
Understanding And Guiding Student-AI Interaction In Future
Programming Education

Ashley Ge Zhang
University of Michigan

Ann Arbor, Michigan, USA
gezh@umich.edu

Yinuo Yang
University of Michigan

Ann Arbor, Michigan, USA
inon@umich.edu

Maryam Arab
University of Michigan

Ann Arbor, Michigan, USA
maryarab@umich.edu

Yan Chen
Virginia Tech

Blacksburg, Virginia, USA
ych@vt.edu

Steve Oney
University of Michigan

Ann Arbor, Michigan, USA
soney@umich.edu

Abstract
With recent advances in generative AI, delivering personalized
learning experience in programming education has become more
feasible. However, how students use AI can significantly impact
their learning outcomes. To help guide student-AI interactions, it
is crucial for instructors to establish effective AI usage policies.
These policies may vary based on course requirements and stu-
dents’ backgrounds, shaping different views on appropriate and
inappropriate AI use in class. While understanding and guiding
student-AI interaction is essential, it remains unclear which needs
are general to programming education and which are specific to
particular topics. This ambiguity makes it challenging to design a
system that is both practical and useful in real-world programming
courses. In this paper, we identify gaps in existing literature and
propose a study to explore instructors’ perspectives on students’
AI usage. We also introduce a potential system design that allows
instructors to monitor student-AI interactions, detect problematic
behaviors, and intervene when these interactions conflict with the
pedagogical goals.

CCS Concepts
• Do Not Use This Code → Generate the Correct Terms for
Your Paper; Generate the Correct Terms for Your Paper ; Generate
the Correct Terms for Your Paper; Generate the Correct Terms for
Your Paper.

Keywords
Do, Not, Us, This, Code, Put, the, Correct, Terms, for, Your, Paper

ACM Reference Format:
Ashley Ge Zhang, Yinuo Yang, Maryam Arab, Yan Chen, and Steve Oney.
2018. Understanding AndGuiding Student-AI Interaction In Future Program-
ming Education. In Proceedings of Make sure to enter the correct conference

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

title from your rights confirmation emai (Conference acronym ’XX). ACM,
New York, NY, USA, 4 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
AI has revolutionized programming education for both instruc-
tors and students, presenting opportunities to deliver personalized
learning experiences at scale. Many existing tools have used AI
techniques that can comprehend and generate complex text and
code, automating tasks such as diagnosing problems in students’
code [1, 13], providing personalized feedback for improvement [2],
and predicting students’ behavior [4, 9, 18, 24]. Although such tools
can facilitate and enhance learning, the inappropriate use of them
could instead hurt students’ learning outcomes [6].

For students, especially novice programmers, if generative AI
is to replace their critical thinking in programming problem solv-
ing, instead of supporting it, the metacognitive difficulty students’
face could become worse and lead to their over-reliance on AI
tools [6, 22]. For instance, prior work has identified behavior of
students that struggle with AI, including distraction due to AI inter-
ference, difficulty in aligning their conceptual model with AI sug-
gestions, and incorporate code from AI [22]. In addition, AI can go
against principles in education, such as directly revealing solutions
to students and encouraging copy paste without thinking [16]. Thus,
preparing both instructors and students for AI-powered education
and preparing AI to understand education become important [21].
This leads to the three research questions of this paper: (1) what do
instructors think is the appropriate use of AI in programming edu-
cation? (2) what do instructors think are inappropriate use of AI in
programming education? and (3) how to facilitate monitoring and
intervening inappropriate student-AI interactions in programming
courses?

While prior work has explored students’ usage of AI in program-
ming courses [14, 16] and analyzed individual students’ behavior,
there lacks a universal understanding of what constitutes appro-
priate and inappropriate usage of AI. This gap exists for several
reasons. First, expectations around AI usage vary widely across
different courses, depending on specific requirements, learning ob-
jectives, the diverse backgrounds of students, and their learning
stages, which influence how they interact with AI tools. Second,
there is limited understanding of the key dimensions instructors
prioritize when evaluating AI usage. For example, if we aim to
visualize students’ interactions with AI for instructors, it is unclear

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Zhang et al.

which factors — such as the level of independence, the types of AI
assistance used, or the timing of AI engagement — are most impor-
tant for instructors to focus on. Without clarity on these priorities,
it is challenging to design tools that effectively support instructors
in understanding and guiding appropriate AI use.

