, and example applications
demonstrating its expressiveness.

RELATED WORK
We draw on prior research into immersive authoring tools, 3D
programming environments, and declarative models.

Immersive Authoring Tools
Immersive authoring tools allow users to build the virtual
world while they are situated in VR. We distinguish between
immersive modeling tools for creating static 3D scenes and
immersive authoring tools for creating dynamic 3D scenes.

Immersive Modeling
Commercial desktop modeling software (such as Maya and
Blender) has been popular for creating 3D models for years.
However, a wealth of spatial information is lost since users are
constrained to view and interact through a 2D window. Previ-
ous work has thus explored immersive modeling for building
3D models directly in the immersive virtual environment by
proposing intuitive interaction techniques that can leverage
users’ spatial reasoning skills [6, 25, 34, 26, 16, 13, 24, 31].
One of the earliest attempts to achieve this was 3DM [6],
a Head-Mounted Display (HMD)-based modeler that allows
users to build and view 3D models in the 3D virtual environ-
ments. Along this line of research, ISAAC [25] introduces
more intuitive forms of interactions in 3D and adds constraints
to the interactions for accomplishing more precise work. Mine
et al. later proposed an approach that combines precise 2D
touch surfaces and 3D bimanual spatial inputs to build com-
plex 3D models in VR [26]. Lift-Off [16] explored generating
3D models from mid-air 2D sketches drawn by users. More
recently, commercial applications such as Google Tilt Brush
[13], Microsoft Maquette [24], and Oculus Medium [31] have
delivered compelling immersive 3D sculpting experiences to
consumers. While our system builds on some of the intuitive
interactions that these tools use, the biggest difference between
the above systems and FlowMatic is that none of the above
systems can create interactive scenes, where virtual objects
react to users’ actions or system events in the scene.

Immersive Authoring
Immersively adding interactivity and functionality to objects in
VR can be difficult since it normally requires writing text-based
code to define logic, such as triggering reactions in response
to system events. Text-based programming languages are dif-
ficult to present in VR, because (1) many VR systems have
lower resolution displays that are acceptable for graphics but
not pages of text and (2) text entry in VR can be challenging.
Further, text-based languages usually have a steep learning
curve for end users. Therefore, some previous work has ex-
plored incorporating VPLs, especially dataflow programming
languages, into immersive authoring systems [40, 23, 21, 12,
52].

Steed et al. [40] were among the earliest to introduce the
concept of using a visual dataflow representation within the
virtual immersive environment to define behaviors of objects.
In their system, users can draw wires to connect virtual objects
and virtual representations of input devices in the immersive
environment. The data would then propagate along the wires
across different objects in the scene, thus specifying their con-
figurations. Lee et al. took the idea of immersive dataflow pro-
gramming further by providing different properties of objects
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and computational primitives in the virtual dataflow represen-
tation [23, 21] and coined the term “immersive authoring”.
More recently, Ens et al. [12] built an immersive authoring
system using a visual dataflow representation in VR for spec-
ifying behaviors of Internet of Things (IoT) devices. This
pattern of embedding dataflow programming languages in the
3D immersive environments was found to be intuitive and easy
for both novice programmers and end users [52, 23].

A key limitation of all the aforementioned tools is their lack of
expressiveness. By using basic dataflow programming, these
immersive authoring tools can only express a limited set of
static relationships among pre-defined objects in a scene. More
importantly, they cannot define reactive behaviors of objects.
Complex VR applications normally come with a rich set of
system events (e.g. collisions, user actions, and state changes)
and behaviors triggered by those events (e.g. color changed
when being selected). The closest related work to ours is
[52], which presents an immersive data-flow programming
interface for novice programmers to author VR scenes. The key
limitation of the interface is that it is unable to express discrete
events and behaviors triggered by those events. Although
LogiX [49] allows programmers to define reactive behaviors of
objects using visual dataflow programming directly in VR, the
system can only edit existing objects in the scene. FlowMatic
builds on prior work by integrating concepts from FRP and
providing a rich set of programming primitives and intuitive
interactions suitable for programmatically creating/destroying
objects, defining reactive behaviors, and reducing complexity
by abstracting operations.

3D Programming Environments
Creating a VR scene basically requires creating virtual objects
with their properties, arranging them in the scene, and deter-
mining their behaviors in each frame. Game engines based on
entity-component architecture such as Unity [44] and Unreal
[46] are currently the most popular tools for programming VR
applications. In recent years, the advances of WebVR have
also given rise to libraries and frameworks such as Three.js [7]
and A-FRAME [2], which enable developers to build VR scenes
as web applications that can be loaded by web browsers. How-
ever, all the above tools for programming VR scenes involve
arguably complex user interfaces and imperative programming
languages such as C# and JavaScript, which require extensive
training.

