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Figure 1: (A) The proposed digital assistant, Adasa, identifies user’s questions or commands regarding ADAS features in human
language and responds with answers or actions accordingly. (B) Adasa is integrated into a commercially available vehicle for
evaluation and a real-world driving user study. (C) Adasa is able to access vehicle CAN signals via Bluetooth to conduct system
diagnosis or system control. (D) Adasa setup, driver enables Adasa by pressing the button on the wheel to start the conversation.

ABSTRACT
Advanced Driver Assistance Systems (ADAS) come equipped
on most modern vehicles and are intended to assist the driver
and enhance the driving experience through features such as
lane keeping system and adaptive cruise control. However,
recent studies show that few people utilize these features for
several reasons. First, ADAS features were not common until
recently. Second, most users are unfamiliar with these features
and do not know what to expect. Finally, the interface for oper-
ating these features is not intuitive. To help drivers understand
ADAS features, we present a conversational in-vehicle digital
assistant that responds to drivers’ questions and commands in
natural language. With the system prototyped herein, drivers
can ask questions or command using unconstrained natural
language in the vehicle, and the assistant trained by using
advanced machine learning techniques, coupled with access to
vehicle signals, responds in real-time based on conversational
context. Results of our system prototyped on a production
vehicle are presented, demonstrating its effectiveness in im-
proving driver understanding and usability of ADAS.
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INTRODUCTION
Advanced Driver Assistance Systems (ADAS) have recently
started to become widely deployed across the newer vehicle
fleet. ADAS features are designed to either warn or assist in
the control of a vehicle to help reduce the effects of human er-
ror while driving. For example, Lane Keeping System (LKS),
which vibrates the steering wheel to alert drivers when their ve-
hicles drift out of the lane, and Adaptive Cruise Control (ACC),
which adjusts a vehicle’s speed to maintain a certain distance
from other vehicles, are two widely-used ADAS features.

While the available data on the influence of ADAS features is
limited, some studies have estimated a promising influence on
the real-world driving experience. One study estimates that
ADAS may help drivers prevent 28% of all crashes if all new
car purchases included ADAS [18]. The market for ADAS
has grown significantly and nearly all major automakers (in-
cluding Ford, Chrysler, BMW, and Audi) integrate ADAS
into their vehicles. The market for ADAS is projected to con-
tinue growing: McKinsey & Co. researchers have predicted
the ADAS market will double its size in the next three years,
reaching $35 billion in annual revenue [13].
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However, an estimated 73% of drivers with ADAS-enabled
vehicles have not even attempted to use these features [5]. This
is due to a number of factors [12, 23], including the fact that
ADAS are relatively new and constantly evolving. Specifically,
there are gulfs of evaluation [30] (i.e., drivers have difficulty
assessing the state of ADAS, such as if they are activated) and
gulfs of execution [30] (i.e., drivers are unsure how to activate
and use ADAS). Because ADAS features could help the driver
maintain control of their vehicle, it is important to build user
interfaces that help to bridge these gulfs.

Building an effective interface for ADAS is challenging for
several reasons. First, it is unclear what information drivers
need to effectively use ADAS features. Second, the interface
can not require any complex visual-manual interactions be-
cause asking the driver to perform such operations while driv-
ing could reduce safety. Furthermore, these are complicated
systems whose behavior depends on a complex combination of
system states and vehicle contexts. For example, ACC might
appear to be deactivated because the feature is malfunctioning,
the system is in a state where it is not used, or the feature is
inactive and the driver must be able to distinguish between
these three states. Finally, as we found in our analysis of
customer inquiries, drivers often feel unclear what their roles
entail when ADAS features are activated.

Currently drivers interact with ADAS features through con-
trols on their steering wheel and indicators displayed on the
dashboard. In this paper, we propose to add a third modality:
a speech-based conversational interface for ADAS features.
We designed and built Adasa, the first speech-based conver-
sational interface for ADAS. Adasa’s features are based on
our analysis of over 9,000 conversations between drivers and
Ford’s customer service division and includes additional train-
ing data generated by crowd workers. We built Adasa upon
the state-of-the-art conversational machine learning platform,
Lucida [20], which allows drivers to interact with Adasa in
unconstrained natural language in real-time. Drivers can sim-
ply ask questions or issue commands after enabling Adasa by
pressing a single button on the steering wheel.

Adasa can handle queries that do not require the current vehi-
cle’s status (e.g., the meaning of a symbol on the dashboard),
system diagnostic questions related to the vehicle and ADAS
state (e.g., “why is my wheel vibrating?”), or commands to
control ADAS features via natural language. We integrated
Adasa into a commercially available vehicle and conducted a
user study on 15 drivers in a real-world driving environment.
In the evaluation, we perform quantitative and qualitative anal-
yses of our user study based on prior work in evaluating in-
formation system [10, 11], which focuses on system quality,
information quality and user satisfaction. The results of our
study show that Adasa correctly identified, understood, and
responded to over 77% or participants’ unconstrained natural
language commands about ADAS, which included questions
about ADAS state and commands to precisely control their
features. In addition, our user feedback demonstrates the ef-
fectiveness in improving the user understanding and overall
driving experience using ADAS features (an average score

of 8.9/10). Specifically, this paper makes the following main
contributions:

• An analysis of over 9,000 discussions between drivers and
customer service representatives from a major auto manufac-
turer about ADAS to better understand drivers’ information
needs.

• Adasa, an in-vehicle digital assistant, that allows the driver
to ask questions or command and control in human natu-
ral language while driving to help drivers understand the
features and improve the usability.

• An evaluation of Adasa deployed on a production vehi-
cle, which demonstrates the effectiveness of the proposed
system in improving the usability of these ADAS features.