To fill this gap, we propose a need-finding study to understand
instructors’ perspectives on students’ usage of AI, focusing on
their views of what constitutes appropriate and inappropriate AI
use. This study aims to identify the key dimensions instructors
care about when evaluating AI interactions, which will inform the
design of future tools. Based on insights from the existing literature,
we also propose a potential system design that enables instructors
to monitor student-AI interactions and intervene when students
use AI in appropriate ways. This system serves as a preliminary
exploration of the third research question, with specific features
and functionalities to be determined based on the outcomes of the
need-finding study.

2 RELATEDWORK
2.1 AI in Programming Education
AI has revolutionized programming education for both teaching
and learning. Educational tools now leverage AI techniques to
comprehend and generate complex data, including text and code,
automating tasks such as diagnosing issues in students’ code [5],
providing personalized feedback [23], generating learning materi-
als [10], and producing code examples [15]. However, integrating
AI into programming education introduces challenges for both
students and instructors [6]. AI-generated content can be inaccu-
rate, leading to misleading suggestions [6], and may conflict with
educational principles by directly revealing solutions or encour-
aging copy-paste behaviors [16]. It is important to prepare both
instructors and students for AI-powered education and designing
AI systems that align with educational goals [21]. To address AI’s re-
liability issues, researchers have explored using LLMs as teachable
agents, enabling novice students to learn programming by guiding
these agents through debugging and code correction tasks [11, 20].

2.2 Understanding Student-AI Interaction
Understanding AI’s strengths and limitations helps users make in-
formed decisions and better leverage human-AI collaboration [19].
In programming education, this knowledge aids instructors in guid-
ing students’ AI use and spotting behaviors that may hinder learn-
ing. Amoozadeh et al. studied student-AI interactions in a CS1
course, highlighting issues like student over-reliance on AI tools,
even under supervision [3]. Researchers conducted studies to under-
stand how to foster students’ AI usage in programming pedagogical
settings. Kazemitabaar et al. deployed CodeAid, an LLM-powered
assistant, in a semester-long programming course, proposing de-
sign principles like leveraging AI’s unique strengths, balancing
the directness of responses, and ensuring trust, transparency, and
control [16] They also explored cognitive engagement techniques,
finding that step-by-step problem-solving guidance with interactive
AI prompts was particularly effective [15]. While prior work pro-
vides insights into students’ AI usage patterns and challenges, there
is limited understanding of instructors’ perspectives on what con-
stitutes appropriate or inappropriate AI use. Analyzing student-AI

interactions at scale remains challenging, especially when dealing
with extensive LLM outputs [8]. Beyond education, researchers
have explored methods to interpret AI outputs for decision-making
and model evaluation [12, 17]. In the educational context, Chen et
al. [7] developed StuGPTViz, a visual analytics system that helps
instructors explore temporal patterns in student interactions with
ChatGPT. In programming education, understanding student-AI
interactions requires tools that can coherently combine text and
code, allowing instructors to trace problem-solving processes and
assess prior AI usage to identify inappropriate behaviors.

3 NEED FINDING STUDY
To better understand instructors’ views on appropriate and inap-
propriate AI usage, we propose a need-finding study using surveys
and interviews. The survey will provide a broad overview of in-
structors’ perspectives based on their observation in programming
courses. Based on the survey responses, we will conduct follow-up
interviews with selected participants to gain deeper insight into
their attitude toward AI in programming education. We will use
thematic analysis to qualitatively code the data, which will inform
the design of a system to support understanding and intervening
in student-AI interactions.

3.1 Survey Study
Prior work has explored the opportunities and challenges of AI
tools in programming education on a small scale [22] or from litera-
ture [6]. However, these studies lack generalizability, often focusing
on specific course types, regions, or AI tools. Our survey aims to
collect responses from a diverse, global audience of programming
instructors at all levels. To ensure broad participation, the sur-
vey will be concise, encouraging higher response rates and more
generalizable findings. We aim to answer two key research ques-
tions: (1) what do instructors consider as appropriate uses of AI in
programming education? and (2) what do instructors consider as
inappropriate uses of AI in programming education?

