
FireCrystal: Understanding Interactive Behaviors in Dynamic Web Pages

Stephen Oney and Brad Myers

Human-Computer Interaction Institute - Carnegie Mellon University
{soney,bam}@cs.cmu.edu

Abstract

For developers debugging their own code, augmenting
the code of others, or trying to learn the
implementation details of interactive behaviors,
understanding how web pages work is a fundamental
problem. FireCrystal is a new Firefox extension that
allows developers to indicate interactive behaviors of
interest, and shows the specific code (Javascript, CSS,
and HTML) that is responsible for those behaviors.
FireCrystal provides an execution timeline that users
can scrub back and forth, and the ability to select items
of interest in the actual web page UI to see the
associated code. FireCrystal may be especially useful
for developers who are trying to learn the
implementation details of interactive behaviors, so they
can reuse these behaviors in their own web site.

1. Introduction

Examples serve as a crucial source of inspiration for
designers while they are exploring possible designs [1].
While examples rarely provide exactly the
functionality that a designer wants, they can serve as a
foundation that can be customized and augmented. One
development process frequently used by designers and
programmers alike is to search for an example of what
they want, copy that example, and then adapt it to fit
their needs [2-4].

1.1. Interactive Behaviors

While it is often easy to replicate the look of a web
page or other interactive application, it is very difficult
to replicate the feel [5]. Designers interested in
adopting an interactive behavior for their own uses
would ordinarily have to search through HTML,
JavaScript, and CSS code fragments, which are
frequently poorly formatted, spread across many files,
contain fragments unrelated to the behavior the
designer is interested in, and give no hint to the parts of
the behavior they are responsible for.

We have created a new tool called FireCrystal to

help designers inspect interactive behaviors they find
on web pages. While the Internet is a great repository
of interactive behaviors for designers to use and
incorporate into their own original designs, there have
been several problems encountered by designers
interested in adapting interactive behaviors from web
sites, which are summarized in the next sections, along
with FireCrystal’s approach to helping with them.

1.2. HTML, CSS, Javascript, and the DOM

In most interactive web pages, the HTML and
Javascript contribute to the page’s Document Object
Model (DOM), which is an object model that controls
the structure of the page. Usually, HTML represents
the initial DOM, which is then manipulated by attached
Javascript code to make the page interactive. CSS
controls the look of the page, and sometimes controls
the positions of elements. Even if a designer is familiar
with HTML, Javascript, and CSS, the interaction and
interplay between them can make it even more difficult
to see what pieces of code are responsible for a
particular interactive behavior.

1.3. Readability

Another source of difficulty in extracting behaviors
is that there is no visible mapping between the source
code and what the user sees on the web page. In
addition to functionality being spread across three
different languages, even within the Javascript code
itself, small interdependent fragments of code are
frequently spread across multiple files. Unlike many
programs written in formal languages like Java, it is
nearly impossible to trace execution paths to figure out
how a program works, as there is no single entry-point
into a program. Instead, many interactive behaviors run
when triggered by input handlers attached to an
element, one its parents, or a seemingly irrelevant
element.

Web page code is almost never designed for
readability; it is frequently poorly formatted, or
sometimes intentionally rendered unreadable through

Figure 1 - FireCrystal replaying an interaction with an article on the New York Times website
(http://www.nytimes.com/). In this interaction, the question mark box (outlined in red) appears after the user has
highlighted a phrase (“great alumni” in this case). The timeline on the bottom of the screen shows user input events
(in blue, from left: mouse down and up events, keyboard keys down and up, and window resizing, etc.) and DOM
changes (as yellow bars). As the user drags the timeline handle (in red) to different times, a callout box gives more
details on the event, the interaction is shown on a clone of the web page (left panel), and relevant code (Javascript,
HTML, or CSS) is highlighted (right panel)

code obfuscation methods ranging from eliminating
whitespaces to renaming variables or even inserting
nonfunctional code fragments.

1.4. Our Approach

In light of these problems, we created FireCrystal, an
add-on for the Firefox web browser that allows users to
record execution paths while they are interacting with
an interactive web page. To use FireCrystal, users tell
it to start recording, then demonstrate the interactive
behavior they are interested in extracting. FireCrystal
records the interaction, keeping track of DOM changes,
Javascript code executions, and user input events.
When the user is finished recording, they can replay
the interaction, and FireCrystal displays the HTML,
CSS, and Javascript code that affected a particular
element at any specific time.

Suppose a user wants to understand the “define”
behavior of the New York Times (www.nytimes.com)
web page, which allows users to highlight a word to
pop up the question mark, as shown in Figure 1. The

user can then click on the question mark to be shown
the definition of the word. Without FireCrystal, a
designer would have to carefully look through the
Javascript files included by the page (in this case, over
50 files and thousands of lines of code).

