
VizCode: A Practical Real-time Tool for In-Class Computer
Programming Tutoring

Yinuo Yang
University of Michigan

Ann Arbor, Michigan, USA
inon@umich.edu

Steve Oney
University of Michigan

Ann Arbor, Michigan, USA
soney@umich.edu

a

b

c d

Figure 1: The VizCode Web Page interface consists of student boxes (a), code boxes (b), and document tags (c). This screenshot
shows two code boxes with several code boxes in them, each displaying one student’s code in real-time from the student’s
VSCode. Documents under editing are displayed in blue (d), indicating that the student is currently editing this document.

ABSTRACT
Prior research has shown the benefits and promise of allowing
instructors in large programming classes to monitor students’ cod-
ing activity in real-time. However, translating these findings into
practical, user-friendly tools remains a challenge. This demonstra-
tion showcases VizCode, a tool that allows instructors to monitor
students’ code in real-time as they edit in the popular Visual Studio
Code (VSCode) IDE. VizCode is designed to be practical (integrating
with widely-used tools and requiring minimal server overhead),
scalable (minimizing network latency by only communicating code
changes), and easy to use (requiring minimal setup from students).
By focusing on practicality and seamless integration with VSCode,
VizCode bridges the gap between research and practice, making it
easier for instructors to monitor students’ code in real-time.

CCS CONCEPTS
• Applied computing→ Education; • Human-centered com-
puting → Interactive systems and tools.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
L@S ’24, July 18–20, 2024, Altanta, GA, USA.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0633-2/24/07
https://doi.org/10.1145/3657604.3664716

KEYWORDS
programming education at scale; computer science education
ACM Reference Format:
Yinuo Yang and Steve Oney. 2024. VizCode: A Practical Real-time Tool for In-
Class Computer Programming Tutoring. In Proceedings of the Eleventh ACM
Conference on Learning @ Scale (L@S ’24), July 18–20, 2024, Altanta, GA, USA.
ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/3657604.3664716

1 INTRODUCTION
Real-time monitoring of students’ coding progress is useful to offer
tailored feedback and make informed decisions regarding exercise
progression in a programming class at scale [3]. Prior research
has explored ways for monitoring students’ real-time code [1–4].
However, these tools require working within ecosystems and online
environments that are specific to these tools, which may reduce
the scope of programming courses where they can be used.

To help bridge, the gap between research and practice, we in-
troduce VizCode—a practical, real-time tool designed to observe
students’ code as they edit it within the Visual Studio Code (VS-
Code) environment on their own computers. VizCode effectively
bridges the gap between the need for real-time monitoring and the
widespread use of VSCode among programming students.

2 TOOL DESIGN
VizCode consists of three components: (1) a VSCode extension that
students can install locally, (2) a data server that the VSCode exten-
sion communicates with (this can either be an external server or

544

https://doi.org/10.1145/3657604.3664716
https://doi.org/10.1145/3657604.3664716
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3657604.3664716&domain=pdf&date_stamp=2024-07-15


L@S ’24, July 18–20, 2024, Altanta, GA, USA. Yinuo Yang and Steve Oney

run locally on an instructor’s computer, and (3) a dashboard that
allows instructors to monitor students’ code in real-time. We plan
to release VizCode as a free and open-source tool available to any
instructor.

Data Server

Students

Instructor

WebsocketWebsocket

HTTP
JSON example: {“value”:'a',


 “operation”:‘add’,

 “position”:'64'}

Dashboard

Figure 2: VizCode workflow. Each student’s editing data
would send to the VizCode Web Page in real-time.

2.1 VSCode Extension
As a first step, students can install the VizCode extension for VS-
Code from the built-in Extension Marketplace1. This extension has
a minimal User Interface, only notifying students if and when their
code modifications are being tracked.

Students are not required to do anything other than install the
extension; there is no additional configuration or setup. Instead,
most of the configuration is done by instructors—to specify where
(which server) data should be logged to and which files to keep track
of along with links to the private policies for every exporter. These
configuration options can be specified in a .vscode configuration
file that instructors can distribute alongside assignments to students.
When students first start the extension, the extensionwill send them
links to the private policies to handle the consent. As students make
code modifications to the relevant directories, this extension will
communicate code changes to the data server in real-time.

2.2 Data Server
The data server is a Node.js application that listens for code changes
and distributes it to connected “dashboard” clients. The data server
connects with students’ VSCode extensions and dashboard through
Web Sockets. It is lightweight enough that it can run on any standard
modern laptop, meaning that instructors can host it locally. In
situations where this is not practical (for example, if the instructor’s
computer is on a different network or hidden behind a firewall), the
data server can instead run on a cloud service (we have tested with
AWS).