3.1.1 Participants. The target population is university-level pro-
gramming instructors teaching courses ranging from introductory
to advanced topics. We will include a wide array of programming
courses (e.g., Python programming, web development, machine
learning) to capture diverse experiences with AI integration in the
curriculum. To recruit participants, we will follow these steps:

• Identify universities. We will focus on the top 100 uni-
versities worldwide, using established rankings (e.g., Times
Higher Education) and enrollment data from Wikipedia 1.
This approach balances the selection of schools and ensures
access to active programming courses with exposure to AI
tools.

• Identify relevant courses and instructors. For each se-
lected university, we will use Google 2 and ChatGPT 3 to
compile a list of programming-related courses. We will then
extract the names and contact information of instructors,
along with course details (e.g., course title, level, subject area)
to ensure a balanced sample. We will focus on programming

1https://en.wikipedia.org/wiki/List_of_largest_universities_and_university_networks_by_enrollment
2https://www.google.com/
3https://openai.com/index/chatgpt/



Understanding And Guiding Student-AI Interaction In Future Programming Education Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

An overview of the entire class A more detailed view of individual student

Most Queried Topics

Flags and Alerts

AI Usage Frequency

Debugging conceptual 
explanation

Syntax help

Suspicious patterns

Under utilization

student 1

Cluster 1

Cluster 2

student 2 student 3

student 4 student 5 student 6

Other students ... 

++++++-- +++-- +++--+
+
+
+

Syntax help

Cluster 3

Figure 1: System Design

courses that emphasize hands-on coding and teach program-
ming languages, concept, or practices. Both undergraduate
and graduate-level courses will be included. We will exclude
seminars, capstone projects, and theory-based courses with-
out substantial coding components. Short-term workshops
or bootcamps outside the standard curriculum will also be
excluded.

• Email outreach. We will send personalized emails to each
instructor, including: (1) an description of the study’s goals
and relevance, (2) a link to the online survey, and (3) a re-
quest for referrals, encouraging instructors to forward the
invitation or suggest potential participants.

To encourage participation, participants will be entered into a lot-
tery and will receive access to a dataset of anonymized survey
responses.

3.1.2 Survey Questionnaire. The survey will gather instructors’
perspectives on students’ AI usage in programming courses. It in-
cludes questions on effective and inappropriate AI use, methods
for detecting misuse, institutional AI policies, and the rationale
behind these policies. Demographic data such as teaching experi-
ence, institution, and course levels will also be collected. To gain
deeper insights, participants will have the option to join a 45-minute
follow-up interview.

3.2 Interview Study
We will invite interested survey participants for follow-up inter-
views to explore their perspectives on AI usage in programming
courses in more depth. Interviews can help us answer questions
that surveys cannot fully address, such as the rationale behind
specific policies and nuanced views on student-AI interactions. Ad-
ditionally, these interviews will inform the iterative design of our
system to help instructors understand and intervene in student-AI
interactions more effectively.

4 System Design
To help instructors understand and intervene in student-AI in-
teraction, we propose a initial system design shown in Figure 1.

While the final design will be refined based on insights from the
need-finding study, this initial version addresses gaps identified in
existing literature and will evolve through iterative feedback.

Figure 1 illustrates the proposed dashboard formonitoring student–
AI interactions in programming education. The left portion of the
figure shows an overview of the entire class, highlighting metrics
such as overall AI usage frequency, most frequently queried topics
(e.g., “debugging,” “conceptual explanation,” “syntax help”), and a set
of flags or alerts (e.g., “potential plagiarism,” “suspicious patterns,”
“under-utilization”). To provide instructors with more control on
the results being viewed, they can create their own queries or alerts
that they care about. This provides instructors with a high-level
snapshot of how the class is engaging with AI tools.

On the right, a more detailed view of an individual student is
shown, visualizing a timeline of their AI queries and code edits.
Each bar (or cluster of bars) corresponds to a specific query sent to
AI, and color-coding can indicate the type of help requested or the
severity of potential issues. Below this timeline, we incorporate a
visualization of the student’s code edits, showing how much they
have inserted or deleted over time. This edit-tracking component
helps instructors assess whether a student is making meaningful
changes to their code in response to AI outputs or simply copying
generated solutions without deeper engagement. The system design
supports three key functionalities, described below.

