

129

Understanding Accessibility and Collaboration in
Programming for People with Visual Impairments

MAULISHREE PANDEY, University of Michigan School of Information, USA

VAISHNAV KAMESWARAN, University of Michigan School of Information, USA

HRISHIKESH V RAO, University of Michigan School of Information, USA

SILE O’MODHRAIN, University of Michigan School of Information, USA

STEVE ONEY, University of Michigan School of Information, USA

There has been a growing interest in Computer-Supported Cooperative Work and Human-Computer Interac-
tion to understand the experiences of programmers in the workplace. However, the large majority of these
studies has focused on sighted programmers and, as a result, the experiences of programmers with visual
impairments in professional contexts remain understudied. We address this gap by reporting on fndings
from semi-structured interviews with 22 programmers with visual impairments. We found that programmers
with visual impairments interact with a complex ecosystem of tools and a signifcant part of their job entails
performing work to overcome the accessibility challenges inherent in this ecosystem. Furthermore, we fnd that
the visual nature of various programming activities impedes collaboration, which necessitates the co-creation
of new work practices through a series of sociotechnical interactions. These sociotechnical interactions often
require invisible work and articulation work on the part of the programmers with visual impairments.

CCS Concepts: • Human-centered computing → Empirical studies in accessibility; Empirical studies
in collaborative and social computing.

Additional Key Words and Phrases: accessibility; collaborative accessibility; social accessibility; programming;
collaborative programming; collaborative software development; help-seeking

ACM Reference Format:
Maulishree Pandey, Vaishnav Kameswaran, Hrishikesh V Rao, Sile O’Modhrain, and Steve Oney. 2021. Under-
standing Accessibility and Collaboration in Programming for People with Visual Impairments. Proc. ACM
Hum.-Comput. Interact. 5, CSCW1, Article 129 (April 2021), 30 pages. https://doi.org/10.1145/3449203

1 INTRODUCTION

StackOverfow’s annual developer survey is considered to be one of the largest and most com-
prehensive surveys of people who code around the world [3]. In 2019, around 1,350 of the 90,000
respondents (∼1.5%) identifed as having a visual impairment. This is a small and unsurprising
number—people with visual impairments face systemic barriers to employment [15, 58], are less

Authors’ addresses: Maulishree Pandey, maupande@umich.edu, University of Michigan School of Information, 105 S
State St., Ann Arbor, Michigan, USA, 48109-1285; Vaishnav Kameswaran, vaikam@umich.edu, University of Michigan
School of Information, 105 S State St., Ann Arbor, Michigan, USA, 48109-1285; Hrishikesh V Rao, hrishir@umich.edu,
University of Michigan School of Information, 105 S State St., Ann Arbor, Michigan, USA, 48109-1285; Sile O’Modhrain,
sileo@umich.edu, University of Michigan School of Information, 105 S State St., Ann Arbor, Michigan, USA, 48109-1285;
Steve Oney, soney@umich.edu, University of Michigan School of Information, 105 S State St., Ann Arbor, Michigan, USA,
48109-1285.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for proft or commercial advantage and that copies bear this notice and
the full citation on the frst page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specifc permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
2573-0142/2021/4-ART129 $15.00
https://doi.org/10.1145/3449203

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 129. Publication date: April 2021.

https://doi.org/10.1145/3449203
https://doi.org/10.1145/3449203
mailto:permissions@acm.org
mailto:soney@umich.edu
mailto:sileo@umich.edu
mailto:hrishir@umich.edu
mailto:vaikam@umich.edu
mailto:maupande@umich.edu
https://doi.org/10.1145/3449203
mailto:permissions@acm.org
mailto:soney@umich.edu
mailto:sileo@umich.edu
mailto:hrishir@umich.edu
mailto:vaikam@umich.edu
mailto:maupande@umich.edu
https://doi.org/10.1145/3449203

129:2

likely to pursue higher education [2], and are less likely to be employed than sighted people [15].
The steady increase in lucrative programming job opportunities has the potential to positively
impact the aspirations and social mobility of programmers with visual impairments. Programming
is also considered a relatively accessible feld in Science, Technology, Engineering and Mathematics
(STEM); most programming is text-based, making it easier to write code with assistive technologies
(ATs) such as screen readers and braille displays. By contrast, many other STEM felds rely heavily
on inaccessible diagrams and equations.