• Insights gained through our user study in terms of how the
digital assistant system design affects the overall user expe-
rience, and how traffic conditions impact user interaction.

RELATED WORK
In general, the number and complexity of systems available
to drivers has increased significantly [22]. HCI researchers
have investigated how to improve in-vehicle user interfaces for
systems like driving assistance, infotainment, entertainment
and car-integrated mobile devices [3, 14, 28, 36, 40].

User Interfaces for Cars
To help drivers use these systems without being too distracted
while driving, different types of in-vehicle interfaces have
been built and studied [15, 22, 25, 27, 31, 34, 42]. However,
most of these interfaces have been visual or tactile. Kern et al.
explore the design space of driver-based automotive user inter-
faces, including a set of inputs (e.g., button, touchscreen and
pedals) and outputs (e.g., multi-functional display, digital and
analog speedometer) modalities [22]. Visual user interfaces
in vehicles have been investigated, but the results show that
driving experience and behavior would be affected notably,
and these interfaces may distract drivers from the primary
driving tasks (i.e., driving and focusing on the traffic) [21, 35].
On the other hand, Ohn-Bar et al. investigate how gesture
interfaces for the in-vehicle systems should be designed to
improve the driving experience. They present the feasibility
to have gestural interfaces deployed in the cars for a wide
range of in-vehicle functionalities [31]. Lee et al. study the
implications for drivers when using voice interfaces and touch
interfaces on semi-automated systems and find that drivers
who use the voice interface to control automated driving have
lower nervousness and make fewer driving mistakes (e.g., road
edge excursion) than those who use the touch interface [27].

In-vehicle Voice Interfaces
There is a large body of work showing that voice interfaces
allow drivers to effectively focus on driving and the environ-
ment. Among all the interface modalities, voice interfaces help
improve driving safety compared to other interface modalities
[2, 17, 24, 26, 27, 28, 29, 38]. Researchers also find that voice
interfaces affect human behavior, as well as emotion. Graham
et al. evaluate users’ experience of using voice interfaces to
perform secondary tasks while driving. Despite the fact that
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voice interface is slower, less accurate, and leading to lower
task performance, the results show that users still consider
it easy to learn and logical, expressing the preference over
manual interface [17]. In addition, prior works present that
drivers spend more time keeping their eyes on the road when
using a speech interface than a manual interface [2, 29]. From
the industrial point of view, in-vehicle voice interfaces are
now widely deployed in commercialized vehicles such as Ford
Sync [6], Toyota Entune [9] and GM MyLink [7]. Even mo-
bile devices are designed to be able to connect to in-vehicle
infotainment and entertainment systems via CarPlay [1] or
Android Auto [16]. These technologies leverage advanced
speech recognition techniques to allow users to interact with
systems like navigation or multimedia entertainment via voice
commands. However, recent commercial products mostly rely
on constrained speech (i.e., using specific terms or formats)
which can be distracting while driving as it may require a
higher cognitive demand than unconstrained natural speech.
In fact, interacting with conversational systems using natu-
ral human language is still challenging and remains a crucial
problem [19, 40, 41]. In this work, we employ advanced ma-
chine learning techniques to design Adasa and enable drivers
to interact with vehicles in unconstrained natural language
in real-time. None of these aforementioned speech-based
systems are particularly designed for ADAS features, which
we found to be a gap and may directly affect the drivers’ in-
vehicle experience while driving as more ADAS features are
introduced.

UNDERSTANDING DRIVERS’ INFORMATION NEEDS
To understand what information drivers need and what the
critical problems are that prevents them from utilizing ADAS
features, we first conducted an in-depth analysis on customer
verbatims describing the real problems that the owners of vehi-
cles equipped with ADAS features encounter. These verbatims
collected by Ford Customer Service Division (FCSD) via cus-
tomer call center services include over 9,000 cases provided
for analysis consisting of owners of Ford Fusion, Ford Ex-
plorer, Lincoln MKS and Lincoln MKT equipped with ADAS
features from 2013 to 2017. From these verbatims, we identify
three primary question categories:

• Division of driving responsibility between the driver
and ADAS – More than 4,400 out of the 9,000 (i.e., 48.9%)
verbatims ask about the expected division of driving re-
sponsibility between the driver and the ADAS feature. For
example, drivers complain LKS does not keep the vehicle
in its lane after it has been switched on, which is because
LKS only engages when the vehicle speed is higher than its
operational threshold (i.e., 40 miles per hour) and the lane
marking lines are visible.

• Interface to activate ADAS features – Over 2,000 cases
(i.e., 23.1%) ask how to turn on certain ADAS features (e.g.,
LKS). This is primarily because drivers are not familiar with
these features and they often have a hard time recognizing
the buttons to turn them on and off. This demonstrates that
there is a gulf of execution that prevents most drivers from
utilizing ADAS features.

• Meaning of instrument cluster iconography – 1,300 out
of 9,000 (i.e., 14.5%) verbatims ask about the symbols on
the dashboard because quite a few ADAS features present
different symbols dynamically depending on the real-time
surrounding environment (e.g., a typical ACC shows a vehi-
cle symbol on the dashboard only when there is a vehicle
ahead) which also shows that most drivers encounter issues
of understanding.

One could argue that auto manufacturers provide comprehen-
sive information about these questions in the vehicle owner’s
manual. However, many drivers are still found to be confused
about ADAS features for two reasons, thereby not being able
to utilize them in their vehicles. First, it is tedious to read
the printed user manuals due to their lengthiness (i.e., often
hundreds of pages). Second, these questions should be ad-
dressed in real time, as opposed to conventional approaches
where drivers could not and should not read user manuals
while driving. Feedback from the Ford user experience design
team further confirms these observations. Expecting all users
to carefully read the owner’s manual may be overly optimistic,
and these 9,000 verbatims we analyzed have demonstrated
that to be the case. Therefore, we conclude an improved and
more natural user interface is required to improve the usability
of ADAS features.