The system design supports the following three key functionali-
ties:

• Get an overview of students’ AI usage. Instructors can
access a class-wide summary of AI interactions through the
top-level dashboard (left portion of Figure 1). By consolidat-
ing these statistics, the system allows instructors to quickly
gauge the overall engagement level and identify which topics
may require additional lecture time or clarifications.

• Be alerted of common patterns and potential problems.
The system automatically flags patterns that could signal
academic integrity issues or unproductive usage behaviors.

• Intervene in when students have inappropriate AI us-
age. By drilling down into an individual student’s timeline
(right portion of Figure 1), instructors can investigate flagged
queries and identify whether a student is over-relying on
AI-generated code or copying solutions verbatim. Students
can be clustered in two ways, either by the queries sent to AI
or by their behavior patterns. In this way, the system design
not only reveals problematic behaviors but also provides
actionable insights to guide instructor-led interventions.

5 Conclusion
This paper identifies gaps in understanding and guiding student-AI
interactions in programming education. As generative AI becomes
increasingly integrated into educational settings, establishing guide-
lines to foster meaningful learning while preventing misuses is
important. Through our proposed need-finding study, we aim to
gather comprehensive insights into instructors’ views on appropri-
ate and inappropriate uses of AI, informing the design of tools to
support these goals. We propose a system that enables instructors
to monitor and intervene in student-AI interactions, ensuring AI



Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Zhang et al.

acts as a supportive tool rather than a crutch. By identifying prob-
lematic behaviors and enabling timely interventions, the system
advances the ongoing conversation about AI integration in educa-
tion, emphasizing thoughtful approaches that prioritizes student
learning and development.

References
[1] 2024. Amazon CodeGuru. https://aws.amazon.com/codeguru.
[2] 2025. Github Copilot. https://github.com/features/copilot.
[3] Matin Amoozadeh, Daye Nam, Daniel Prol, Ali Alfageeh, James Prather, Michael

Hilton, Sruti Srinivasa Ragavan, and Amin Alipour. 2024. Student-AI Interaction:
A Case Study of CS1 students. In Proceedings of the 24th Koli Calling International
Conference on Computing Education Research. 1–13.

[4] Ignacio Araya, Victor Beas, Katrina Stamulis, and Héctor Allende-Cid. 2022.
Predicting student performance in computing courses based on programming
behavior. Computer applications in engineering education 30, 4 (2022), 1264–1276.

[5] Rishabh Balse, Viraj Kumar, Prajish Prasad, and Jayakrishnan Madathil Warriem.
2023. Evaluating the quality of llm-generated explanations for logical errors
in cs1 student programs. In Proceedings of the 16th Annual ACM India Compute
Conference. 49–54.

[6] Brett A Becker, Paul Denny, James Finnie-Ansley, Andrew Luxton-Reilly, James
Prather, and Eddie Antonio Santos. 2023. Programming is hard-or at least it
used to be: Educational opportunities and challenges of ai code generation. In
Proceedings of the 54th ACM Technical Symposium on Computer Science Education
V. 1. 500–506.

[7] Zixin Chen, Jiachen Wang, Meng Xia, Kento Shigyo, Dingdong Liu, Rong Zhang,
and Huamin Qu. 2024. StuGPTViz: A Visual Analytics Approach to Understand
Student-ChatGPT Interactions. IEEE Transactions on Visualization and Computer
Graphics (2024).

[8] Katy Ilonka Gero, Chelse Swoopes, Ziwei Gu, Jonathan K Kummerfeld, and
Elena L Glassman. 2024. Supporting Sensemaking of Large Language Model
Outputs at Scale. In Proceedings of the CHI Conference on Human Factors in
Computing Systems. 1–21.

[9] Muntasir Hoq, Peter Brusilovsky, Bita Akram, et al. 2024. Explaining Explainabil-
ity: Early Performance Prediction with Student Programming Pattern Profiling.
Journal of Educational Data Mining 16, 2 (2024), 115–148.

[10] Xinying Hou, Zihan Wu, Xu Wang, and Barbara J Ericson. 2024. Codetailor:
Llm-powered personalized parsons puzzles for engaging support while learning
programming. In Proceedings of the Eleventh ACM Conference on Learning@ Scale.
51–62.