In recent times, programming has moved away from command-line software towards graphical
user interface (GUI)-based software like IDEs and text editors. These software have several features
that advantage the sighted developers but pose challenges for programmers with visual impairments
and inhibit collaboration among coworkers [7]. Prior research on Human-Computer Interaction
(HCI) has studied the challenges that programmers with visual impairments face but much of this
work has focused on specifc tasks and individual programming tools. Challenges in mixed-ability
collaborative contexts remain understudied. This is a gap worth examining because of the social,
academic, and professional implications it can have for programmers with visual impairments. Most
software is built collaboratively; programmers often have to collaborate with other programmers
and team members, including designers and project managers [42, 49]. Challenges in collaboration
are likely to reinforce some of the ableist perceptions about the abilities of people with visual
impairments and limit their opportunities for employment and advancement [30].
In this paper, we investigate the collaborative experiences of programmers with visual impair-

ments with a focus on the following research questions: (1) What are the collaborative activities
and associated challenges that programmers with visual impairments encounter in professional
contexts? (2) How do programmers with visual impairments address these challenges? (3) What
implications do these challenges have for solo and group work? We conducted semi-structured
interviews with 22 people with visual impairments who are employed as software developers, data
analysts, IT professionals, and researchers. They frequently collaborate with colleagues as part of
their jobs. Our fndings and the subsequent discussion are relevant to employers and designers who
aim to create accessible and inclusive work environments. This work makes several contributions
to the Computer-Supported Cooperative Work (CSCW) and HCI literatures:

• An analysis of our interviews with programmers with visual impairments, which provides
insights into the logistics of working in mixed-ability workplaces. Our fndings extend prior
work by focusing on sociotechnical challenges such as communication, collaboration, help-
seeking, and biases. Our fndings also validate many of the challenges that prior work has
found with inaccessible individual tools.

• A discussion to build on the current theorizing of accessibility of group work in HCI and
CSCW. We recommend that future research in this area should examine interactions around
help, especially provision of help by people with visual impairments.

• A discussion on the accessibility of collaborative activities in programming, and design
recommendations grounded in our empirical contributions.

2 RELATED WORK

We build on prior work in two primary areas: the accessibility of programming tools (which has
thus far focused on software rather than sociotechnical challenges) and the accessibility of group
work in mixed-ability contexts.

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 129. Publication date: April 2021.

Understanding Accessibility and Collaboration in Programming for People with Visual Impairments 129:3

2.1 Accessibility and Programming

Our work focuses on the accessibility of programming in mixed-ability collaborative contexts. Prior
work in HCI has investigated accessibility challenges related to individual tools. Mealin and Murphy-
Hill were the frst to touch upon the high-level accessibility challenges in programming [51]. They
found that programmers faced challenges when using Integrated Development Environments
(IDEs), seeking information in IDEs with screen readers, and writing User Interface (UI) code.
Subsequent studies have confrmed the lattermost fnding [5, 72].
The access challenges in IDEs can be broadly categorized into four groups: (1) discoverability

of IDE features, (2) glanceability of information in various panels, (3) navigability of code, and
(4) alertability of errors and bugs [64]. These challenges are exacerbated by a lack of accessible
information about the IDE features [63]—documentation about programming tools is often de-
signed for sighted developers, relying on visual content such as screenshots [10]. In addition, the
keyboard shortcuts that programmers with visual impairments use are generally complex [10].
This increases the cost of learning and deters programmers from switching over to new tools. Com-
monly reported workarounds to these challenges include either using text editors [51] or seeking
sighted assistance [5]. However, programmers with visual impairments feel that seeking assistance
draws attention to the additional time it takes them to complete programming tasks [6]. This is
likely to be magnifed in collaborative contexts, which we examine in our study. Researchers have
developed tools to address the above challenges, such as audio-based tools to assist with navigabil-
ity [11, 35, 44, 64]. Similarly, tools like SodBeans [75] and CodeTalk [64] suggest that audio-based
tools can signifcantly reduce debugging time. There is also a push towards developing accessible
programming environments that can be integrated with various programming languages [67].
While these solutions have demonstrated promise, they result in multiple disintegrated solutions
for diferent problems. It also places the onus on programmers with visual impairments to fnd
these tools, maintain appropriate versions, and integrate them into their workfow.