SYSTEM DESIGN
To enhance the current user interface for ADAS features and
improve its usability, we present Adasa, an in-vehicle digital
assistant based on the insights we gained from our analysis
of over 9,000 real user verbatims. Adasa allows the driver
to ask any question or command and control in natural hu-
man language while driving, and the assistant analyzes the
human speech in real-time and combines it with the contex-
tual information about vehicle status (e.g., what mode ACC
is currently operating in) to provide responses accordingly in
human speech.

In this section, we first formalize the design objectives for
Adasa. We then present an overview of the components in
Adasa, and walk through the life of an example query to illus-
trate the workflow of the system. Lastly, we present the details
of the key hardware apparatus and software components.

Design Objectives
To improve the system through real-world testing and subjec-
tive evaluation beyond the insights we gained from analyzing
the call center verbatims, we formalize the following items as
the key design objectives of an in-vehicle digital assistant:

1. Intelligent understanding – The digital assistant is able to
understand incomplete questions and identify out-of-scope
queries properly.

2. Real-time processing – The digital assistant has the ability
to process queries and respond with the requested informa-
tion to drivers in real-time in a dynamic driving environ-
ment.

3. Accurate responses – The digital assistant can provide
useful information regarding driver’s questions and control
the vehicle correctly.
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Figure 2: Overview of Adasa system, which is designed based on recent publications [20] and integrated with a commercially
available vehicle [8]. Driver’s voice captured by the microphone is translated into its text equivalent ( 1 ) and is passed to Query
Classifier to identify the type of query ( 2 ). Execution Logic operates the query ( 3 ) and retrieves the information needed from
either Knowledge Base ( 4 ) or the vehicle ( 5 ) depends on the type of query. Vehicle-data Ingestor receives the CAN data through
the vehicle interface and records the status of each signal in Vehicle State Repository ( 6 - 7 ). Once the result is passed back to
Execution Logic ( 8 ), the response is converted to a WAV file and output to the speaker to answer driver’s questions ( 9 - 10 ).

System Overview: The Life of a Query
Adasa provides a voice-enabled user interface for drivers to
ask questions about and command and control ADAS features
using natural human language, without requiring any complex
operations that may distract them from driving. The system
leverages contextual information of vehicle state and feature
status (e.g., what mode ACC is currently operating in) by ac-
cessing the signals from the standard OBD-II port. This allows
drivers to ask questions like “what does the green symbol on
my dashboard mean?” without knowing it is related to ACC.
In addition, the system is able to send control signals via OBD-
II port to enable or disable features to allow drivers to make
commands such as “can you help me turn on adaptive cruise
control?” instead of knowing or asking about and then press-
ing the activation buttons on the steering wheel. Leveraging
the state-of-the-art framework for building intelligent assistant,
Adasa is trained to answer a wide range of questions covering
the most frequently asked ones we identified in our analysis
on real user verbatims from Ford, and is capable of delivering
responsive feedback at real-time.

Figure 2 presents a high-level diagram of the system compo-
nents and how user queries are handled in Adasa. Adasa is
composed of hardware apparatus and software components.
On the hardware side, Adasa consists of a compute device
and a vehicle interface device. On the software side, Adasa
consists of an Intelligent Assistant runtime, and a Vehicle-data
Ingestor runtime.

To illustrate how these components are integrated, we walk
through the life of a query step-by-step in Figure 2. The life
of a query begins with a user’s voice input. After the driver
activates the system to begin listening by pressing the voice
activation button on the steering wheel, the voice input will

be sent to the Speech-to-Text engine of Adasa ( 1 ) deployed
on the computing device. This voice input is then transcribed
into its text equivalent ( 2 ). The text of the query is classified
by the Query Classifier, where different intents will be given a
different label ( 3 ). For example, questions like “what does
adaptive cruise control do?” and “what is adaptive cruise con-
trol?” will be labeled as the same class because they are both
querying about the functionality of ACC, but questions such
as “will lane keeping system steer the vehicle for me?” will be
labeled as a different class. The label generated by the Query
Classifier will then be sent to the Execution Logic for further
analysis. Depending on the intent label of the query, the Exe-
cution Logic needs to either fetch the necessary information
from a vehicle-specific knowledge base ( 4 ), or sends a re-
quest to the Vehicle-data Ingestor to obtain/modify the values
of certain vehicle signals( 5 ). The Vehicle-data Ingestor runs
an asynchronous Signal I/O callback which continuously in-
takes message streams from the vehicle via a Vehicle Interface
plugged into the OBD-II port in the vehicle ( 6 ), and maintains
a lookup table containing the updated values of all the vehicle
signals internally in its Vehicle State Repository ( 7 ). Upon
receiving a request from the Execution Logic, Vehicle-data
Ingestor searches the current values of the requested signals,
updates the signals if the request is a command, and other-
wise sends the corresponding signals back to the Execution
Logic ( 8 ). Combining all this information, Execution Logic
composes a response accordingly in text format, and sends
the response to the Text-to-Speech engine ( 9 ) and produces
a WAV file. The resulting WAV file of the response is played
back to the driver through the in-vehicle speakers ( 10 ), inform-
ing drivers with the information they requested.

In the following subsections, we describe each of these com-
ponents in detail.
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Hardware Apparatus
Vehicle
As shown in Figure 1-(B), we employ a 2017 Lincoln Conti-
nental Reserve Sedan which is equipped with the Technology
Package including ACC. As part of its driver assistance suite,
the vehicle is also equipped with LKS, blind spot information
system with cross traffic alert, radars and 360 degree camera
technology for pre-collision assist and pedestrian detection [8].