[11] Hyoungwook Jin, Seonghee Lee, Hyungyu Shin, and Juho Kim. 2024. Teach
AI How to Code: Using Large Language Models as Teachable Agents for Pro-
gramming Education. In Proceedings of the CHI Conference on Human Factors in
Computing Systems. 1–28.

[12] Minsuk Kahng, Ian Tenney, Mahima Pushkarna, Michael Xieyang Liu, James
Wexler, Emily Reif, Krystal Kallarackal, Minsuk Chang, Michael Terry, and Lucas
Dixon. 2024. LLM Comparator: Interactive Analysis of Side-by-Side Evaluation
of Large Language Models. IEEE Transactions on Visualization and Computer
Graphics (2024).

[13] Oscar Karnalim et al. 2021. Promoting code quality via automated feedback on
student submissions. In 2021 IEEE Frontiers in Education Conference (FIE). IEEE,
1–5.

[14] Majeed Kazemitabaar, Justin Chow, Carl Ka To Ma, Barbara J Ericson, David
Weintrop, and Tovi Grossman. 2023. Studying the effect of AI code generators
on supporting novice learners in introductory programming. In Proceedings of
the 2023 CHI Conference on Human Factors in Computing Systems. 1–23.

[15] Majeed Kazemitabaar, Oliver Huang, Sangho Suh, Austin Z Henley, and Tovi
Grossman. 2024. Exploring the Design Space of Cognitive Engagement
Techniques with AI-Generated Code for Enhanced Learning. arXiv preprint
arXiv:2410.08922 (2024).

[16] Majeed Kazemitabaar, Runlong Ye, Xiaoning Wang, Austin Zachary Henley,
Paul Denny, Michelle Craig, and Tovi Grossman. 2024. Codeaid: Evaluating
a classroom deployment of an llm-based programming assistant that balances
student and educator needs. In Proceedings of the CHI Conference on Human
Factors in Computing Systems. 1–20.

[17] Min Hun Lee, Daniel P Siewiorek, Asim Smailagic, Alexandre Bernardino, and
Sergi Bermúdez Bermúdez i Badia. 2021. A human-ai collaborative approach for
clinical decision making on rehabilitation assessment. In Proceedings of the 2021
CHI conference on human factors in computing systems. 1–14.

[18] Enqi Liu, Irena Koprinska, and Kalina Yacef. 2023. Early prediction of student
performance in online programming courses. In International Conference on
Artificial Intelligence in Education. Springer, 365–371.

[19] Duri Long and Brian Magerko. 2020. What is AI literacy? Competencies and
design considerations. In Proceedings of the 2020 CHI conference on human factors
in computing systems. 1–16.

[20] Qianou Ma, Hua Shen, Kenneth Koedinger, and Sherry Tongshuang Wu. 2024.
How to teach programming in the ai era? using llms as a teachable agent for
debugging. In International Conference on Artificial Intelligence in Education.
Springer, 265–279.

[21] Francesc Pedro, Miguel Subosa, Axel Rivas, and Paula Valverde. 2019. Arti-
ficial intelligence in education: Challenges and opportunities for sustainable
development. (2019).

[22] James Prather, Brent N Reeves, Juho Leinonen, Stephen MacNeil, Arisoa S Randri-
anasolo, Brett A Becker, Bailey Kimmel, Jared Wright, and Ben Briggs. 2024. The
widening gap: The benefits and harms of generative ai for novice programmers.
In Proceedings of the 2024 ACM Conference on International Computing Education
Research-Volume 1. 469–486.

[23] Xiaohang Tang, Sam Wong, Marcus Huynh, Zicheng He, Yalong Yang, and Yan
Chen. 2024. SPHERE: Scaling Personalized Feedback in Programming Classrooms
with Structured Review of LLM Outputs. arXiv preprint arXiv:2410.16513 (2024).

[24] Stav Tsabari, Avi Segal, and Kobi Gal. 2023. Predicting Bug Fix Time in Students’
ProgrammingwithDeep LanguageModels. International Educational DataMining
Society (2023).

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

https://aws.amazon.com/codeguru
https://github.com/features/copilot

	Abstract
	1 INTRODUCTION
	2 RELATED WORK
	2.1 AI in Programming Education
	2.2 Understanding Student-AI Interaction

	3 NEED FINDING STUDY
	3.1 Survey Study
	3.2 Interview Study

	4 System Design
	5 Conclusion
	References