These studies and systems also focus on accessibility challenges with individual tools in isolated
contexts. There is a gap in the literature about the challenges programmers face in social contexts.
Among the few exceptions are studies that focus on the experiences of students with visual
impairments in computer science programs [10, 27]. These reported that it is challenging for
students to participate in class discussions and access visual materials like slide presentations,
diagrams, and notes on whiteboards. These challenges persist in the workplace too [5, 51]. However,
the studies do not discuss the social and personal implications of these challenges for programmers
with visual impairments. In addition, the collaborative programming activities that are critical for
success in the workplace [24] remain understudied.

2.2 Collaborative Programming

The software engineering, CSCW, and HCI communities have recognized the importance of collab-
oration and communication in programming [14, 48, 68, 73]. To coordinate the development and
maintenance of complex software, the process often begins with planning the software architecture,
which is “considered to be the structure of a large piece of software, presented as a nested set of
box and arrow diagrams” [43]. The architecture communicates the relationships between diferent
components like the database, servers, and UI [38]. It enables team members to develop a common
vocabulary and facilitates communication.

Some workplaces use pair programming—a software development practice where two program-
mers work side by side to write and review code [26]. One programmer (the driver) is responsible
for typing the code, while their colleague (the navigator) gives instructions and feedback on the
code being written. Pair programming results in higher code quality, creative problem-solving,

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 129. Publication date: April 2021.

129:4

knowledge transfer among team members, and higher work satisfaction for the programmers
involved [59, 85].
Programmers and data scientists often have to concurrently edit the same code [34, 82]. They

have to adhere to agreed-upon rules of code writing and styling to maintain the readability and con-
sistency of code [65]. In large software development companies such as Google [47], Microsoft [1],
and Facebook [78], code is peer-reviewed to ensure compliance with established guidelines [33].
This process is formally known as code review. It helps teams fnd defects in code, build awareness
about the project, and fnd alternative solutions to problems [9].
The above collaborative activities have been extensively researched in the context of sighted

programmers but remain understudied in mixed-ability contexts. Our study provides a more holistic
view of the contextual work practices that develop in mixed-ability teams, revealing the interaction
between programming tools, collaboration software, access technologies, and team members.

2.3 Accessibility and the Social
2.3.1 Assistive Technology Use in Social Setings. An important part of our study was understanding
how programmers with visual impairments use ATs during collaboration. Accessibility research in
HCI is increasingly examining the situated use of ATs and emphasizes considering social contexts
when designing them [32]. In prior research, people with disabilities reported that ATs tend to lag
behind mainstream products in functionality and aesthetics [70]. They tend to attract unwanted
attention to their users due to their design [69, 70] and breakdowns [4, 71], which foregrounds
the users’ disability [89]. Thus, for people with disabilities, deciding whether to use ATs in social
settings is a negotiation between utility, avoiding attention, and feeling self-conscious due to the
resulting attention from others in the space. We add to this body of work by studying AT use in
a professional context, where such decisions can have additional implications for productivity,
perceived competence, and independence.
There are also misconceptions among people without disabilities that ATs make a disabled

person “normal” and that their ability is contingent on ATs [70]. Shinohara and Wobbrock therefore
recommend designing ATs that enable users to convey their ability and identity [71]. For instance,
studies have shown that people with disabilities value their sense of independence [46] and the
outward appearance of independence [56]. ATs should then help convey one’s independence to
others in social settings. This is known as designing ATs for “social accessibility” [71], and is likely
to foster sociotechnical access for people with disabilities and enable them to participate in social
settings [58]. Shinohara et al. suggest three AT design tenets for fostering social access: (1) involving
users with and without disabilities in the design process to ground AT design in the mainstream,
(2) considering both functional and social scenarios of AT use, and (3) using design methods that
foreground social contexts of use [69].

