
Expresso: Building Responsive Interfaces 
with Keyframes 

Rebecca Krosnick1, Sang Won Lee1, Walter S. Lasecki1,2, Steve Oney2,1 

1Computer Science & Engineering, 2School of Information 
University of Michigan | Ann Arbor, MI USA 
{rkros,snaglee,wlasecki,soney}@umich.edu 

The new Firefox

With 2x the speed, built-in privacy protection
and Mozilla behind it, the new Firefox is the
better way to browse.

Download Firefox

Fast for good.
The new Firefox

With 2x the speed, built-in privacy protection
and Mozilla behind it, the new Firefox is the
better way to browse.

Download Firefox

Fast for good.

The new Firefox

With 2x the speed, built-in privacy protection
and Mozilla behind it, the new Firefox is the
better way to browse.

Download Firefox

Fast for good.

The new Firefox

With 2x the speed, built-in privacy protection
and Mozilla behind it, the new Firefox is the
better way to browse.

Download Firefox

Fast for good.

x = 148px x = 650pxx = 550pxkeyframe k1, width: 990px

smooth
transition

jump
transition

smooth
transition

viewport width

laptop x
position

keyframe k0, width: 722px

x = 203px

keyframe k1, width: 990px keyframe k2, width: 1000px keyframe k3, width: 1200px

laptop is centered in viewport laptop is on the right side of the viewport

Fig. 1: Expresso allows users to create responsive interfaces by defning keyframes (which specify how the interface should look for a 
particular viewport size) and specifying how element properties should transition between keyframes. In this illustration, there are four 
keyframes (from left to right: k0, k1, k2, and k3). k0 and k1 specify that the page layout should be stacked vertically and centered for 
narrow viewports, such as mobile phones. k2 and k3 specify a two-column layout for wider viewports, such as full desktop browsers. This 
illustration highlights the x-position for the laptop image for all four keyframes and how it transitions between keyframes. In the resulting 
UI, the laptop is centered for viewport widths < 1000 pixels and is on the right side of the page for widths ≥ 1000 pixels. 

Abstract—Web developers use responsive web design to create 
user interfaces that can adapt to many form factors. To defne 
responsive pages, developers must use Cascading Style Sheets 
(CSS) or libraries and tools built on top of it. CSS provides 
high customizability, but requires signifcant experience. As a 
result, non-programmers and novice programmers generally lack 
a means of easily building custom responsive web pages. In this 
paper, we present a new approach that allows users to create 
custom responsive user interfaces without writing program code. 
We demonstrate the feasibility and effectiveness of the approach 
through a new system we built, named Expresso. With Expresso, 
users defne “keyframes” — examples of how their UI should look 
for particular viewport sizes — by simply directly manipulating 
elements in a WYSIWYG editor. Expresso uses these keyframes 
to infer rules about the responsive behavior of elements, and 
automatically renders the appropriate CSS for a given viewport 
size. To allow users to create the desired appearance of their page 
at all viewport sizes, Expresso lets users defne either a “smooth” 
or “jump” transition between adjacent keyframes. We conduct 
a user study and show that participants are able to effectively 
use Expresso to build realistic responsive interfaces. 

Index Terms—responsive layouts, web programming, CSS 

I. INTRODUCTION 

Web User Interfaces (UIs) often need to work across 
a variety of form factors and viewport sizes: from small 
mobile devices to large high-resolution displays. Web de-
velopers use responsive design to build websites that can 
adapt to any viewport size and window confguration. Cas-
cading Style Sheets (CSS)—a language for specifying web 

978-1-5386-4235-1/18/$31.00 © 2018 IEEE 

pages’ appearance—supports responsive design through “me-
dia queries” (@media), which specify style rules that apply 
for particular form factors. 

CSS is an expressive language but is complex to use, 
especially in the context of creating responsive designs. This is 
because: 1) various rules need to be applied to each of multiple 
elements in the Document Object Model (DOM) hierarchy to 
achieve a particular visual appearance, 2) developers must be 
able to envision how new rules interact with existing rules, 
including from third party libraries, and elements in the context 
of the given HyperText Markup Language (HTML) hierarchy, 
and 3) developers must understand how rules affect page 
appearance across different page sizes and states [1], [2]. 

In this paper, we present Expresso, a tool that allows users 
to create custom responsive UIs. Expresso introduces the idea 
of using keyframes to defne responsive layouts. Keyframes 
have had a long and successful history in computer-aided 
animation [3], where they greatly reduce animators’ workload 
by allowing a computer to generate smooth transitions between 
drawings. With Expresso, users defne keyframes that specify 
how a UI should look for a particular viewport size. Expresso 
then generates a responsive UI that satisfes the layout of every 
keyframe and infers the layouts for viewport sizes between 
keyframes. Expresso also gives users control over how their 
UI should transition between keyframes. In this paper, we 
contribute the following: 
• The idea of defning responsive UI behavior by specifying 

the UI appearance at specifc viewport sizes (keyframes), 
interpolating (smooth) transitions between them, and sup-

http:978-1-5386-4235-1/18/$31.00
http:pages.In
mailto:rkros,snaglee,wlasecki,soney}@umich.edu


porting discontinuous (jump) transitions between signif-
cantly different layout states. 

• An instantiation of our idea in Expresso, a system that 
allows users to encode requirements for a responsive web 
UI through direct manipulation. 

• Evidence from a user study that participants without rel-
evant programming background were able to effectively 
specify responsive web UIs with Expresso. 

II. RELATED WORK 

A. Terminology 

In our discussion of related work, we differentiate between 
three types of UI layouts. A fuid UI is one where elements’ 
dimensions are proportional to the dimensions of the viewport. 
An adaptive UI is one where the programmer creates a different 
layout per form factor (e.g., as different HTML fles), and the 
platform determines which layout to serve (e.g., the mobile 
layout or the tablet layout). A responsive UI — the focus of 
this paper — is one where the programmer creates one UI 
(e.g., as one HTML fle) and specifes rules for how its layout 
should respond to different viewport sizes. In responsive UIs, 
individual elements’ visibility, size, and position often will 
change for different viewport sizes. Adaptive UIs generally 
support less fne-grained control through all viewport sizes. 