Several 2D declarative authoring tools have proposed to make
3D programming more accessible to novices [32, 17, 36, 45].
For example, Alice [32] is a 2D block-based programming
environment that enables users to rapidly prototype 3D ani-
mations. Saquib et al. [36] developed a 2D authoring tool
that uses a dataflow representation to bind user inputs with
graphical effects for Augmented Reality (AR) presentations.
Unreal Blueprint [45], a mainstream platform for developing
3D applications, also uses event graphs and function calls to
assist novices in programming interactive behaviors related to
system events. Earlier systems such as VRML97 [8] and X3D
[5] also provide a declarative format for the description of 3D
content and utilize event passing mechanisms to define user
interaction. However, a common limitation of these tools is

that they constrain users to viewing and interacting through 2D
displays, even though they are built for developing 3D applica-
tions. With the lack of additional spatial information and the
disconnection between developing environments (2D displays)
and testing environments (3D worlds), users have to mentally
translate between 3D objects and their 2D projections and pre-
dict how their code will execute in VR. A previous study also
found that 3D tracked input devices enable a more intuitive
and faster workflow in completing 3D tasks compared to tra-
ditional Window Icon Menus Pointer (WIMP) interfaces [38].
Our system builds on prior work by creating a 3D authoring
tool that enables novices to build VR scenes within VR with
immediate feedback and without writing lines of code. Further,
we propose intuitive interaction mechanisms for controlling
programming primitives, abstracting and re-using behaviors.

Declarative Programming Models
Although there is an extensive literature on declarative pro-
gramming models, we only focus on dataflow programming
and FRP that are related to our approach.

Dataflow Programming
Dataflow programming languages have a long history, begin-
ning with Bert Sutherland’s Ph.D. thesis [41]. The dataflow
model is represented by a directed graph, consisting of data
sources, data sinks and nodes. The nodes are primitive op-
erations such as arithmetic and comparison operations. The
direction of each edge represents the direction of the data
propagation across different nodes. Researchers have then
improved and applied dataflow programming in various do-
mains [18, 28, 14, 19, 40, 22, 12]. For example, Show and Tell
[18] was one of the earliest visual dataflow languages targeted
primarily at elementary school children. Lau-Kee et al. [19]
built a visual programming tool and environment for interac-
tive image processing. Successful commercial software that
incorporates visual dataflow programming—such as LabView
[15] and Max MSP [1]—has also been popular in the domains
of hardware and music respectively.

Despite being intuitive for end users, basic dataflow program-
ming has several weaknesses of expressiveness such as visual
cluttering when scaling to complex dataflow graphs with lots
of nodes and edges [39], and lack of support for control issues
such as state transition and initialization [51]. We address the
visual cluttering issue in the domain of authoring VR scenes by
introducing techniques of abstracting and re-using behaviors.
We further adopt the FRP model and make explicit controls for
defining reactive behaviors and initializing 3D objects at run
time.

Functional Reactive Programming
The concept of reactive programming has been proposed for
implementing event-driven applications based on synchronous
dataflow programming paradigms but with relaxed real-time
constraints [4]. FRP [10] integrates reactive programming into
functional programming. The basic primitives in FRP are be-
haviors, which refer to different states of the system defined
by continuous time-varying values, and event streams, which
refer to infinite streams of discrete values. Users can define the
behaviors by specifying how they should change in response
to the incoming events. Event-driven FRP (E-FRP) [50] is
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considered a more efficient variant of FRP that can guarantee
real-time execution of FRP programs using two phases: 1) com-
paring the current state with the prior state of the computation
to see whether they are the same, and 2) updating the current
state. The FRP approach is suitable for a variety of areas such
as interactive 2D animations [10], web applications [9], and
data visualizations [37]. To our knowledge, FlowMatic is
the first to exploit the expressiveness of FRP in authoring VR
scenes and further visualize FRP semantics in the 3D space.
FlowMatic also proposes a set of domain-specific operators
for programming VR applications.

SYSTEM DESIGN
We have three primary design goals for FlowMatic:

• To raise the ceiling of the expressiveness of immersive
authoring tools.

• To minimize its learning curve by relying on a small number
of conceptual primitives that behave consistently.

• To build visualizations and controls that are appropriate for
state-of-the-art VR systems.