OBD-II Port and Vehicle Interface
Our vehicle provides an on-vehicle diagnostic system called
On-Board Diagnostic (OBD) system, which gives us access to
the internal signals of the vehicle through the Controller Area
Network (CAN). OBD-II is an industry standard of such a sys-
tem implemented in all cars manufactured in the United States
from 1996 onward. This standard specifies the pin mapping,
the protocol and the message format of the in-vehicle diag-
nostic connector, and provides engine control, and monitors
parts of the body, accessory devices, as well as the diagnostic
control network of the car. The interface of OBD-II system
(referred as the OBD-II port in this work) is usually located
within the realm of the driver’s seat, underneath the instrument
panel or near the footwell. To access the necessary informa-
tion (e.g., the status of the targeted ADAS features) from the
OBD-II port, we plug in a vehicle interface programmed with
customized firmware. Vehicle interface is a piece of hardware
device that bridges the vehicle and the host device via the
OBD-II port. It decodes CAN messages into the software-
recognizable format, and sends the decoded results over a
common interface, such as USB and Bluetooth, to the host
devices. In this work, we use the widely deployed Ford Refer-
ence Vehicle Interface (VI), which is a standard open source
hardware implementation of the vehicle interface, as shown in
Figure 1-(C).

Since the publicly available standard firmware (Type-3
firmware) for a 2017 Lincoln Continental using a Ford Refer-
ence VI could not directly access ADAS data, we first repro-
grammed and customized the firmware for proprietary access
to both LKS and ACC information. An Intrepid Control Sys-
tems neoVI is then used to perform additional processing on
and writing of CAN signals to allow Adasa to overwrite the
vehicle’s internal control of ADAS features as part of our
prototype. Instead of connecting the OBD VI to our system
through a long USB cable in the driver’s footwell, which
may pose a safety hazard while driving, we enabled a wire-
less connection between the VI and Adasa via Bluetooth. As
shown in the Figure 1-(C), Ford Reference VI plugged into
the in-vehicle OBD-II port and two blue LEDs show that VI
is successfully recognized by and registered to the vehicle as
well as connected to Adasa via Bluetooth.

Vehicle-data Ingestor
We built the Vehicle-data Ingestor by using an open-source
OpenXC library to communicate using CAN data between the
VI and Adasa with the read and write function enabled. To
sustain the consistency of the information between the vehicle
and our system, we implemented our Vehicle-data Ingestor in
a callback fashion (i.e., where the Vehicle-data Ingestor is able
to refresh its own data periodically as the VI receives updates

from the vehicle). The stream of CAN data is then analyzed by
a sub-procedure in the Vehicle-data Ingestor named Vehicle-
State Repository. Vehicle-state repository records the most
recent history of the data, extracts updates to each signal from
the data, and maintains a lookup table that contains the latest
status of each signal. In addition, as Adasa is requested to
control and change the status of ADAS features, Vehicle-data
Ingestor sends the signal to VI and updates both the lookup
table in Vehicle-State Repository, as well as the CAN data
inside the vehicle, to ensure the consistency in both sides.

Intelligent Assistant
Intelligent Assistant is designed to understand drivers’ ques-
tions, process the query coupled with the status of ADAS
obtained from Vehicle-data Ingestor, and respond to drivers
accordingly. We employ a state-of-the-art speech-based frame-
work, namely Lucida [20], to structure our implementation, in-
cluding automatic speech recognition and query classification.
We describe the details of each component in the following
sections.

Speech-to-Text Engine
The first major component in the Intelligent Assistant is a
speech-to-text interface. This interface allows drivers to ask
the questions in natural language, providing drivers an uninter-
rupted way to interact with Adasa and access the ADAS fea-
tures. Adasa builds on the open-source Lucida framework [20],
which by default uses Google Speech API [37] for automatic
speech recognition (ASR). Despite the noisy on-road environ-
ment in our user study, we observed very low error rate, which
is similar to prior work reported [39]. It first processes and
extracts feature vectors representing the voice segments, and
submits the feature vectors to a speech recognition kernel to
transcribe drivers’ utterances. The transcribed texts then serve
as the input to the next engine.

Query Classifier
To access the necessary vehicle information for each query
precisely, Adasa needs to first understand the intent of the
query. For this we leverage the findings explored in our pilot
study, and conclude three types of input queries:

1. Inquiry (FAQ) - Queries regarding the explanation of the
ADAS features are considered as Inquiry (FAQ). For exam-
ple, “How does the lane keeping system work?”, “What is
the gray speedometer on my dashboard?”.

2. Symptom Diagnosis - Queries regarding the symptoms or
status of the ADAS features are considered as Symptom Di-
agnosis. For instance, “Is my lane keeping system active?”,
“I just turned on adaptive cruise control, but why is it not
working?”.

3. Command and Control - Queries regarding enabling, dis-
abling and changing the status of ADAS features are con-
sidered as Command and Control. For example, “Can you
turn on lane keeping system for me?”, “Please increase the
gap distance.”.

One straightforward way to classify queries is to hand-assign
a class label for every possible utterance, and use a dictionary-
like structure to store the mapping between queries and labels.
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During runtime, class label of an input query is determined
by applying string matching between the query and the keys
in the key space of the dictionary. However, this approach is
impractical in real-world driving scenarios since drivers might
not have prior knowledge about ADAS and are unfamiliar with
the exact terminology. In addition, natural language speech is
imprecise and hard to predict. Especially, utterances can sig-
nificantly deviate from correct grammar during driving since
drivers need to focus on the traffic conditions. These observa-
tions show that Adasa should be able to handle incomplete and
ambiguous sentences which render the hand-coding approach
infeasible.