B. Constraint-Based Layouts 

Constraints have long been used in UI specifcation [4]. 
Constraints allow developers to specify relationships between 
elements’ visual properties that are maintained automatically. 
Many UI builders, including XCode [5] and Android Studio 
[6], allow developers to specify a limited set of layout con-
straints. Specifcally, they allow users to defne constraints 
through visual constraint metaphors, like “springs and struts” 
that expand and contract with the viewport. These models 
allow developers to defne fuid layouts, where elements reside 
based on the viewport size. However, this model is not 
appropriate for responsive layouts because the constraints that 
they enable are not expressive enough to support rearranging, 
moving, or toggling element visibility for different viewport 
sizes. Although previous research has proposed constraints that 
could vary by UI and viewport state [7], [8], it is still diffcult 
to author these constraints for responsive UIs. Expresso instead 
infers constraints for responsive UIs from keyframes. 

C. WYSIWYG Interface Builders 

“What You See Is What You Get” (WYSIWYG) interface 
builders allow users to specify a UI layout visually. Inter-
face builders were frst proposed in academic research [4], 
[9] and have achieved widespread commercial usage. Many 
modern web UI programming tools integrate interface builders 
including Dreamweaver [10], Webfow [11], and Bootstrap 
Studio [12]. Each of these tools provide live, editable previews 
of websites as developers write HTML and CSS. They also 
provide widgets to view and edit CSS properties. However, 
none of these tools allow responsive behaviors to be specifed 
through direct manipulation. Although they lower the foor for 

developers, creating responsive UIs in these tools still requires 
conceptual CSS knowledge, as they still use the underlying 
mechanisms of CSS properties and media queries. 

D. Programming by Example Interface Builders 

Programming by Example (PbE) (sometimes also known as 
Programming by Demonstration, or PbD) is a paradigm that al-
lows non-programmers to write programs by giving examples 
of its behaviors. PbE has been used for a variety of applications, 
such as dynamic user interface creation [13]–[15], script and 
function creation [16]–[19], and word processing [20]–[22]. 
Existing systems have used a variety of user interaction and 
inferencing techniques [23], [24]. Important aspects of user 
interaction include how the user creates and modifes a demon-
stration, how the PbE system provides feedback to the user, 
and how the user invokes a program [24]. PbE systems also 
vary in the inferencing techniques they use; some use minimal 
inferencing (requiring the user to explicitly specify general-
izations), while others use simple rule-based inferencing, and 
even others use Artifcial Intelligence (AI) [23]. Expresso uses 
PbE to create UIs that are responsive to viewport width. End-
users create a demonstration, or “keyframe”, for each viewport 
width they want to explicitly specify the appearance of and 
then directly manipulate UI elements in the WYSIWYG editor. 
End-users have the ability to see previously created keyframes 
and modify them, and they can view the page appearance at 
different viewport sizes by dragging to resize the viewport. As 
its inferencing algorithm, Expresso uses linear interpolation 
of two bounding keyframes to determine page appearance for 
an intermediate viewport width, adjusting which linear rule is 
used for a viewport width range when a “jump” transition is 
specifed; “smooth” and “jump” transitions are discussed in 
detail in the “Transition Behaviors” section below. 

The prior PbE work that is most relevant to Expresso are 
tools that can infer linear constraints between elements and 
viewports from multiple snapshots or demonstrations: Peri-
dot [13], Inference Bear [25], Chimera [14], and Monet [26]. 
Although these systems support building fuid UIs, they do 
not support building responsive UIs, as there is not support 
for discontinuous jumps between different responsive behavior 
ranges. Expresso enables building responsive UIs through its 
smooth and jump transition menu (Fig. 2c). 

E. End-User Programming for the Web 

More generally, much research has explored end-user pro-
gramming for the web, including for both custom UI creation 
and automation, and using a variety of interaction techniques. 
Chickenfoot [27] allows users to customize existing websites 
using a simplifed language based on UI-oriented keywords and 
pattern matching. Systems like Inky [28] and CoScripter [29], 
[30] move closer to supporting natural language interaction 
with the web, leveraging sloppy programming to allow users 
to complete and automate web tasks. More recent systems 
powered by crowdsourcing truly allow end-users to create 
and interact with web UIs without programming experience. 
Arboretum [31] allows users to complete web tasks by making 



natural language requests and handing off controlled parts of 
a page to crowd workers for completion. Apparition [32] and 
SketchExpress [33] enable a user to prototype UI appearance 
and behavior via natural language and sketch descriptions; 
this is made possible by crowd workers who fulfll these 
specifcations using WYSIWYG and demonstration tools. 

F. Automatic UI Layout 

Finally, previous research has proposed automatically 
generating UI layouts based on developer-specifed heuris-
tics [34], [35]. Unlike fully automated UI generation tools, 
Expresso only generates the transitions between user-specifed 
keyframes, which gives the user more control over the appear-
ance of their interface for different viewport sizes. 

III. MOTIVATIONAL CSS STUDY 

A. Setup 

To better understand the challenges of creating responsive 
websites, we conducted a study with 8 participants (3 female 
and 5 male, µ = 25 years old, σ = 5.07 years). Almost 
all of our participants were experienced programmers: three 
participants had at least fve years of programming experience 
in any language, four participants had 2–5 years, and one 
participant had 6–12 months. Participants had widely varying 
levels of experience with CSS: two participants had 1–2 years 
of CSS experience, one had 1–3 months, one had 1–7 days, two 
had less than one day, and two had no prior CSS experience. 

Every participant was given two tasks in an order that was 
counterbalanced between participants. We adapted our tasks 
from real-world web pages to ensure that they were realistic. 
One task involved replicating features of the Mozilla web 
page (shown in Fig. 1). The other task involved replicating 
features of a shoe shopping web page (shown in Fig. 2). Both 
tasks are described in further detail in the Expresso user study 
task descriptions below, as both tasks were re-used in our 
evaluation of Expresso. 

For each task, participants were given a static (non-
responsive) version of the web page and were asked to write 
CSS to make it responsive. We gave participants animated GIFs 
demonstrating how the UI should respond to varying width 
as a user resizes the window. Participants were encouraged 
to use any online resources (e.g., search engines, tutorials, 
or libraries) they found helpful and used their preferred code 
editor. We scheduled study sessions for approximately 1 hour 
each, and gave participants up to 22 minutes per task to allow 
time for setup, instructions, and survey. 