FlowMatic starts with a standard dataflow model that allows
users to define relationships between objects in the scene and
the state of the user. The top-level primitive of FlowMatic is
called a scene (analogous to a “program”). Every scene can
contain any number of elements from the following list:

• Models represent 3D shapes in the scene that are visible to
users. Every model contains:

– Attributes, which control how the model is displayed.
For example, a model representing a stereo box might
have attributes controlling its volume, position, and
color. Attributes can reference and be referenced by
other elements in the scene.

– Methods, which are discrete actions that a model
might take, such as animations. Like attributes, meth-
ods can reference or be referenced by other elements
in the scene.

• Data sources are ways for data to enter the application.
Like models, data sources contain attributes that can be
referenced by other elements in the scene. Unlike models,
however, data sources are only visible to the programmer—
not for users of the applications they create. FlowMatic
contains three kinds of data sources:

– Avatars provide information about the state of the
user, as first introduced by Steed and Slater [40]. For
example, avatars allow programmers to reference the
position of the user’s headset and controllers in the
virtual scene, the buttons the user is pressing, and
more.

– Constants represent values that never change but need
to be referenced as part of the scene. For example, in
the expression “x+5”, 5 is a constant.

– Randomized Generators provide randomized data
that can be referenced for non-deterministic programs.
This is analogous to how Unix systems can pipe data
from /dev/random.

• FRP diagrams represent the logic of the scene—how el-
ements change dynamically and react to user and system
events. The FRP diagram contains four kinds of elements:

– Operations, which transform and manipulate the
data1. Operations can accept any number of arguments
and produce any number of outputs.

– Nodes, which are elements that can be referenced in
the FRP diagram. Every node is part of an operation,
model, or data source.

– Edges between nodes that specify how data flows
within the FRP diagram.

– Abstract models, which are models that can program-
matically be added and removed from the scene at
runtime. Abstract models have the same attributes
and methods as normal models but are not instantiated
until the abstract model is passed into the create()
operation.

Although FlowMatic is an immersive authoring tool, sev-
eral aspects of immersive authoring are beyond its scope—
particularly the ability to define new 3D models and to define
rendering functions that specify how to display a given model
given its attribute states. However, future iterations of Flow-
Matic could incorporate such features by building on prior
work, such as TiltBrush [13] and Medium [31].

FlowMatic consists of three User Interface (UI) components,
as Figure 1 (a) shows. The palette menu (Figure 1 (i)) allows
users to search, select, and import 3D models to the scene.
The canvas (Figure 1 (iii)) shows the FRP diagram that the
user creates. The toolbox (Figure 1 (ii)) allows users to select
from a set of data sources and operators used for the diagram.
We will delve into the design of each component and use an
interactive example to showcase the workflow of FlowMatic.

Palette Menu
Palette Tool Menus are widely adopted in popular immersive
authoring tools such as Google Tilt Brush [13] and Microsoft
Maquette [24]. In FlowMatic, the palette tool menu is always
attached to the left controller, as Figure 2 shows.

Import 3D Objects
FlowMatic allows users to import both primitive models (e.g.
cubes, spheres) and models from Sketchfab2, a popular library
of 3D models, as Figure 2 shows. Users use a raycast shooting
from one controller to select different models and then import
them to the VR world by pressing a button on the controller.
Any animations associated with imported models are repre-
sented as methods in FlowMatic, which execute the animation
when called. FlowMatic also includes models for displaying
text (for example, to display a user’s current score in a game).

Stop Mode and Run Mode
Although users enjoy liveness (where they can see the output
immediately after they write part of the program), prior work
has found that they prefer having a button that allows them to
1The operations that FlowMatic includes are based on those of the
RxJS JavaScript library [35].
2https://sketchfab.com/
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Figure 2: The palette menu of FlowMatic. (a)/(i) is the inter-
face that allows users to import primitive models and select
their colors using the color palette. (b)/(ii) is the interface that
allows users to browse, search for, and import models from
online. (iii) is a toggle for displaying the FRP diagram. (iv)
allows users to create text elements in the scene.

switch between running and editing the program [52]. This is
partly because they may accidentally trigger the actions in their
application while they are using the controllers to manipulate
the programming primitives. As Figure 2 shows, users can
switch between stop mode and run mode, where stop mode
shows both 3D models and the programming primitives (e.g.
operators, data sources, or attributes), whereas run mode only
shows the 3D models.