We address these challenges by employing a machine learning
based classifier to automate the process of query classifica-
tion. To encapsulate a large scope of questions for our query
classifier, we collect a large amount of training data by using
crowd sourcing on Amazon Mechanical Turk (MTurk) [4] via
the following steps: First, we analyze the customer verbatims
and the feedback described in Section 3 to identify the scope
of query classes that we have to cover. Second, for each of
these classes, we create a task assignment on MTurk, in which
we provide a textual description of a driving scenario and a
query example to ask under that scenario. We then ask MTurk
workers to provide five rephrases of that query. To better con-
textualize the MTurk workers, we also include a picture of
the dashboard of the targeted scenario in the assignment for
the workers to gain a better understanding about what they
would experience if they were in the vehicle. For example, as
shown in the Figure 3, we have assignments in which there
are questions such as "what does it mean if I see a red line and
a grey line on the dashboard?" With the picture of the instru-
ment cluster provided, the workers understand the questions
precisely and easily. Third, we collect the completed assign-
ment, manually remove the redundant rephrases, and evaluate
the quality of the rest of the rephrases. We include only the
qualified rephrases in our final training data. Finally, we train
our classifier with this training dataset by utilizing support
vector machine (SVM) and deploy the trained classifier in
Adasa. We use the unigram and the bigram representations of
the input query as features, which is commonly used in text
classification. For instance, an input query of “what is cruise
control” will be transformed into {’what’: 1, ’is’: 1, ’cruise’:
1, ’control’: 1, ’what is’: 1, ’is cruise’: 1, ’cruise control’: 1},
where the keys are unigrams and bigrams in the query and
the values are their occurrences. We use both unigram and
bigram to capture the spatial ordering of words. Overall, over
4500 training data is collected and 73 classes are implemented
including 49 Inquiry classes, 11 Symptom Diagnosis classes
and 13 Command and Control classes.

Query Classifier outputs a probability distribution for each
query, which represents the probability of the query falling
into each of the topics. A high probability on one class means
the classifier is confident that the query belongs to the corre-
sponding topic. When drivers ask a query that is not covered
by the scope the system is trained to understand (e.g., “how
is the weather in San Diego?”), the output probability distri-
bution will not have any class with a high enough probability
(i.e., greater than 0.5). The system identifies such queries as

Figure 3: An Amazon MTurk task assignment example. We
asked the MTurk workers to rephrase the statement, “what
does it mean if I see a red line and a grey line on the dash-
board?” with the picture of the entire dashboard and a red
bounding box around the area of inquiry in order to help the
workers understand the questions and task at hand.

out-of-scope, and respond with “I am not trained to handle
this topic yet. Please ask me about adaptive cruise control
and lane keeping systems.”

Execution Logic
Once the input query is analyzed and classified, Execution
Logic then accesses the necessary information and answers
the query. Depending on the intent label of the query, Exe-
cution Logic fetches information from different sources. To
compose a response for Inquiry (FAQ) queries, we build a
vehicle-specific knowledge base that contains the static infor-
mation about the vehicle and ADAS features. Adasa accesses
the target entry and retrieves the corresponding answer.

To answer Symptom Diagnosis queries, on the other hand,
Adasa needs to access the states of different features of the
vehicle. Adasa, based on the targeted ADAS feature and the
intent of the diagnostic query, composes a request and sends it
to Vehicle-data Ingestor which decodes the request and seeks
for the current status of or a recent update to the targeted
signals. Once the requested value is obtained, Vehicle-State
Repository returns the result to Execution Logic. We enable
non-blocking multi-threaded access from Execution Logic
to Vehicle-State Repository, which ensures that Execution
Logic can access vehicle states in a timely manner. Finally,
Execution Logic applies the returned value and composes a
textual response correspondingly.

To complete Command and Control queries, Adasa requires to
send control signals into the vehicle via VI to alter the ADAS
functions. When Execution Logic receives the intent of query
from Query Classifier, control signals mapped to the corre-
sponding CAN data messages are generated and transmitted
to the VI via Bluetooth and modify the value on the CAN bus
inside the vehicle. Also, Execution Logic updates the states of
the target signal in Vehicle-State Repository and composes a
textual response to indicate that the command is completed.

Text-to-Speech Engine
The output textual response is then translated to speech by
the text-to-speech module, where Google Chrome Speech
Synthesis library is employed [37]. Several attributes such
as the voice of gender, speech rate, pitch and volume can
be customized for different users. We use standard Google
Female English and set rate, pitch and volume as default. The
output speech then is played by the speaker.
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EVALUATION
To evaluate our system in improving the perceived usability
of ADAS features, we conducted a user study in a real-world
driving environment. In this study, each participant interacted
with Adasa while driving a 2017 Lincoln Continental Reserve
equipped with the Technology Package, which includes ACC
and LKS. During the driving study, we focused on ACC and
LKS, and encouraged participants to ask Adasa any question,
including questions that were beyond the scope of these two
ADAS features, so as to obtain complete feedback based on
their overall experiences. The study setup is detailed in the
following sections.

Participants
We recruited 15 participants: 11 male, 4 female, ages 24—
35 (M = 27.1, SD = 3.2). Each participant had a valid US
driver’s license and was covered by an auto insurance policy
sponsored by the university. 80% (12 out of 15) participants
did not have prior experience with ADAS, but had sufficient
driving experience (M = 8.7, SD = 5.1 driving years). Note
that sufficient driving experience is required since participants
would be asked to interact with Adasa during the driving study.
Participants were recruited through email announcements at
the authors’ university.