B. Results and Discussion 

We evaluated participants’ fnal web pages according to a 
rubric (discussed further in the Expresso Evaluation section). 
Participants achieved a mean accuracy of 45.7% (σ = 23.5%). 
If we calculate task accuracy by participant experience with 
CSS, we fnd that the fve participants with one week or 
less CSS experience achieved a mean accuracy of 35.5% 
(σ = 22.2%). The three participants with one month or 
more of CSS performed better, achieving a mean accuracy of 

62.7% (σ = 13.8%). These results suggest that, even with 
the abundant resources (e.g., example code, tutorials, Stack 
Overfow answers) that are available online, programming 
responsive UIs is diffcult. 

To better understand the challenges of writing CSS that 
participants faced, we analyzed the screen recordings of each 
participant. One challenge is that a lack of background knowl-
edge makes it diffcult to describe the desired rule for a 
search query. If a participant did not know the name of a 
relevant CSS keyword, they needed to semantically describe 
the behavior, which did not always enable them to fnd the 
right syntax quickly. For example, in one case, participants 
were asked to make an element “jump” to the bottom of the 
page for small page widths. Participants used a variety of 
search queries, including: “HTML resize to ft screen”, “HTML 
overfow elements”, “move item to next line responsive”, and 
“CSS wrap on resize”. These search queries are far from the 
correct CSS keywords — flex, @media, or float. Further, 
search terms such as “overfow” may semantically make 
sense but confict with an existing CSS property name (i.e., 
overflow). Desired behavior can be easily demonstrated 
visually (e.g., through a GIF or sketch), but variation in the 
programmers’ language descriptions and not knowing relevant 
domain-specifc terms can be barriers in searching for answers 
to responsive web design questions. The challenge of fnding 
the correct CSS keywords and applying them appropriately 
is exacerbated by the fact that a relatively small set of CSS 
properties can have widely different effects on a UI’s layout 
depending on how they are used or combined. 

Another challenge was that changing the page’s CSS for one 
viewport size could affect the layout of other viewport sizes. 
As a result, the intermediate process of correcting the layout 
for one viewport size could break the layout for other viewport 
sizes. The fact that existing code runs the risk of breaking 
something seemed to be discouraging to participants. During 
the study, we witnessed many incidents where participants 
found the right CSS properties to set, but in the end decided 
not to use them as their initial attempt made the website look 
worse than it had previously for other viewport sizes. 

In sum, this study simulates practical situations where non-
professional programmers create an initial version of their 
website without considering responsive design. The results 
suggest that even for experienced programmers, it can be 
challenging to build responsive web pages using CSS. 

IV. THE EXPRESSO SYSTEM 

We created Expresso to enable people with little to no CSS 
experience to quickly and easily create responsive web pages. 
Previous research has found that it is often easier to specify the 
appearance of a web page (how elements should display on 
a page) than it is to defne its behavior (how the appearance 
changes depending on user input and page state) [36]. We 
designed Expresso to let users defne a UI’s responsive behav-
ior by specifying its appearance in a series of keyframes and 
specifying how the UI should appear in the states between these 
keyframes. Given this information, Expresso infers how the UI 

http:editor.We


width: 635px
height: 752px

width: 769px
height: 752px

width: 780px
height: 752px

width: 1200px
height: 752px

Result webpage
(click to resize)

Create new keyframe

Delete current keyframe

WEEJUNS

WOMEN

MEN

KIDS

Property Keyframe transition rules

width:

height:

x:

y:

183px

183px

157px

378px

Left Current Right

width: 780px, height: 752px

Left Current Right

Left Current Right

Left Current Right

c

b

a

Fig. 2: The Expresso user interface includes (a) a responsive web page viewing area, (b) a menu for switching between existing keyframes 
(indexed by their viewport width and height) or switching to a resizable preview mode, and (c) a menu for setting element property values 
and transition behaviors. Here, the keyframe with viewport width 780 pixels is shown with the pink shoe image element selected. The right 
menu indicates the current transition behaviors between this keyframe and adjacent ones, namely, a “jump” transition between this keyframe 
and the next smallest, and a “smooth” transition between this keyframe and the next largest. 

should appear for those viewport sizes not explicitly defned 
by a keyframe. In Expresso, users specify a UI’s appearance for 
a given keyframe by simply dragging and resizing elements 
on a visual canvas, similar to how they manipulate objects 
in drawing or presentation software. This natural interaction 
allows users to specify complex rules without ever writing 
display rules or formulae. 

A. Adding Keyframes to Make a Website Responsive 

The input to Expresso is a static web page, which is 
represented as one keyframe in Expresso’s user interface. This 
simulates the scenario where a user wants to modify a static, 
non-responsive web page to make it responsive. With only 
one keyframe, the appearance of the web page’s elements 
in this keyframe applies to all viewport sizes, as this is the 
only knowledge Expresso has about the web page. When the 
user adds another keyframe, Expresso’s default behavior is to 
create a smooth transition gradient between the two keyframes, 
meaning that elements move and resize linearly between 
the keyframes. However, the user can customize how their 
interface transitions between these keyframes, explained more 
in the Transition Behaviors section. As the user adds more 
keyframes, Expresso generates a set of piecewise functions 
representing element property behaviors and the corresponding 
responsive UI. The user can view the responsive UI by resizing 
the web page viewport area. 

B. Expresso User Interface 

The Expresso interface (Fig. 2) consists of a container on 
the left for viewing the in-progress web page at different 
viewport widths, a menu at the bottom for navigating existing 
keyframes and creating new ones, and a menu on the right for 
modifying element property values and transition behaviors. 
The user can change the viewport size in which the web 
page is viewed by selecting a previously created keyframe 
from the bottom menu or by resizing the viewport via a drag 
handle. The web page view area is a WYSIWYG editor which 
allows direct manipulation of elements. When the user has 
created a new keyframe or selected an existing one, they can 
then select elements on the page and drag to reposition and 

resize them. When an element is selected, the right side menu 
populates with the element’s properties (e.g., dimensions, 
position, color), current values, and transition behaviors. 