Functional Reactive Programming Diagram
In order to represent discrete events, we incorporate concepts
from FRP. We choose FRP as a complement to the state-of-the-
art immersive authoring tools for several reasons. First, VR
applications, like most graphical applications, are typically
event-driven [11]. Although previous immersive authoring
tools cannot express various system events, FRP models event
streams as a first-class abstraction. Second, from an end user’s
perspective, the benefits of FRP are similar to those in favor of
declarative programming over imperative programming—ease
of construction, composability, clean semantics, etc. Espe-
cially for immersive authoring systems, FRP enables end users
to focus on “what” to present instead of “how” to present
on the HMD, which they have neither expertise nor interest
in. Lastly, FRP fits within the dataflow model but also pro-
vides more expressive functionality, such as the abstractions
of event streams. In FlowMatic, the user edits the FRP diagram
using a canvas, as Figure 1 (iii) shows. Users can also toggle
whether the FRP diagram is shown (developer mode) or not
(user mode).

Signals & Events
The essence of FRP is the notion of signals for representing con-
tinuous time-varying values (e.g. time, position, and rotation)
and event streams for representing discrete events (e.g. but-
ton presses and collisions). These are the only two first-class
and composable abstractions. Although signals are widely
supported by the state-of-the-art immersive authoring tools,
event streams are not. For example, using current immersive
authoring tools, users cannot specify that something should
happen when the user presses a button3. FlowMatic addresses
this by modeling behaviors of objects using FRP’s notion of
signals and event streams.

Event streams can be attached to model methods (to specify
when to call a particular method) or composed and manipu-
lated into more complex event streams or signals. They can be
emitted from the user’s input devices (e.g., controller button
presses) or from system events (e.g., collisions, timed intervals,
or animations).

boolean

object

class

string

number

vector3

anyevent

signal

First-class Abstractions Data Types

(a) (b)

Figure 3: The type visualization in FlowMatic. We use shapes
to represent first-class abstractions (a). We use colors to rep-
resent data types (b). The combination of shape and color
represents the abstraction and data type.

Type Visualization and Constraints
To minimize the learning curve for adopting the concept of FRP,
FlowMatic also enables type visualizations and constraints.
Specifically, we represent data types using color and first-
class abstractions using shapes, as shown in Figure 3. In
addition, we allow type constraints on the connections so that
an edge can only establish when the types of the two ports
are compatible, as shown in Figure 4 (a) & (b). This visual
feedback can help users avoid type errors effectively. We also
introduce polymorphic ports, as shown in Figure 4 (c) & (d),
where the type of a connector can be polymorphic according
to the incoming data types.

Dynamic Operations: An Interactive Example
While the state-of-the-art immersive authoring tools allow
users to define the behaviors of existing objects in the scene,
they cannot dynamically operate on 3D objects, which means
that users are not able to author scenes that can programmat-
ically create or destroy objects, react to system events, or
perform discrete actions. This is difficult in previous immer-
sive authoring tools because they define behaviors using the
dataflow model, which specifies continuous relationships and
typically needs the objects to exist in the scene—dataflow
connections rely on the object being visible.
3This is different from expressing a relationship that holds while the
user presses a button, a continuous event.
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object

class

position

rotation

Destroy

object

when

end

object
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object

when

end

object

class

position

rotation

Snapshot

signal

event

output

object

class

position

rotation

Snapshot

signal

event

output

a b
c d

Figure 4: The type constraints in FlowMatic. (a) shows the
state before making a connection. (b) shows that when making
a connection of type object, all ports of incompatible types
will be transparent and unconnectable. (c) & (d) demonstrate
polymorphic ports. The snapshot operator takes a snapshot of
the input signal whenever the event is fired and outputs event
streams of the same type as the input signal.

In order to programmatically create objects in the scene at
runtime, FlowMatic includes abstract nodes. Users can create
abstract models as placeholders for objects that will be created
in the scene at some point in the future. They can draw edges
to and from these abstract models to specify dependencies and
behaviors (for example, to specify the dynamics of where it
should appear in the scene when it shows up). Finally, they can
use the create() operator to create any number of instances
of these abstract models. Conversely, the destroy() opera-
tor removes an existing object from the scene. It can destroy
models that were created dynamically or ‘regular’ models that
the user manually placed in the scene. We will illustrate this
with the example of how Bob uses FlowMatic to progressively
program a simple shooting game, which is impossible to build
with previous immersive authoring tools. Note that in the ex-
ample we cover only a subset of all the operators in FlowMatic
but we demonstrate how a limited number of operations are
sufficient for building such interactive behaviors.

The first feature towards a shooting game is to specify that a
bullet should be instantiated at the gun tip whenever the player
presses the trigger button on the controller. In order to achieve
that, Bob first wants to get the position value of the gun tip
every time the player presses the trigger. The first operator
being used is called snapshot(). The snapshot() operator
takes two inputs—an event and a signal—and produces one
output. The functionality of the operator is to always take a
“snapshot” of the signal’s current value whenever the event
fires. After dynamically getting the position value of the gun

Figure 5: Resulting scene of a simple interactive example.

tip, Bob uses the create() operator to dynamically instan-
tiate a sphere (that represents a bullet) at that position. The
create() operator thus takes several inputs including a class
that comes from an abstract model indicating what type of
objects to create, an event that defines when to create it, and
several parameters for the instantiation such as position and
scale. The output of the create() operator is the instantiated
object (an individual bullet).