Adasa
As Figure 1-(D) shows, we built Adasa and deployed it in
the Lincoln Continental described above to conduct the study.
Adasa ran on a laptop placed next to the driver seat and con-
nected through Bluetooth to Ford Reference VI to transmit
CAN data via OBD-II port. The left blue light on the VI shows
CAN data could be accessed successfully and the right blue
light shows the data from the VI was received by Adasa. We
prototyped a voice interface with a front-end web application,
where participants could ask questions via this interface. To
enable Adasa and start the conversation, participants were
instructed to press the button on the steering wheel to enable
voice recording and send the query to the internal modules
of Adasa. The laptop would output the answer using human
voice through the speaker in the laptop once Adasa retrieves
the results.

The Route
Participants drove on a predefined 11.7 mile (18.8 km) route,
which consisted of 9 segments, as Figure 4 shows. The care-
fully planned route consists of 7 miles (11.3 km) highway and
4.7 miles (7.5 km) suburban road, allowing participants to have
enough time and diversity in driving scenarios to accommo-
date the use of both the LKS and ACC systems. Participants
took an average of 20 minutes to complete this route. Partici-
pants were asked to complete a different task in every segment,
as the next subsection describes.

Tasks
The detailed tasks are shown in the Table 1. The first segment
(segment 0) is designed for the participants to become familiar
with operating the vehicle and asking Adasa questions. Seg-
ment 1 consists of another portion of the local road including
several stop signs where the participants were asked to turn

Figure 4: The map of the 11.7 miles route. It includes 7 miles
highway and 4.7 miles suburban road to accommodate the use
of both ACC and LKS.

Table 1: Summary of tasks assigned during the driving study.

Segment # Task
0 Start driving and be familiar with the vehicle
1 Turn on the lane keeping system
2 Get on highway and stay in right-most lane
3 Turn the adaptive cruise control to standby
4 Turn the adaptive cruise control to active
5 Drift out of lane slightly to drive on the lane line
6 Turn off the adaptive cruise control
7 Drift out of lane slightly to drive on the lane line
8 Turn off the lane keeping system

on LKS. In this segment, participants continued driving while
LKS is enabled on the local road. The participants are then
asked to get on the highway after finishing segment 1 and
stay in the rightmost lane while keeping the vehicle speed
at 60 miles per hour for safety. After entering the highway,
the participants were asked to turn ACC to standby mode and
active mode in segment 3 and segment 4 respectively. These
two segments were designed for the participants to experience
the ACC feature and ask Adasa questions if they chose to do
so. In the segment 5, the participants were asked to drift out
of lane slightly at the right-most lane to experience the LKS
feature while ensuring that the vehicle is under control and the
speed limit is followed. In segment 6, the participants were
asked to get off the highway, turn off the ACC, and drive back
to the starting location. Segment 7 was designed to let the
participants experience LKS in the local area. This segment
is a straight urban road with only one traffic light. During
this segment, the participants were asked to test LKS again by
drifting out slightly to step on the lane line. Finally, partici-
pants were asked to turn off LKS and drive to the end location.
We expected drivers would encounter most of the driving sce-
narios when executing tasks during the drive, although this is
not always possible. For example, even when ACC is set to
active, it can still be hard to expect the driver to experience the
Stop-and-Go function (i.e., detect when the vehicle ahead has
stopped, and resume after the vehicle ahead moves) since the
traffic conditions on road may vary.

Procedure
Upon the participant’s arrival at the starting location, the par-
ticipant was greeted and told that his/her help was needed
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to investigate the driving experience on a vehicle equipped
with ADAS features and that he/she would interact with our
digital assistant, Adasa. Also, each participant was required
to sign an insurance form to obtain the university’s approval
for participating in the study. After asking for the participant’s
informed consent and checking his/her valid driver license, the
participant was introduced to the vehicle and asked to “please
have a seat in the drivers’ seat”. After both the researcher and
participants were seated, the researcher showed the partici-
pant the pre-defined route. The participant was then informed
that varying tasks were needed to be performed during each
segment and was encouraged to ask any questions. These
questions were not limited to questions about the two ADAS
features, as long as the participants felt they were helpful for
resolving their confusion. Since most of the participants were
unfamiliar with ADAS features, which may share vehicle con-
trol with the driver, the researcher instructed the participant to
prioritize their safety and allowed them to interrupt the study
at any time if they felt nervous or were in a dangerous situation.
The researcher stayed in the vehicle to guide the participant
along the route as well as the tasks needed to be executed
along each segment. As soon as the participant understood
all the instructions, he/she was allowed to start the study and
was instructed to utilize the first segment (segment 0) to get
familiar with driving the vehicle.

Upon finishing the route and the arrival at the end location, the
participant was asked to fill out a post-questionnaire regard-
ing his/her driving experience during the drive. Afterwards,
the participant was interviewed by the experimenter for more
detailed information, and participants were asked about any
further questions regarding the vehicle, Adasa, or ADAS fea-
tures. At the point where the participant expressed he/she had
no further questions, the study was deemed formally over.