The widgets in the right menu (Fig. 2c) support setting 
range behaviors through the analogy of colors and gradients. 
The keyframe currently in view is represented as the turquoise 
“Current” label, the next smallest keyframe is represented as 
the magenta “Left” label, and the next largest keyframe is 
represented as the orange “Right” label. The range between 
colored labels can be either their color gradient or one solid 
color as chosen from a dropdown widget. In Fig. 2, there is 
smooth, linear interpolation behavior between the “Current” 
keyframe and the “Right” keyframe as represented via the 
turquoise-to-orange gradient. There is a discontinuity in behav-
ior between the “Left” and “Current” keyframes as represented 
by a solid color; specifcally, the solid color of magenta 
represents behavior continued from the left range of the “Left” 
keyframe. Fig. 3 illustrates the element property behaviors that 
each solid and gradient color option encode. Below, we discuss 
how to set these transitions and their meaning. 

C. Viewport Sizes Between Keyframes 

User-created keyframes specify the required UI layout at 
particular viewport sizes. Expresso infers layouts for the 
other viewport sizes by inferring how every element property 
transitions between keyframes. For example, for the “Fast for 
good” text in Fig. 1, the behaviors for the text’s font size, 
x-position, and y-position are inferred individually. Together, 
these inferred property values defne the behavior of the 
text element across different viewport sizes, and the inferred 
behaviors of all elements together defne the page layouts. 

D. Transition Behaviors 

We infer element property behavior over the range between 
two adjacent keyframes. By default, we infer a linear interpo-
lation behavior between two adjacent keyframes. For example, 
in Fig. 1, the laptop has an x-position of x2 = 550 pixels in 
keyframe k2 of viewport width w2 = 1000 pixels, and an x-
position of x3 = 650 pixels in keyframe k3 of viewport width 
w3 = 1200 pixels. Expresso infers a linear interpolation rule 

http:adjacentkeyframes.By
http:byakeyframe.In


Left Current

Left

Current

Viewport width

Pr
op

er
ty

 v
al

ue
Left Current

Left

Current

Viewport width

Left Current

Left

Current

Viewport width

Fig. 3: Graphs illustrating the property behaviors the gradient and 
solid color dropdown options shown in Fig. 2 encode. Each solid dot 
represents a keyframe and the line in each graph corresponds to the 
behavior for the range between the “Left” and “Current” keyframes. 

(x = mw + b) for the laptop x-position for viewport widths 
w ∈ [w2, w3]. The slope m and constant b are calculated based 
on the (w2, x2) and (w3, x3) data points provided. Expresso 
currently only infers linear rules, but other rules, such as 
higher-order polynomial rules, could be applied under this 
approach, as we discuss in the Scope section below. 

Expresso’s linear interpolation inference as described above 
results in a continuous transition between two keyframes, but 
not all responsive UI behavior can be represented in this way; 
some responsive behaviors require consistent properties within 
a range and discontinuous jumps between ranges. Expresso 
lets the user encode discontinuous jumps in element property 
behavior between two adjacent keyframes ki and ki+1. The 
location at which the discontinuity occurs affects the behavior 
for the range of viewport widths w ∈ [wi, wi+1]. 

As a way of specifying the discontinuity, the Expresso user 
interface allows the user to set the behavior of an element 
property between two keyframes. For the range ri,i+1 between 
ki and ki+1, the behavior could be: 

• the linear interpolation behavior between ki and ki+1 

(which is the default) (Fig. 3, left), 
• continued linear behavior from smaller viewport widths 

(range ri−1,i between ki−1 and ki) (Fig. 3, middle), or 
• continued linear behavior from larger viewport widths 

(range ri+1,i+2 between ki+1 and ki+2) (Fig. 3, right). 

These three behaviors are illustrated in Fig. 31. In this paper, 
we refer to the frst transition type (linear interpolation) as 
being a “smooth” transition and the second two transition 
types as being “jump” transitions. For example, the laptop 
in Fig. 1 should jump in y-position between keyframe k1 (of 
width w1 = 990 pixels) and keyframe k2 (of width w2 = 1000 
pixels), as there is a major layout rearrangement between these 
two keyframes. Thus, the user uses the transition rules menu to 
specify that for range r1,2, the laptop y-position should be that 
of an adjacent viewport range. In this case they choose for the 
laptop y-position in r1,2 to be that of narrower viewports (i.e., 
range r0,1), where the laptop is at the bottom of the page. This 
is indicated in the fgure as the magenta jump transition, and 
this viewport range between 990 and 1000 pixels is contained 
in the region labeled “laptop is centered in viewport”. 

1If the continued behavior from range ri−1,i is chosen for ri,i+1, but there 
is already a discontinuity between ri−1,i and ki, then the behavior for range 
ri,i+1 will just be the constant value specifed at keyframe ki. 

E. Rule Representation 

As discussed above, in Expresso the behavior of an element 
property over a viewport size range takes the form of a 
linear equation. Whether the behavior over a range is a linear 
interpolation or is continuing that of an adjacent range, the 
behavior will be linear. Therefore, Expresso represents each 
element property behavior as a piecewise function, with a sub-
function propertyV alue = mw + b defned for the range 
between each pair of adjacent keyframes. 

F. Scope of Supported Behaviors 

1) Single Dimension Dependent: In our examples with 
Expresso, we limit responsive behavior to be dependent on 
only one viewport dimension: width. We chose to support 
responsive behavior with respect to viewport width because 
we observed that responsive UIs most often react to changes 
in viewport width, as vertically scrolling a website to view 
more content is common. Supporting responsive behaviors 
dependent on one variable only (e.g., viewport width, viewport 
height, or scroll position) is straightforward, requiring only 
a frst-order polynomial (which Expresso already supports) 
for ft. To support responsive behavior for a given element 
property dependent on both viewport width and height would 
require a higher-order polynomial to be fully expressive. 

2) Types of Transitions: In the current implementation, we 
limit the kinds of transitions to smooth linear interpolation 
and discontinuous jumps. Other responsive behaviors can be 
supported using our approach (e.g., quadratic or exponential 
relationships), but for Expresso we chose linear slopes and 
jumps since these support continuous and discontinuous tran-
sitions, respectively. Future versions of our tool could support 
more transition behaviors to suit additional use cases. 