The second step is to set the bullet’s trajectory so it shoots
along the gun direction and then destroy it when it collides
with an object. Bob gets the instantiated object from the output
of the create() operator and uses a translate() operator
to translate the bullet. The translate() operator takes four
inputs: an object that specifies which instantiated object to
operate on, a from_position that defines the start position, a
to_position that defines the end position, and a speed that
defines the speed of the translation. Bob sets from_position
to the position of the gun tip and to_position to the position
of the destination (an abstract node). The output of the operator
is an event that will emit when the translation completes.

As a final step, Bob wants to specify that when the bullet
collides with an obstacle, both the bullet and the obstacle
should be destroyed. The collide() operator is designed
to detect collisions between two objects in the scene. It thus
takes two inputs that specify the two objects respectively and
produces four outputs—an event that emits when the collision
starts, an event that emits when the collision ends, and the ids
of the two collided objects. Bob uses the destroy() operator
to specify that when a bullet collides with an asteroid, both
should be destroyed. Figure 5 shows the scene resulting from
this example.

Interaction Design
Direct Manipulation of Objects
We iterated our design to directly manipulate objects in VR
by matching the direct manipulations that people perform
physically in real life and preliminary feedback we gathered
from user tryouts. Users use a raycast shooting from the right
controller to aim and use the trigger button on the controller
to select items on the menu, analogous to conventional WIMP
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Pull the thumbstick

Pull the thumbstick

Figure 6: In FlowMatic, users can create and re-use new
operators as abstractions. By ‘pulling’ an operator closer to
the user using the thumbstick (a), they create a new abstraction
(b). As they pull additional operators into the abstraction (c),
FlowMatic automatically updates its inputs and outputs (d).

interactions. Users also use the raycast to aim at connectors,
press the trigger button to start drawing an edge, and release it
when aiming at the target connector, analogous to conventional
drag-and-drop interactions. Users can directly move an object
and place it in the 3D space by holding and releasing the grip
button on the controller. Users can remove an object or an
edge by aiming at it with the raycast and pressing a button
on the controller. They can also rotate and scale the object
using the thumbstick on the right controller while holding
the object. This is especially useful when creating abstract
nodes as placeholders, since users can inspect the positions
and scales of the models directly in VR.

Abstracting and Re-using Behaviors
FlowMatic enables users to define and re-use customized oper-
ators by taking abstractions of basic operators or data sources,
as Figure 6 shows. To initiate an abstraction, users can ‘pull’
an existing operator closer to them using the thumbstick on the
controller. The abstraction then contains the target operator.
Users can continue to ‘absorb’ additional operators into the
abstraction. The abstraction can dynamically update its inputs
and outputs based on the operators being abstracted. Users
can ‘push’ the abstraction back to the FRP diagram again using
the thumbstick once the abstraction is done. Users can also
save the abstraction in the toolbox for future use by pressing
a button on the controller. These abstractions make complex
FRP diagrams easier to read and allow users to build up higher
levels of abstraction.

IMPLEMENTATION
FlowMatic is open source and publicly available for other
researchers to build on and evaluate4. The front-end of Flow-
4https://github.com/RayneZhang/FlowMatic

Matic builds on A-FRAME, which in turn builds on Three.js
and WebVR. The back end of FlowMatic uses Node.js and
RxJS [35] to handle FRP logic.

EVALUATION
We conducted a user evaluation to evaluate the learnability,
efficiency, and usability of FlowMatic. Specifically, we de-
signed our evaluation (1) to see whether participants are able to
build VR applications with FlowMatic, and (2) to gain insights
into the advantages, disadvantages, and usability of immersive
authoring systems.

Because there is no existing immersive authoring tool that
allows users to program reactive behaviors, we chose A-FRAME
[2], a popular JavaScript framework for programming web-
based VR content, as a representation of conventional desktop
methods for authoring VR. There are two reasons we chose A-
FRAME as a comparison. First, A-FRAME uses entity-component
architecture and an event-handler mechanism for programming
VR applications, which have been a fundamental feature of
developing 3D user interfaces including VR applications [11].
Second, A-FRAME has been used for several research projects
[30, 29], including FlowMatic, and has proven usable and
capable of authoring event-driven behaviors.