Questionnaire
Participants filled out a questionnaire adapted from DeLone
and McLean information-system (IS) success model [10, 11],
with questions that evaluate three main aspects of the system:
system quality, information quality and user satisfaction. All
questions in the questionnaire are specifically asked regarding
the assistant itself without considering the quality of the ADAS
features. Therefore, the evaluation is scoped to evaluate the
effectiveness of Adasa in improving drivers’ understanding of
ADAS features rather than the usability of ADAS features on
the vehicle. The participants answer each question in the cate-
gories with a 10-point Likert scale with anchors 1 = “strongly
disagree” and 10 = “strongly agree”. For system quality, the
participants are asked to evaluate system acceptability, system
intelligence and system helpfulness. For example, "The digital
assistant helps me understand the features of advanced driver
assistance system." For information quality, the information
usefulness and the accuracy of the diagnosis are evaluated.
One example question is: "I think the digital assistant can un-
derstand my question and provide accurate diagnosis during
driving." For the user satisfaction, the participants are asked
regarding their nervousness, pleasantness and if their expecta-
tion had been met. The targeted assessments of each question
in the questionnaire are shown in Table 2. The participants

were also welcome to provide comments at the end of the
questionnaire for us to evaluate the system.

RESULTS
With the user study conducted in a real-world environment,
we are able to investigate drivers’ behaviors and satisfaction
when interacting with Adasa. In this section, we demonstrate
the effectiveness of our system via quantitative and qualitative
analyses of our user study.

Quantitative System Analysis
We perform a quantitative system analysis by evaluating three
key metrics: (1) query understanding, (2) response correctness,
and (3) processing latency. Particularly, query understanding
(i.e., understanding the query correctly) and response cor-
rectness (i.e., responding with the correct answer) have been
commonly used to evaluate conversational assistants such as
Apple Siri and Amazon Echo [32, 33].

Query Understanding
We first evaluate query understanding by quantifying the per-
centage of the queries that are categorized into the correspond-
ing intent class correctly, which aligns with how query under-
standing has commonly been evaluated in prior studies [32, 33]
on several digital assistants including Amazon Echo, Google
Home and Apple Siri. The experiment including 800 general
queries was conducted in April 2017 for Apple Siri and Au-
gust 2017 for Amazon Echo and Google Home respectively.
To facilitate a fair comparison, we divide the data we col-
lected via Amazon MTurk into two completely disjoint sets,
the training set and the testing set, and report the accuracy of
our model on the testing set to provide an unbiased evalua-
tion. As shown in prior studies [32, 33], state-of-the-art digital
assistants (e.g., Siri) are able to identify and understand over
90% of the queries asked. In our evaluation, we find Adasa is
also able to categorize queries at an accuracy of 92.5%, which
suggests that our system can achieve state-of-the-art query
understanding.

Response Correctness
We then evaluate the response correctness, which can be quan-
tified as the percentage of the queries answered correctly by
the digital assistant. For Adasa, we measure the response
correctness during the user study, where the participants were
asked to inform the experimenter whether Adasa provided the
correct answers or not during the test drive. The results in our
user study show that each participant asked 12.88 questions on
average (i.e., 1–3 questions per segment) during the study. We
found that Adasa achieves overall 77% response correctness,
which aligns with the subjective user feedback that we present
later this section. Overall, we found the participants highly
satisfied with responses provided by the system. Comparing
to the state-of-the-art digital assistants available on the market,
our system achieves a comparable, if not better (i.e., 75.4%
correctness on Apple Siri, 65.3% on Google Home, and 53.6%
on Amazon Echo as shown in prior studies [32, 33]), level of
response correctness.

8



Table 2: Targeted assessments of questions in questionnaire.

Question # Description
Q1 I think it is acceptable to have a voice assistant in the vehicle.
Q2 I think this car equipped with the voice assistant is intelligent.
Q3 The voice assistant helps me understand the features of advanced driving assistant system.
Q4 I think the answer that provided by the voice assistant is useful.
Q5 I think the voice assistant can understand my question and provide accurate diagnosis during driving.
Q6 The voice assistant makes using these advanced driving assistance features more pleasant.
Q7 Driving the vehicle with the voice assistant makes me nervous.
Q8 The responsiveness and reliability of the voice assistant meet my expectation.

Processing Latency
Besides the response correctness, the performance of the sys-
tem can also be determined by the processing latency. A well-
designed digital assistant should be able to process queries
and respond in real-time, which is also the second key design
objective mentioned in Section 4.1. We measure the process-
ing latency with respect to query types (i.e., inquiry, symptom
diagnosis and command and control) in the real vehicle de-
ployment. The result demonstrates that it merely takes 1.50
seconds (M = 1.50, SD = 0.38) from driver pressing the button
to Adasa responding on average. Specifically, the processing
latency across three types of query is 1.17 seconds for FAQ
(M = 1.17, SD = 0.19), 1.57 seconds for diagnosis (M = 1.57,
SD = 0.21) and 1.76 seconds for command (M = 1.76, SD =
0.45).

Subjective User Feedback
Figure 5 presents the average scores of all the eight ques-
tions, where the x-axis represents different questions regarding
Adasa usage with the average scores of these questions shown
on the y-axis. A score of 7 out of 10 or greater was seen in
all cases except ‘nervousness’, which will be discussed later,
suggesting that Adasa is considered to be a helpful and useful
system for them to understand and utilize ADAS features in
the vehicle, which aligns with the third design objective. An
interesting observation is that 80% participants (12 out of 15)
in our study have not used ADAS features previously since
their own vehicles are not equipped with ADAS features, or
they are unfamiliar with them. Adasa improves the understand-
ing of ADAS as participants provide highly positive feedback
(Q3 score = 8.9), showing Adasa is helpful to understand these
features.

System Quality
System quality was evaluated by asking participants questions
about the following three aspects: system acceptability, system
intelligence, and system helpfulness. As shown in Figure 5,
participants considered that an in-vehicle digital assistant like
Adasa “highly acceptable” for in-vehicle use (Q1 score = 9.3)
and it could help them understand the features of ADAS (Q3
score = 8.9). Participants mentioned: “The voice assistant is
convenient and makes me drive more safely as I could focus on
the road all the time when driving and get responses I needed”,
“It is useful to have while driving since I can keep my eyes on
driving instead of seeing the dashboard.”, “The voice assistant
makes it much easier to access the ADAS features that are
complex in the manual. Using voice is a much more natural
way to interact with intelligent features in the car.”