3) Types of Properties: Expresso currently supports speci-
fying x-position, y-position, width, height, font size, text color, 
and background color in keyframes. In the future we plan 
to explore adding other properties to Expresso. For example, 
many responsive UIs change elements’ visibility depending 
on viewport size to hide or swap out elements. This would 
essentially be a degenerate case of the current linear equation 
and discontinuity representation: a UI element’s “visibility” 
attribute would be either “visible” or “hidden” for each con-
tinuous range. 

G. Implementation 

Expresso is implemented as a Node.js web application. 
Raw data about property values for each element for each 
keyframe are stored in a JavaScript object, which is updated 
as the user adds keyframes, modifes elements in the UI, and 
sets transition metadata. An initial, static web page can be 
loaded into Expresso as a JavaScript Object Notation (JSON) 
object containing one keyframe. As the user makes updates to 
their keyframes, Expresso recomputes a piecewise function per 
element property as explained in the “Transition Behaviors” 
section above. When the user resizes the page viewport, 
Expresso updates element CSS property values according to 
the piecewise functions. Currently, Expresso uses JavaScript 



to update CSS property values rather than generating dynamic 
CSS. Future versions could instead generate responsive CSS and 
relationships via calc and the viewport vw unit. 

Note that elements and their property values in Expresso are 
represented as a fat hierarchy. Currently there is no notion 
of elements belonging to a common parent container. Raw 
element position values in the JavaScript object are relative 
to the top-left corner of the web page viewport container. 
Elements are therefore absolutely positioned, independent of 
each others’ positions. Future versions of Expresso could 
potentially represent elements in a hierarchical manner to 
better match typical HTML structure, especially if we support 
importing existing code. 

V. EVALUATION 

We conducted a laboratory study to evaluate whether Ex-
presso can help individuals with minimal CSS experience to 
build responsive UIs. In our study, we asked participants to 
use Expresso to build two responsive web pages, for which 
we provided visual specifcations. 

A. Participants 

We recruited six participants2 (two female and four male, 
µ = 22.3 years old, σ = 3.35 years) with minimal CSS 
experience. Two participants reported over fve years of gen-
eral programming experience, three participants reported 2–5 
years, and one participant reported 1–2 years. All participants 
reported one year or less of CSS experience; four participants 
reported a week or less, one reported 2–4 weeks, and one 
reported 3–6 months. 

B. Study Design 

The primary goal of our study was to determine how 
feasible it is for users — particularly those with minimal CSS 
experience — to build responsive web pages using Expresso. 
We frst gave participants a tutorial of Expresso and then 
presented them with two responsive web page building tasks 
to learn how feasible the tool was to use for a variety of 
responsive behaviors. 

1) Tutorial: We gave participants a 15 minute tutorial at 
the beginning of each session to familiarize the participant 
with the features of Expresso. In this tutorial, we showed 
participants an example responsive web page at different stages 
of its development in Expresso, demonstrating how to achieve 
different responsive behaviors. In particular, we explained the 
concept of transitions between two keyframes and how to 
encode “smooth” and “jump” transitions. 

2) Tasks: We presented participants with two tasks each, 
for which we counterbalanced the order. Each task had two 
smooth transitions and one jump transition. For each task, 
participants were given a starter web page with one keyframe 
(therefore no responsive behavior) and a set of GIFs demon-
strating the desired responsive behavior for the web page. 
Participants were shown four GIFs per task: one GIF illustrating 
the overall responsive behavior, and three GIFs illustrating 

2There was no overlap in participants with the motivational study. 

the behavior of every transition (one GIF per transition). We 
used these broken down GIFs in order to help convey the 
behaviors that they should be building without providing clues 
about the solution. Participants were asked to encode the 
responsive behavior in Expresso and were instructed to inform 
the researcher when they felt they had completed the task or 
if they could no longer make progress. 

We chose to use pre-determined tasks, as opposed to open-
ended tasks (“make this static page responsive, however you 
see ft”), to allow us to better evaluate participants’ perfor-
mance. With open-ended tasks, it would have been diffcult to 
determine if a participant implemented a particular behavior 
because it was what they wanted or because it was easy. 

3) Task web pages: The two web pages we chose for the 
study are adapted from real web pages, represent different 
layout styles, and include realistic behaviors. These responsive 
behaviors include: element resizing relative to the page width, 
element centering, fexible grid behavior, and arbitrary element 
rearrangement. The two tasks were: 
• T 3  ask A: The Mozilla web page (Fig. 1), which consists 

of a laptop, white text, and a blue background. For wide 
page viewports, the top half of the page is flled with 
a blue background, and the text occupies the left side of 
the viewport and the laptop the right side of the viewport. 
The laptop remains centered in its blue area on the right. 
For narrower viewports, the full page height is flled with 
the blue background, and the text and laptop are stacked 
vertically and horizontally centered. Each of these two 
layouts therefore has smooth transition behavior. At a 
viewport width of 1000 pixels, the layout immediately 
jumps from one layout to the other. 

4 • Task B: The Bass web page (Fig. 2), which consists 
of a set of six shoes, a brown banner with “Bass” text, 
and a left menu. The brown Bass banner always appears 
at the top of the page with the “Bass” text horizontally 
centered. For wide page viewports, the six shoes appear 
in a 3 × 2 grid, with the shoes shrinking in size and 
becoming closer together as the page narrows. The left 
menu also shrinks in width as the page becomes narrower. 
For narrower viewports, the six shoes appear in a 2 × 3 
grid, with the shoes initially large and then shrinking, and 
the left menu has a constant width. At a viewport width 
of 780 pixels, the layout immediately jumps from one 
layout to the other, resulting in an immediate jump from 
the 3 × 2 to 2 × 3 grid, as the transition widget in Fig. 2c 
shows. 