Participants
We recruited 8 participants (6 female, 1 male, and 1 non-
binary, age 20–26) to evaluate our system. All participants
had at least a beginner level of JavaScript (have taken at least
one web programming class) and half of them identified them-
selves as experts (have experience building websites using
JavaScript and are very familiar with syntax frequently used in
JavaScript). All participants reported having no or very limited
experience in programming VR applications before. Partici-
pants were paid $25 USD for an approximately 120-minute
study.

Procedure
We used two different study tasks and two systems with which
to implement them (A-FRAME or FlowMatic), all counterbal-
anced to control for learning effects. The study procedure
consisted of three sessions: 50 minutes for training and ex-
perimenting with the first system, 50 minutes for training
and experimenting with the second system, and 15 minutes
for retrospective interviews and post-task questionnaires. In
each 50-minute session, we spent the first 20 minutes helping
the participants go through a tutorial of the system and then
gave the participants 30 minutes to implement the task. The
tutorial for A-FRAME was a document that introduced the syn-
tax and Application Programming Interfaces (APIs) necessary
for programming VR applications. The tutorial for FlowMatic
contained basic concepts and operators necessary for the exper-
iment. Participants also did some exercises with each system
to write basic features in addition to the tutorials, but none
of the features were the same as the actual tasks. The task
descriptions were the same regardless of the implementation
system. Table 1 shows the descriptions for each task, which
consisted of four steps.

After the training, we gave participants 30 minutes for the task
in each condition and did not give them further instructions
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Table 1: Two tasks given to the participants in the evaluation

Task 1: Stage Animation Task 2: Shooting Game
Step 1 Create three light models in the scene Create a gun model in the scene

Step 2
Place the lights:
1. Each light must be next to each performer on the stage
2. The lights should appear on the stage floor

To dynamically create a sphere at the gun tip,
when the user presses the trigger button on the
right controller.

Step 3 The light in the middle should always shoot at the user,
even if the user is moving

The created sphere should translate from the tip posi-
tion to the destination that is along the gun direction.

Step 4

The light in the middle should be turned off when the
user presses the trigger button on the left controller, and
be turned on when the user releases the trigger button
on the left controller

The created sphere should disappear after translating
to the destination

on how to complete the task unless they specifically asked
for help or we noticed they had been stuck for more than 1
minute. Participants were allowed to freely use the tutorials
for reference. In the A-FRAME condition, the participants were
allowed to copy the APIs from the document directly to the
Integrated Development Environment (IDE). In both condi-
tions, the participants were allowed to ask for clarifications on
specific concepts, APIs, or operators covered in the tutorials.
The researchers would then give the clarifications verbally.
Questions that were unrelated to the contents of the tutorials,
such as what the next step in the task should be, were counted
as asking for help.

To make the comparison with A-FRAME fair, we tried to provide
the same level of abstractions of APIs. For example, when
implementing the feature of translation from one position to
another, the participants only needed to specify the entity
(which will translate), the from position, and the to position in
both systems. We also provided the same resources in terms
of digital models. During the tasks, we observed how often
participants made errors and what types of errors they made
in both conditions.

After completing both tasks, we conducted a one-on-one retro-
spective interview with each participant to obtain feedback on
how the tools compared and the usability issues. Participants
next filled out a questionnaire about the systems. The ques-
tionnaire used a 5-point Likert scale (1–Strongly Disagree,
5–Strongly Agree), assessing the learnability, usability, and
other metrics of FlowMatic.

RESULTS
All participants were able to implement the given tasks us-
ing both systems. We observed that participants made more
errors when using A-FRAME and normally spent more time
on fixing errors, though we did not quantitatively measure
the time spent on error fixing. Some common errors when
using A-FRAME were binding event listeners to wrong entities,
confusing init() with the tick() function, and forgetting
to attach components to entities.

Retrospective Interviews
During the retrospective interviews, we asked participants
about the comparison between the two authoring tools and
their preferences. We also asked about the advantages and
disadvantages of each tool.

No Code Required. All eight participants mentioned that one
of the advantages of FlowMatic is that users can do program-
ming tasks without any experience in coding. Similar feedback
also included that FlowMatic would be suitable for teaching
people to program.

P8: “[FlowMatic] would be a lot easier for artists, begin-
ners to coding, and kids who don’t know actual coding
because you have to learn the basics of Javascript to use
[A-FRAME].”

Correspondence between Programs and Objects. Participants
also described FlowMatic as more “direct” and “intuitive”.
More specifically, participants thought that it is “always easier
to know which object and which event you are operating on”
with FlowMatic (P2), while it is “hard to keep track of what
you are doing and which variable you are working on” using
A-FRAME (P3). This is because FlowMatic allows users to
operate directly on the objects in the scene so that they can es-
tablish correspondences between the program and the objects
more easily. With 2D authoring tools, on the other hand, users
have to establish the correspondences between the scripts and
the objects, which requires more mental effort.