With FireCrystal, the user can demonstrate the
behavior while FireCrystal is recording. FireCrystal
then displays the window shown in Figure 1. The
replay window initially displays the web page in the
same state as when the user started recording. The user
can then use the timeline to find the point of interest.
The timeline shows where DOM changes were made
as well as where user input events happened. The user
can click on an action in the time line, or else can focus
in on the element of interest by clicking on it in the
replay window.

FireCrystal then displays the HTML, JavaScript,
and CSS code that caused that action or affected that
element by highlighting the lines and files. Javascript
code that was just run is highlighted in green, and
Javascript code that makes a DOM change is
highlighted in yellow. With FireCrystal, the user can

easily see what user input this interactive behavior
reacts to and how it works.

2. Related Work

Crystal, the namesake of FireCrystal, is a
framework aimed at enabling application developers to
create applications that allow users to debug user-level
features of the interface [6]. FireCrystal is also aimed
at making the interface “clear”, but focuses on web
page code instead of user actions in complex
applications.

The other major influence on FireCrystal is the
Whyline [7], which allows users to ask “why” and
“why not” questions about their programs. The web
poses a unique challenge, however, because web pages
use a mixture of imperative (Javascript) and declarative
(HTML and CSS) syntaxes, unlike the strictly
imperative syntaxes of Java and Alice addressed by the
Whyline.

There are many widely used Javascript debuggers in
Firefox and other browsers. According to the Firefox
add-on download site, the most popular debugger is
Firebug [8]. Firebug allows users to perform standard
debugger actions, such as pause, step over, step into,
and step return Javascript applications. It also has tools
to analyze the CSS and DOM trees of a particular web
site. However, it is still difficult to debug interactive
behaviors in Firebug – stepping often does not work
because users have to invoke the interactive behavior
in order to get the code to run. In addition, there is no
built-in way to log what happened during a particular
interaction.

Also related are the tools that help users find
relevant examples, such as Mica [9] and BluePrint
[10]. However, these tools do not help users
understand the examples.

3. FireCrystal

FireCrystal is a standalone Firefox add-on, written in
a combination of XUL and Javascript. Upon activation,
the user is given the option to start recording on
command, or to reload the target page and start
recording upon reload, to catch events that occur as
soon as the page loads. When FireCrystal starts
recording, it saves a complete copy of the target page’s
DOM, which will be used for the replay later on.

While FireCrystal is recording, it listens to DOM
changes, user input events, and Javascript executions.
All of these types of events are placed into a single
“event log” that is used for the replay.

FireCrystal uses the standard HTML event/listener
framework, as provided by the Firefox browser, to add

hooks for DOM change events. Every time the DOM
changes, an object describing that DOM change is sent
to FireCrystal. FireCrystal then generates two methods
– one called “next” that can replicate that DOM change
and another called “prev” that can nullify the effects of
the change. Together, these methods will be used in the
replay window to allow the user to scrub back in forth
while replaying their interaction with the target page.
For example, if an element’s color is changed from
blue to red, FireCrystal generates a “next” method that
changes the color of a clone of that element to red, and
a “prev” method that changes it to blue. By generating
a stack of methods rather than making complete DOM
copies, FireCrystal saves processor time and memory.
An object with details of the DOM change and these
two methods is then placed onto the event log.

 FireCrystal also uses the standard HTML
event/listener framework from Firefox to add hooks so
it is notified about most types of possible user input
events, including mouse movement, mouse clicks, key
presses, scrolling, and window resizing. Any time one
of these events occurs, an object with the details of the
input is placed on the event log.

FireCrystal uses the native Firefox debugging service
to record every time a line of Javascript code is run on
the target page. FireCrystal only records the line
number and source file that is executing and does no
further analysis on the Javascript code itself. This step
is the most processor-intensive of any FireCrystal
feature and sometimes slows down pages that execute
a lot of Javascript when the user is recording.

When FireCrystal finishes recording, the target
window is hidden and the “replay window” shown in
Figure 1 appears. The timeline allows users to move
back and forth through the recording and displays
markers representing DOM changes and small icons
representing the different types of user input events.
The replay window starts by showing the page as it
looked when the user started recording (using a
complete DOM clone) and then uses the methods in the
event log to change it to show the user interface state at
the point of time that the user selected along the
timeline. The replay window uses a copy of the
original page’s CSS to mimic the look of the original
window. The replay window also shows certain user
interactions, such as mouse movement (with a mouse
cursor image), clicks (with ripples on the page where
the user clicked), and window resizes (by resizing the
internal frame). Javascript that would normally run on
the host page is disabled to prevent possibly harmful
side effects of re-running code. The replay window
also shows the names of all of the files used by the web
page during the user’s interaction and highlights files
that contain code that is responsible for a DOM change
(in yellow). If the user has selected a particular element

to focus on in the replay window (such as the question
mark box in Figure 1), files with code that affected that
element, whether it is HTML, Javascript, or CSS are
highlighted. All code is also automatically formatted
for readability.