C. Results 

We evaluated the web pages participants created in Expresso 
against the same rubric we used in the motivational CSS study. 
Elements that shared the same kind of behavior (e.g., all of the 

3Adapted from 
https://web.archive.org/web/20180428062643/https://www.mozilla.org/en-US/ 

4Adapted from 
https://web.archive.org/web/20170928121043/https://www.ghbass.com/ 
category/g+h+bass/weejuns/women.do 

https://web.archive.org/web/20180428062643/https://www.mozilla.org/en-US/
https://web.archive.org/web/20170928121043/https://www.ghbass.com/category/g+h+bass/weejuns/women.do
https://web.archive.org/web/20170928121043/https://www.ghbass.com/category/g+h+bass/weejuns/women.do


Statement Mean rating (1 to 7) Standard deviation 
Using this tool in my job would enable me to accomplish tasks more quickly. 6.33 0.471 
Using this tool would improve my job performance. 5.67 0.745 
Using this tool would enhance my effectiveness on the job. 5.83 0.898 
Using this tool would make it easier to do my job. 6.17 0.373 
I would fnd this tool useful in my job. 6.17 0.373 
Learning to operate this tool would be easy for me. 6.67 0.745 
I would fnd it easy to get this tool to do what I want it to do. 5.50 0.957 
My interaction with this tool would be clear and understandable. 6.33 1.11 
I would fnd this tool to be fexible to interact with. 6.17 1.07 
It would be easy for me to become skillful at using this tool. 6.33 0.745 
I would fnd this tool easy to use. 6.67 0.471 

TABLE I: Results of the Technology Acceptance Model (TAM) questionnaire we presented participants, with each statement rated on a scale 
from 1 (extremely unlikely) to 7 (extremely likely). 

white text in the Mozilla example were either all left-aligned 
or center-aligned), fell under one rubric item. Note that we 
evaluated accuracy of tasks by reviewing work completed by 
the 22.7 minute mark. We retroactively chose this cutoff time 
based on the earliest time we asked a participant to end their 
work before they had fnished. For the Mozilla task (Fig. 1), 
participants achieved a mean accuracy of 80.7% (σ = 15.9%), 
with a mean completion time of 12.5 minutes (σ = 4.95 
m). For the Bass task (Fig. 2), participants achieved a mean 
accuracy of 72.2% (σ = 24.6%), with a mean completion 
time of 17.3 minutes (σ = 2.87 m). Overall, participants 
achieved a mean accuracy of 76.5% (σ = 21.2%), with a 
mean completion time of 14.9 minutes (σ = 4.70 m). 

After participants completed their tasks, we asked them to 
complete a TAM questionnaire, with each statement to be rated 
on a scale from 1 (extremely unlikely) to 7 (extremely likely). 
When presented with the statement “I would fnd this tool 
useful in my job”, participants responded with a mean rating 
of 6.17 (σ = 0.373). When presented with the statement “I 
would fnd this tool easy to use”, participants responded with 
a mean rating of 6.67 (σ = 0.471). Average results for the full 
set of TAM statements are reported in Table I. 

We also conducted a short interview with participants to 
better understand their experience using Expresso and how it 
compared to other user interface building tools they had used. 
Most participants expressed satisfaction with Expresso, fnding 
that it was easier to use than CSS while also supporting greater 
customizability than other tools they used: 

P2: “If I was making a website where I wanted 
custom control of how all the elements bounced 
around and I didn’t want to constrain myself to some 
given library that did it all automatically, then I 
would use this tool...” 

P4: [“How does your experience using Expresso 
compare to your experience using other tools?”] This 
is defnitely much easier. Because with templates, 
sometimes I will want to add new functionality to 
that. When that happens, it becomes much more 
complicated, because I need to frst fnd example 
code online, how to do that, and then I need to copy 
that code into my template and debug to make it 

work for the current template. 
Participants also generally commented positively on the 

keyframe and transition paradigm that Expresso uses: 
P1: “In general, just thinking about how you can 
break up something that has complex behavior into 
a single keyframe is benefcial because you don’t 
have to worry about everything at once, you can kind 
of focus on one aspect... Getting the frst animation 
working was fuid and quick because you just start 
somewhere and end somewhere and you just specify 
what kind of transition you want.” 
P2: “The idea of using keyframes seemed very 
intuitive to me because I’ve used that sort of design 
with video editing and animations.” 

However, participants did also experience some challenges 
when using keyframes: 

P1: “When I was using the tool...I found it kind of 
hard to think about the different stages of my UI in 
terms of keyframes.” 
P3: “If I didn’t think about keyframes I actually 
needed, it became more diffcult as I tried to add 
keyframes later on... I think it would be easier for 
me if I actually thought about what I was doing frst, 
like making an outline.” 
P5: “The diffculty was how to select the keyframes. 
You need to pick out the keyframes at the right 
time...if you want to shrink smoothly and then sud-
denly change from 3 columns to 2 columns, in 
fact you need to insert 2 keyframes here like with 
similar pixels, but at the beginning I didn’t know 
that because I was not familiar with this pipeline. 
I only inserted 1 keyframe and found that it was 
unable to do the job, so I noticed I needed another 
one.” 

Participants also expressed desire for authoring features 
common in commercial products to make the tool more usable, 
in particular element alignment, snapping, and centering. 

We also observed some interesting usage patterns. 
1) Keyframes straddling “jump” were often close in size: 

All six participants, in at least one task each, placed their two 



middle keyframes (surrounding the expected “jump” transi-
tion) close to each other. The difference in viewport size of the 
two keyframes was 23 pixels or less in 10 of 12 trials, and was 
3 pixels or less in 6 of 12 trials. There are a couple possible 
reasons for this pattern. In the Expresso tutorial example we 
presented, there was a 4 pixel difference in viewport size for 
the two keyframes surrounding the jump transition, so maybe 
this biased the participants. However, perhaps participants 
found a small range between the two layout specifcations to 
be advantageous, to have more control over the UI behavior 
in this viewport size range, or to minimize the viewport range 
affected by a “jump” transition (which was still a new concept 
to participants). 

2) Trouble when keyframes straddling “smooth” were close 
in size: In a couple cases each, two participants created 
keyframes very close in viewport size that straddled a 
“smooth” transition. They then created signifcant UI element 
position and size changes between the adjacent keyframes, 
which they later realized were not appropriately proportionate 
to the change in viewport size. When they resized the viewport 
for testing, side effects included shoes shrinking or growing 
too quickly (quickly becoming minuscule or taking up the full 
viewport), or elements fying off the page. In the future perhaps 
Expresso could warn users when it notices a large UI element 
property change over a small range, or Expresso could support 
modifying a keyframe’s viewport size after it’s been created 
(i.e., to move the two keyframes further apart). 

D. Discussion 

As reported in their TAM scores and interviews, participants 
generally found Expresso to be useful and easy to use. This im-
provement in self-effcacy can help engage non-programmers 
in technical problem solving and potentially be usable as a 
scaffold for teaching computing and programming concepts 
to non-experts [37]. 