2.3 Dashboard
The VizCode dashboard connects with the data server to offer a
user-friendly platform for monitoring students’ coding progress.
As students edit their code, their code updates are immediately
reflected in the dashboard. Figure 1 shows its main structure:

• Figure 1.a: Student boxes, showing a student’s real-time doc-
uments within VSCode.

1https://marketplace.visualstudio.com/items?itemName=educational-technology-
collective.telemetry

• Figure 1.b: Code boxes, showing student’s code (using the
Monaco web-based code editor).

• Figure 1.c: Document tags, the instructor can click the tag
to see codes in different documents.

• Figure 1.d: Document name color would be blue when this
student is editing this document.

3 USING VIZCODE
To use VizCode, instructors must (1) tell students to install the
VizCode VSCode extension (this can happen once, at the beginning
of the semester), (2) set up a data server, either locally or a cloud
server, and (3) distribute assignments with a .vscode configuration
file that points to the data server. Once configured, instructors can
visit the dashboard to monitor students.

Student names are ‘anonymized’ by default but if instructors
need to identify students, they can request that they add their name
as a comment in their codebase. When an instructor identifies a
student who is struggling or would benefit from additional help,
they can contact these students through established communication
channels (e.g., talking to the student in-person or through video-
conferencing tools). Future versions of VizCode could be modified
to to allow instructors to send messages to students directly in the
dashboard [1, 2].

4 DEMO SETUP AND REQUIREMENTS
We plan to focus our demonstration on how instructors can set up
VizCode to monitor students’ coding activity. We will also briefly
walk through how students can enable the VizCode extension on
their machines. We will use simulated student data to emulate the
experience of working with VizCode in a mid-size classroom for
instructors. Our demo requires minimal hardware (as does VizCode).
Visitors will optionally be allowed to experiment with our demo,
either as a ‘student’ or ‘instructor’.

5 LIMITATIONS
One limitation is the handling of streamed data containing sensitive
information. While the extension includes functionality to ignore
data within the .env file, there remains a risk of data leakage.
Another limitation is the lack of robust security protocols. One way
to address this would be to add optional authentication through
systems such as Canvas’ LMS.

6 CONCLUSION
This demo presents VizCode, showing a practical way to collect
and use data from programming classes in real time to facilitate
programming education at scale, thereby empowering instructors
to provide timely assistance and personalized feedback within the
lecture setting. We will continue implementing our system. Future
work includes LLM (Large Language Model) assistant teaching and
better visualization of students’ code-writing progress.

ACKNOWLEDGMENTS
The authors thankMengyanWu and Chris Brooks for their work on
the VSCode Telemetry extension, which VizCode uses, and Ashley
Zhang for her feedback. This material is based on work supported
by the National Science Foundation under DUE 1915515.

545

https://marketplace.visualstudio.com/items?itemName=educational-technology-collective.telemetry
https://marketplace.visualstudio.com/items?itemName=educational-technology-collective.telemetry


VizCode: A Practical Real-time Tool for In-Class Computer Programming Tutoring L@S ’24, July 18–20, 2024, Altanta, GA, USA.

REFERENCES
[1] Philip J. Guo. 2015. Codeopticon: Real-Time, One-To-Many Human Tutoring for

Computer Programming. In Proceedings of the 28th Annual ACM Symposium on
User Interface Software & Technology (Charlotte, NC, USA) (UIST ’15). Association
for Computing Machinery, New York, NY, USA, 599–608. https://doi.org/10.1145/
2807442.2807469

[2] April Yi Wang, Yan Chen, John Joon Young Chung, Christopher Brooks, and Steve
Oney. 2021. Puzzleme: Leveraging peer assessment for in-class programming
exercises. Proceedings of the ACM on Human-Computer Interaction 5, CSCW2

(2021), 1–24.
[3] Ashley Ge Zhang, Yan Chen, and Steve Oney. 2023. VizProg: Identifying Misun-

derstandings By Visualizing Students’ Coding Progress. In Proceedings of the 2023
CHI Conference on Human Factors in Computing Systems (, Hamburg, Germany,)
(CHI ’23). Association for Computing Machinery, New York, NY, USA, Article 596,
16 pages. https://doi.org/10.1145/3544548.3581516

[4] Ashley Ge Zhang, Xiaohang Tang, Steve Oney, and Yan Chen. 2024. CFlow:
Supporting Semantic Flow Analysis of Students’ Code in Programming Problems
at Scale. arXiv preprint arXiv:2404.10089 (2024).

546

https://doi.org/10.1145/2807442.2807469
https://doi.org/10.1145/2807442.2807469
https://doi.org/10.1145/3544548.3581516

	Abstract
	1 Introduction
	2 TOOL DESIGN
	2.1 VSCode Extension
	2.2 Data Server
	2.3 Dashboard

	3 USING VIZCODE
	4 DEMO SETUP AND REQUIREMENTS
	5 LIMITATIONS
	6 Conclusion
	Acknowledgments
	References