Note that FireCrystal is able to do this without
interpreting or analyzing the code itself – it assumes
that any lines of code that are executed before the
selected DOM change is relevant to that change.

4. Limitations and Future Work

While FireCrystal helps designers extract

interactive behaviors, it only works with code that is
run and viewable on the client-side. Thus, it does not
work with compiled languages like Adobe Flash or
with server-side code written in PHP, ASP, etc. In
addition, while FireCrystal takes measures to
deobfuscate the Javascript, HTML, and CSS code of
web pages – by automatically formatting the code and
highlighting relevant code, there are obfuscation
techniques that FireCrystal is still vulnerable to. For
example, if a web developer intentionally inserts large
amounts of code that is executed with no effect,
FireCrystal has no easy way of distinguishing this code
from the code responsible for the behavior, as
FireCrystal currently does not try to “understand” the
Javascript code, and Firefox does supply any tools to
help with such analysis.

Modifications to the Firefox development platform
would enable many additions to FireCrystal. In
particular, the Firefox platform does not support
developers listening for changes made in CSS
“pseudo-classes”, which can be responsible for certain
types of animations that currently do not show up as
DOM changes. In addition, the Firefox add-on
development API does not enable in-depth analysis of
Javascript code that might enable FireCrystal to
automatically extract and adapt behaviors.

Users might also benefit if FireCrystal were
integrated with other Javascript debugging platforms
like Firebug [8]. We need to determine the best way to
integrate the features of FireCrystal and Firebug so that
users can take advantage of the strengths of both add-
ons. Finally, we have plans for many more features that
will help designers copy and paste the interactive
behaviors into their own code, after they have used
FireCrystal to isolate and understand the example’s
code.

5. Conclusion

FireCrystal is a tool aimed at helping designers and

developers extract interactive behaviors that they can

then adapt for use in their own interactive applications.
FireCrystal is unique because of its focus on interactive
behaviors in an environment that involves three
languages – two declarative languages (HTML and
CSS) and one imperative language (Javascript).
FireCrystal allows the user to see what particular code
or declarations affect an element at any time.

6. Acknowledgements

The authors would like to thank Andrew Faulring,

Thomas LaToza, Christopher Scaffidi, Jeff Stylos, and
Jeff Wong for their invaluable assistance. We would
also like to thank the ARCS Foundation. Adobe has
provided wonderful financial support and advice. This
research was also supported by the National Science
Foundation under grants IIS-0757511 and CCF-
0811610. Any opinions, findings and conclusions or
recommendations expressed in this material are those
of the author(s) and do not necessarily reflect those of
the National Science Foundation.

7. References

[1] C. Eckert, and M. Stacey, “Sources of inspiration: a

language of design,” Design Studies, vol. 21, no. 5, pp.
523-538, 2000.

[2] M. B. Rosson, and J. Carroll, “The reuse of uses in
Smalltalk programming,” ACM TOCHI, vol. 3, no. 3, pp.
219-253, 1996.

[3] G. Fischer, “Cognitive view of reuse and redesign,” IEEE
Software, vol. 4, no. 4, pp. 60-72, 1987.

[4] J. Brandt, P. J. Guo, J. Lewenstein et al., “Two studies of
opportunistic programming: interleaving web foraging,
learning, and writing code,” Proceedings of the 27th
international conference on Human factors in computing
systems, 2009.

[5] B. A. Myers, S. Y. Park, Y. Nakano et al., “How
Designers Design and Program Interactive Behaviors,”
VL/HCC,, pp. 177-184, 2008.

[6] B. A. Myers, D. A. Weitzman, A. J. Ko et al.,
“Answering why and why not questions in user
interfaces,” in Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, Montreal,
Quebec, Canada, 2006.

[7] A. J. Ko, and B. A. Myers, “Debugging reinvented:
asking and answering why and why not questions about
program behavior,” ICSE, Leipzig, Germany, 2008.

[8] I. Parakey. "Firebug: Web Development Evolved,"
http://getfirebug.com/.

[9] J. Stylos, and B. Myers, “Mica: A Web-Search Tool for
Finding API Components and Examples,” VL/HCC, pp.
5-7;195-202, 2006.

[10] J. Brandt, M. Dontcheva, M. Weskamp et al., “Example-
Centric Programming: Integrating Web Search into the
Development Environment,” Stanford University
Technical Report, CSTR, no. 2009-01, 2009.