Although participants reported high TAM scores for Expresso 
(see Table I), the web pages they built were not perfect ac-
cording to our rubric (e.g., 76.5% overall accuracy). However, 
these accuracy scores represent a lower-bound on participants’ 
ability to use Expresso because the error rate includes not only 
user mistakes in using the tool, but also errors in user intent 
due to most participants overlooking some aspect of system 
behavior in the GIFs. Since the participants saw the GIFs for the 
frst time during the task and did not design the web pages 
and behaviors themselves, they frst needed to interpret the 
behaviors in the GIFs before encoding them with Expresso. One 
example of a commonly missed behavior was the somewhat 
subtle shrinking of the left menu in the Bass task. 

The relatively high TAM scores indicate that participants 
found the tool easy to use and useful. This also suggests that 
participants mostly built what they intended to, even if they 
misinterpreted the behavior specifed by the instructional GIFs. 
This appeared to be the case from the recordings: when users 
attempted to demonstrate a behavior, they generally succeeded, 
and most of the failures we recorded appeared to be due to 
not taking any intentional steps towards adding it. Since we 

envision real users to be individuals who already know what 
specifc responsive behaviors they want their user interface to 
have, the ability to use Expresso to encode intended behaviors 
is the most relevant success measure. Further, it suggests that 
understanding and communicating system state and current 
behavior is a key need for supporting non-programmers. We 
discuss this further in the next section. 

VI. FUTURE WORK 

Participants were generally successful encoding the nec-
essary transitions into Expresso to complete their tasks, but 
did not always encode them correctly on their frst try, or 
took time to determine which dropdown menu item they 
needed to select in order to achieve the desired discontinuity 
behavior. Future work may explore how to devise and evaluate 
visualizations to help users better understand the current global 
behavior of elements across the state space and plan for future 
modifcations. The visualization should also be interactive to 
support some of these behavior modifcations. 

Also, as mentioned in the “Scope of Supported Behaviors” 
section, our keyframe and transition approach could be ad-
justed to support building web pages that are responsive in 
both their viewport width and height. One approach would be 
to use a system of equations with higher-order polynomials 
(e.g., quadratic functions) to calculate element behavior def-
initions that satisfy all keyframes in two-dimensional space. 
This would require additional demonstrations to fully specify. 
Alternatively, some websites’ responsive behavior should be 
strict per dimension, regardless of the other dimension’s value. 
Supporting separate rules per dimension could be benefcial, 
but would need to be designed such that conficts between 
viewport width and height rules are avoided or easily fxed. 

VII. CONCLUSION 

In this paper, we introduced Expresso, a system for creating 
responsive UIs by specifying keyframes over a UI property 
(e.g., page width) and setting transitions between them. These 
keyframes and transitions are used to generate responsive 
layout rules. We found that even individuals with little to no 
CSS experience are able to specify complex responsive UIs with 
Expresso, achieving a mean accuracy of 76.5% in their tasks, 
and rating it highly on the TAM scale as useful and easy to 
use. Meanwhile, individuals with similar experience who tried 
to build these same responsive UIs using CSS were much less 
successful. More broadly, our work takes a step toward a future 
in which users can provide intuitive demonstrations to guide 
the automatic creation of complex UI behaviors. 

VIII. ACKNOWLEDGEMENTS 

We thank Yan Chen and Stephanie O’Keefe for their help 
editing this paper; Jordan Huffaker, Xiaoying Pu, and Kayla 
Wiggins for their feedback on the Expresso UI; and our study 
participants for their time and effort. This work was supported 
in part by Clinc, Inc., and the University of Michigan. 



REFERENCES 

[1] H. S. Liang, K. H. Kuo, P. W. Lee, Y. C. Chan, Y. C. Lin, and 
M. Y. Chen, “Seess: seeing what i broke–visualizing change impact 
of cascading style sheets (css),” in Proceedings of the 26th annual ACM 
symposium on User interface software and technology. ACM, 2013, 
pp. 353–356. 

[2] D. Mazinanian, “Refactoring and migration of cascading style 
sheets: Towards optimization and improved maintainability,” in 
Proceedings of the 2016 24th ACM SIGSOFT International Symposium 
on Foundations of Software Engineering, ser. FSE 2016. New 
York, NY, USA: ACM, 2016, pp. 1057–1059. [Online]. Available: 
http://doi.acm.org/10.1145/2950290.2983943 

[3] N. Burtnyk and M. Wein, “Computer-generated key-frame animation,” 
Journal of the SMPTE, vol. 80, no. 3, pp. 149–153, 1971. 

[4] B. Myers, S. E. Hudson, and R. Pausch, “Past, present, and future of 
user interface software tools,” ACM Transactions on Computer-Human 
Interaction (TOCHI), vol. 7, no. 1, pp. 3–28, 2000. 

[5] Apple, Inc. (2003) Xcode. [Online]. Available: https://developer.apple. 
com/xcode/ 

[6] Google, Inc. (2013) Android studio. [Online]. Available: https: 
//developer.android.com/studio/index.html 

[7] S. Oney, B. Myers, and J. Brandt, “Constraintjs: programming interactive 
behaviors for the web by integrating constraints and states,” in Proceed-
ings of the 25th annual ACM symposium on User interface software and 
technology. ACM, 2012, pp. 229–238. 

[8] S. Oney, B. Myers, and J. Brandt, “Interstate: a language and envi-
ronment for expressing interface behavior,” in Proceedings of the 27th 
annual ACM symposium on User interface software and technology. 
ACM, 2014, pp. 263–272. 

[9] D. A. Henderson Jr, “The trillium user interface design environment,” 
ACM SIGCHI Bulletin, vol. 17, no. 4, pp. 221–227, 1986. 

[10] Adobe Systems. (1997) Dreamweaver. [Online]. Available: https: 
//www.adobe.com/ca/products/dreamweaver.html 

[11] Webfow, Inc. (2013) Webfow. [Online]. Available: https://webfow.com/ 
[12] Zine EOOD. (2016) Bootstrap studio. [Online]. Available: https: 

//bootstrapstudio.io/ 
[13] B. A. Myers, “Peridot: creating user interfaces by demonstration,” in 

Watch what I do. MIT Press, 1993, pp. 125–153. 
[14] D. Kurlander and S. Feiner, “Inferring constraints from multiple snap-

shots,” ACM Transactions on Graphics (TOG), vol. 12, no. 4, pp. 277– 
304, 1993. 