Liveness. Participants pointed out that the immediate feedback
of FlowMatic, its liveness [42], helped them to be “more ef-
ficient” (P8). While using A-FRAME, they had to “spend time
on compiling and running” (P8). Another participant also
mentioned that the liveness gave her “more sense of accom-
plishment” (P6).

Context Switching. Six out of eight participants mentioned that
with A-FRAME they had to do “context switch” or “switching
back and forth” between the HMD and the IDE. They also
preferred FlowMatic for being easier and more convenient,
since “everything is in VR” (P6).

P4: “To test what I was doing [in A-FRAME], I had to
compile, reload the webpage, wear the headset, and head
back to the IDE to do bug fixing, which is very time-
consuming.”

Syntax. Participants also said that FlowMatic is easier be-
cause the syntax for specifying behaviors is more concise and
intuitive than in A-FRAME.

P7: “It seems like there is a lot of syntax involved [in
A-FRAME], such as having to get the position of an object,
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and having to instantiate things, which I think would
be easier to get the trigger [button] for those [in Flow-
Matic].”

Another example of this is that participants made a lot of
mistakes related to the syntax of A-FRAME, such as attaching a
component, binding an event listener, etc.

Debugging. Debugging was an interesting topic throughout
the interviews. It turned out that each system has its own ben-
efits and drawbacks in terms of debugging. Participants who
thought debugging was easier in FlowMatic claimed that “it
is easier to see how I did wrong since everything is visual (in
FlowMatic) and one node is connected to another”(P8), and
that bug fixing is harder in A-FRAME due to frequently switch-
ing the context, according to P4. Participants who thought
debugging was easier in A-FRAME commented that it was eas-
ier to utilize simple functions like console.log() to see
whether an event had been triggered or not, according to P2. It
was also easier because users can go through the code and see
where is wrong, while using FlowMatic it is hard for the user
to check if she connected a wrong arrow and to know how to
change it, according to P5.

Questionnaire
Figure 7 shows the aggregated results from the usability ques-
tionnaire. Six out of eight participants agreed that FlowMatic
is easy to learn (5 Strongly Agree, 1 Agree), while only one
participant strongly agreed that A-FRAME is easy to learn. Six
participants agreed that FlowMatic is easy to use (3 Strongly
Agree, 3 Agree), while five participants agreed that A-FRAME
is easy to use (1 Strongly Agree, 4 Agree). All participants
agreed that the design of FlowMatic is good (5 Strongly Agree,
3 Agree). Six participants agreed that FlowMatic is helpful
in programming VR applications and that it would be easy to
become skillful at FlowMatic. Seven out of eight participants
thought FlowMatic was fun to play with (6 Strongly Agree, 1
Agree), which corresponds to the interview feedback that it is
interesting to use FlowMatic.

I would find A-FRAME easy to learn

I would find A-FRAME easy to use.

I would find FlowMatic easy to learn.

I would find FlowMatic easy to use.

The design of FlowMatic is good.

FlowMatic is helpful in programming
VR applications.

It would be easy for me to become
skillful at using FlowMatic.

FlowMatic is fun to play with. 1

1

1

1

1

1

2

1

1

1

1

2

1

1

3

4

5

3

1

4

4

6

3

2

3

3

5

1

1
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Figure 7: Results of the usability questionnaire.

DISCUSSION
Our results indicate that our immersive authoring system,
FlowMatic, is generally easy to learn and use. We observed

that participants tended to make more errors when using desk-
top authoring tools, though we did not quantify them. Even
though all participants had programming experience, the errors
they made were heavily linked to the programming paradigm
of each authoring system, which was outside the scope of their
previous experience. More specifically, in the A-FRAME condi-
tion, the errors were mostly linked with the entity-component
system and the event-handler mechanism, which are the core
of current VR application development tools.

Participants were also able to build target reactive behaviors
using FlowMatic and all of them believed that FlowMatic was
more beneficial for non-programmers and novice program-
mers. Most of them agreed that FlowMatic was more intuitive
and direct and they generally preferred the liveness of Flow-
Matic. Participants also thought FlowMatic was interesting
and fun to play with. Using desktop authoring methods, users
often need to deal with a lot of “chores” that are less related
to their authoring intentions, such as dealing with frame-rate-
driven architecture and repeatedly switching between develop-
ing and testing. Those chores are also less interesting to users.
By integrating FRP and fusing developing and testing in the
immersive environment, FlowMatic allows users to directly
map their intentions into operations and receive immediate
feedback in the 3D world.