Figure 5: The average scores of the participants’ feedback
across different questions in the questionnaire. We obtain
over 7 out of 10 in all cases and the participants are less
nervous when using Adasa (Q7 score = 3.4). It suggests that
Adasa is considered as a helpful and useful system for them to
understand and utilize ADAS features in the vehicle.

Information Quality
When evaluating the information quality Adasa provided, the
expectation regarding the usefulness and the understandability
of the information provided by Adasa are considered. Based
on the feedback, most of the responses are precise and easy-
to-understand (Q4 score = 7.5; Q5 score = 7.4). However, we
observe that participants frequently asked questions regarding
events that happened a short time ago. For example, one
question was asked: "What happened 3 minutes ago that my
adaptive cruise control did not work at all?" While Adasa
currently is able to only respond to the queries based on the
current status, this significant finding would help us improve
our prototype in the future.

User Satisfaction
We evaluate the user satisfaction by considering participants’
pleasantness, nervousness, and if Adasa could meet their ex-
pectations during driving. The results show that participants
feel pleasant (Q6 score = 7.8) and Adasa could meet their
expectations (Q8 score = 7.1), as shown in Figure 5. For user
nervousness, participants indicated a score between 1 (not
feeling nervous at all) and 10 (very nervous). Based on the
results, while the average level of nervousness is low among
all the participants (Q7 score = 3.4), we find two participants
provided a score of 8 and a score of 9 respectively, showing
they were highly nervous during driving. They mentioned that
they remained conservative about using these features even
though they considered Adasa helpful for them to understand
these features. Apart from these two participants, other partic-
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ipants gave mostly 1’s and 2’s, showing they did not feel very
nervous using Adasa while driving.

DISCUSSION
While our results indicate that an in-vehicle digital assistant
comparable to Adasa can indeed improve ADAS feature us-
ability and the overall perceived driving experience, we also
identified numerous practical insights and challenges. Particu-
larly, there are two common themes arising from our observa-
tions: (1) response length; and (2) query completeness.

Response Length
Participants are able to interact with Adasa in several sce-
narios (e.g., driving as in on the highway or statically as in
a parking lot). We find that participants react differently to
similar responses in the different environment. For example,
participants often anticipate brief responses while driving in a
dynamic environment (e.g., highway, road intersection) since
they are unable to digest the information provided by Adasa
and focus on the road environments simultaneously. In con-
trast, more thorough explanations are expected as participants
interact with Adasa in a static environment (e.g., parking lot)
to understand how to use these ADAS features. This observa-
tion aligns with our feedback from the questionnaire that 60%
(i.e., 9 out of 15) of the participants commented that they are
satisfied with the comprehensive information provided and are
able to readily understand and more quickly familiarize them-
selves with those particular ADAS features. Consequently, an
Adasa-like system should be able to identify the current driv-
ing status and provide proper length of responses accordingly
since different response lengths are expected depending on
driver’s current status.

Finding - Different length of responses are expected in varying
driving environments as drivers might be distracted while driv-
ing. A well-designed digital assistant is capable of identifying
the environment and providing proper length of responses.

Query Completeness
We find that questions asked by drivers are usually incomplete
and unstructured because of the following reasons: (1) drivers
are unfamiliar with ADAS features so they are often unable to
describe their questions precisely; (2) drivers often pay atten-
tion to the traffic conditions while interacting with Adasa-like
system, which makes it difficult for them to structure com-
plete sentences. However, Adasa is trained with the training
data collected by MTurk, which is mostly comprised of com-
plete sentences since those workers were unable to experience
the system while driving and respond as such. As a partici-
pant mentioned: “Most of the questions that I had the system
could answer, but I had to repeat myself multiple times.” This
demonstrates that drivers focus mostly on the road and their
utterances might significantly deviate from correct grammar
or complete sentences. Although our system can achieve up to
77% response correctness, this observation shows that training
data for the classifier should include more diverse queries to
build a much robust classifier for an Adasa-like system.

Finding - Incomplete queries are asked frequently since
drivers need to pay attention to traffic conditions and might
not have prior knowledge to describe the questions precisely.

CONCLUSION AND FUTURE WORK
We present Adasa, a conversational in-vehicle digital assistant
that intakes and answers driver’s questions in natural spoken
language. Drivers are able to ask questions about or command
and control both ACC and LKS using unconstrained natural
language in the vehicle. The digital assistant trained using ad-
vanced machine learning techniques coupled with access to the
vehicle signals responded in real-time based on conversational
and environmental context. Results of the system deployed
onto a production vehicle were presented demonstrating its
effectiveness in improving driver understanding and usability
of the ADAS.

We envision a few directions for future work. We believe
that an Adasa-like system could educate drivers about ADAS
features and broaden their knowledges about ADAS. Future
studies could also evaluate longer-term learning gains by uti-
lizing Adasa and the impacts to the driving experience. In
addition, we anticipate gathering more variation in training
data (e.g., incomplete queries) to further build a robust in-
vehicle digital assistant based on our feedback observation.
Last, the ADAS features presented in this paper only consti-
tutes LKS and ACC. Extensions of this work would consider
other features such as forward collision warning (FCW) and
automatic parallel parking for users to understand and utilize
these features and to further improve the driving experience.

We believe that in the future more ADAS features will continue
to be introduced to improve the driving experience and drivers
will be able to utilize an Adasa-like system to interact with the
vehicle. We hope Adasa will encourage discussion and excite
more in-vehicle interface design within the HCI community.
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