[15] A. Repenning and T. Sumner, “Agentsheets: A medium for creating 
domain-oriented visual languages,” Computer, vol. 28, no. 3, pp. 17– 
25, 1995. 

[16] H. Lieberman, “Tinker: A programming by demonstration system for 
beginning programmers,” Watch what I do: programming by demon-
stration, vol. 1, pp. 49–64, 1993. 

[17] H. Lieberman, “Mondrian: a teachable graphical editor.” in INTERCHI, 
1993, p. 144. 

[18] T. Lau, L. Bergman, V. Castelli, and D. Oblinger, “Sheepdog: learning 
procedures for technical support,” in Proceedings of the 9th international 
conference on Intelligent user interfaces. ACM, 2004, pp. 109–116. 

[19] A. Cypher, “Eager: Programming repetitive tasks by demonstration,” in 
Watch what I do. MIT Press, 1993, pp. 205–217. 

[20] A. F. Blackwell, “Swyn: A visual representation for regular expressions,” 
in Your wish is my command. Elsevier, 2001, pp. 245–XIII. 

[21] T. Lau, S. A. Wolfman, P. Domingos, and D. S. Weld, “Learning 
repetitive text-editing procedures with smartedit,” in Your wish is my 
command. Elsevier, 2001, pp. 209–XI. 

[22] R. C. Miller and B. A. Myers, “Multiple selections in smart text editing,” 
in Proceedings of the 7th international conference on Intelligent user 
interfaces. ACM, 2002, pp. 103–110. 

[23] H. Lieberman, Your wish is my command: Programming by example. 
Morgan Kaufmann, 2001. 

[24] A. Cypher and D. C. Halbert, Watch what I do: programming by 
demonstration. MIT press, 1993. 

[25] M. R. Frank, P. N. Sukaviriya, and J. D. Foley, “Inference bear: 
designing interactive interfaces through before and after snapshots,” in 
Proceedings of the 1st conference on Designing interactive systems: 
processes, practices, methods, & techniques. ACM, 1995, pp. 167– 
175. 

[26] Y. Li and J. A. Landay, “Informal prototyping of continuous graphical 
interactions by demonstration,” in Proceedings of the 18th annual ACM 
symposium on User interface software and technology. ACM, 2005, 
pp. 221–230. 

[27] M. Bolin, M. Webber, P. Rha, T. Wilson, and R. C. Miller, “Automation 
and customization of rendered web pages,” in Proceedings of the 18th 
annual ACM symposium on User interface software and technology. 
ACM, 2005, pp. 163–172. 

[28] R. C. Miller, V. H. Chou, M. Bernstein, G. Little, M. Van Kleek, 
D. Karger et al., “Inky: a sloppy command line for the web with rich 
visual feedback,” in Proceedings of the 21st annual ACM symposium on 
User interface software and technology. ACM, 2008, pp. 131–140. 

[29] G. Little, T. A. Lau, A. Cypher, J. Lin, E. M. Haber, and E. Kandogan, 
“Koala: capture, share, automate, personalize business processes on the 
web,” in Proceedings of the SIGCHI conference on Human factors in 
computing systems. ACM, 2007, pp. 943–946. 

[30] G. Leshed, E. M. Haber, T. Matthews, and T. Lau, “Coscripter: automat-
ing & sharing how-to knowledge in the enterprise,” in Proceedings of the 
SIGCHI Conference on Human Factors in Computing Systems. ACM, 
2008, pp. 1719–1728. 

[31] S. Oney, A. Lundgard, R. Krosnick, M. Nebeling, and W. S. Lasecki, 
“Arboretum and arbility: Improving web accessibility through a shared 
browsing architecture,” in Proceedings of the ACM Symposium on User 
Interface Software and Technology. ACM, 2018. 

[32] W. S. Lasecki, J. Kim, N. Rafter, O. Sen, J. P. Bigham, and M. S. 
Bernstein, “Apparition: Crowdsourced user interfaces that come to life 
as you sketch them,” in Proceedings of the 33rd Annual ACM Conference 
on Human Factors in Computing Systems. ACM, 2015, pp. 1925–1934. 

[33] S. W. Lee, Y. Zhang, I. Wong, Y. Y., S. O’Keefe, and W. Lasecki, 
“Sketchexpress: Remixing animations for more effective crowd-
powered prototyping of interactive interfaces,” in Proceedings of 
the ACM Symposium on User Interface Software and Technology, 
ser. UIST. ACM, 2017. [Online]. Available: https://doi.org/10.1145/ 
3126594.3126595 

[34] J. Nichols, B. A. Myers, M. Higgins, J. Hughes, T. K. Harris, R. Rosen-
feld, and M. Pignol, “Generating remote control interfaces for complex 
appliances,” in Proceedings of the 15th annual ACM symposium on User 
interface software and technology. ACM, 2002, pp. 161–170. 

[35] K. Gajos and D. S. Weld, “Supple: automatically generating user inter-
faces,” in Proceedings of the 9th international conference on Intelligent 
user interfaces. ACM, 2004, pp. 93–100. 

[36] B. Myers, S. Y. Park, Y. Nakano, G. Mueller, and A. Ko, “How designers 
design and program interactive behaviors,” in Visual Languages and 
Human-Centric Computing, 2008. VL/HCC 2008. IEEE Symposium on. 
IEEE, 2008, pp. 177–184. 

[37] D. Loksa, A. Ko, W. Jernigan, A. Oleson, C. J. Mendez, and M. M. 
Burnett, “Programming, problem solving, and self-awareness: Effects of 
explicit guidance,” in Proceedings of the SIGCHI Conference on Human 
Factors in Computing Systems, ser. CHI ’16. ACM, 2016, pp. 1449– 
1461. 

http://doi.acm.org/10.1145/2950290.2983943
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://www.adobe.com/ca/products/dreamweaver.html
https://www.adobe.com/ca/products/dreamweaver.html
https://webflow.com/
https://bootstrapstudio.io/
https://bootstrapstudio.io/
https://doi.org/10.1145/3126594.3126595
https://doi.org/10.1145/3126594.3126595