EXAMPLE APPLICATIONS
To demonstrate the expressiveness of FlowMatic, we use repli-
cated examples [20] and create three example applications.
The first application, a blaster game, is one of the most com-
mon gaming mechanisms in VR where the user shoots bullets
using the controller to try to hit the targets. The VR Whac-
A-Mole game asks users to use a hammer to hit the moles
that are generated in random positions on the ground. In the
last application, we replicated Beat Saber—one of the most
popular VR games, where users swing their controllers to slash
the blocks moving towards them in a certain rhythm.

Blaster Game
The tricky parts of creating a blaster game include dynamically
creating bullets at the gun tip position at run time, detecting
collisions between targets and each bullet, and dynamically

Figure 8: A Blaster Game created using FlowMatic, where
the player presses the trigger button on the controller to shoot
spheres out and earns scores by hitting the target asteroids.
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destroying objects when they collide. As partly covered in the
previous example, we accomplish this by using FRP operators
that can dynamically create, translate, and destroy a bullet
(represented as a sphere but can be any model from an online
library) according to different system events.

VR Whac-A-Mole
Whac-A-Mole is a classic arcade game where the user uses
a hammer to hit the randomly generated moles and earn
scores. Again, this application requires dynamically creat-
ing/destroying objects and reacting to system events such as
collisions between the hammer and the moles. In addition, this
application was previously hard to replicate because it requires
the system to generate objects at random positions in the space.
We address this by using an aforementioned abstract node to
directly specify an area and a random generator as an operator
to generate random data of type vector3 as positions within
the area.

Figure 9: A VR Whac-A-Mole game where the user holds a
hammer and tries to hit the shark models randomly generated
on the water’s surface.

Beat Saber
Beat Saber is a popular rhythm game in VR. The difficult
aspect of replicating this game is to arrange the timing of
each moving block according to the rhythm. We address this
by using an interval operator that can fire events based on a
specified interval value. The create operator can then subscribe
to the internal clock events and generate blocks accordingly.

LIMITATIONS & FUTURE WORK
Our current study has several limitations. First, we have only
performed a short-term study comparing FlowMatic and A-
FRAME for beginners. A long-term study or a study with
experts in VR will be needed to see whether the conclusion
still holds for people who are familiar with VR programming
tools and immersive authoring tools. Second, since all of our
participants had an interest in VR and FlowMatic appeared
new to them, their feedback may be biased. People who
are experts in JavaScript may feel more comfortable using
imperative programming languages rather than FRP. Finally,
while FlowMatic is expressive for creating different reactive
behaviors, there are several components of VR applications
that are not supported in FlowMatic yet, such as authoring
particle systems and complex algorithms. However, recreating

Figure 10: A basic implementation of Beat Saber, where the
blocks are created at certain intervals and the player swings
the sword and hits the cubes to earn scores.

a complex authoring tool such as game engines is beyond the
scope of this paper. Instead, we explored the possibility of
making programming VR applications easier and proved that
FlowMatic is capable of allowing novices to build relatively
complex VR scenes.

Future work will first address several design challenges and
usability issues in immersive authoring tools. For example,
some participants commented that navigating the virtual world
could cause slight motion sickness. A comparative study
between immersive authoring systems and 2D VPLs such as
Unreal Blueprints might be needed to further investigate the
unique benefits brought by the 3D space for displaying the
program layout and avoiding visual cluttering. Documentation
would be another interesting direction in the future, as two par-
ticipants said they preferred A-FRAME in the sense that the APIs
documentation was detailed and easy to understand. It is also
important for future immersive authoring systems to save users
from the heavy effort of switching between documentation
and implementation.

CONCLUSION
In this paper, we presented a novel immersive authoring sys-
tem named FlowMatic that raises the ceiling of the expres-
siveness of immersive authoring tools. To enable that, we
integrated concepts of FRP and modeled reactive behaviors of
objects as time-varying signals or event streams. FlowMatic
introduces a set of dynamic operations, intuitive interactions,
and visual representations for defining reactive behaviors, re-
ducing complexity, and programmatically creating/destroying
objects in a scene. We conducted a comparative study with
A-FRAME, a desktop authoring method, to evaluate the usabil-
ity, advantages and disadvantages of our immersive authoring
system. Our study results show that participants were able to
build the target reactive behaviors using FlowMatic, and that
it is intuitive, fun to play with, and helpful for programming
VR applications. We also demonstrate the expressiveness of
FlowMatic by replicating three relatively complex applications
that were impossible to build using prior immersive authoring
systems.
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