2.3.2 Help-Seeking and Help-Giving. Seeking assistance in the workplace is an important way for
employees to resolve their problems. Gourash defnes help-seeking as “any communication about a
problem or troublesome event which is directed toward obtaining support, advice, or assistance in
times of distress” [41]. The process of seeking help consists of three parts: recognizing the problem,
consciously deciding to act on it, and selecting a source for help [29]. Individual attributes like
gender, education, race, socio-economic status, and age have been considered when studying the
help-seeking process [13]. In the workplace, employees prefer to reach out to experts or senior
employees, as they fnd the help of higher status individuals and experts to be more constructive [57].
Help-seeking from superiors and experts is shaped by awareness of their expertise and ease of
access to them [79]. In addition, employees need to trust that help-givers will not judge them for
seeking assistance [79]. It is easier to seek help when the problem is shared by many employees, as

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 129. Publication date: April 2021.

Understanding Accessibility and Collaboration in Programming for People with Visual Impairments 129:5

this attributes the problem to external sources and reduces the risk of judgment [13]. The threat to
self-esteem and the inability to reciprocate help can deter people from seeking it [8]. This raises
questions about seeking assistance with accessibility challenges, a problem shared only
by employees with disabilities.
Help-giving is relatively less studied in research but is considered to be closely intertwined

with help-seeking and requires interpersonal interaction among employees. It relies on employees’
“sense of citizenship” since they are not formally necessitated to provide help to others [13]. The
desire to reciprocate assistance is a key motivator for help-giving in the workplace [40].

Research has attempted to understand when people with disabilities seek help and how it afects
them. When seeking assistance as a recourse from malfunctioning ATs, the needs of the people with
disabilities are often misunderstood and their autonomy is overridden [84]. For instance, people
with visual impairments have reported that sighted people tend to navigate them and provide
information that is not useful. Prior studies have referred to this as unwanted help—assistance
provided based on incorrect assumptions about people’s abilities and without due understanding
of their needs [76, 84]. Seeking assistance also has social costs [83, 88], making the person appear
less competent and highlighting their disability. In research with people with visual impairments,
participants indicated that they felt the need to reciprocate the help and did not want to burden
their friends and family [21]. Instead, they preferred using sighted assistance from crowd workers
[21, 61]. This adds more perspective to the question we raised earlier: how do programmers with
visual impairments feel about reaching out to sighted people, including their colleagues?

2.3.3 Accessibility in Mixed-Ability Contexts. There is an increasing emphasis on understanding
accessibility in mixed-ability contexts [22, 23, 87] and designing technologies that respond to
peoples’ abilities [86]. This is evident from the various technology-mediated solutions designed to
facilitate group work in online photo-sharing [50, 88], learning [36, 52, 54, 55, 77], sports [12], and
music creation [60].
Branham and Kane studied how accessibility was achieved and maintained by inhabitants in

the context of home spaces [22]. They defned this as collaborative accessibility—“taking active
roles in co-creating an accessible environment”. They found that accessibility was intertwined with
personal relationships. Thus, accessibility (and the lack thereof) afected how couples or housemates
shared experiences, which in turn impacted the well-being of their relationships. Addressing certain
inaccessibility-related challenges could foster kindness and care. In such contexts, technologies
should be designed keeping in mind the interdependencies within such relationships [16]. Tech-
nologies should also be committed to helping people achieve what matters to them and not be
focused solely on accomplishing tasks [18].
It has been shown that people with visual impairments have to perform invisible work [74]

to address accessibility challenges. While accessibility is created through coordination between
multiple technologies and people [25, 46], the onus falls largely on people with visual impairments
[31, 83]. For instance, Das et al. observed that software updates often break the accessibility of
writing tools and ATs. People with visual impairments have to reconfgure the settings and relearn
the keyboard shortcuts to continue to collaborate with sighted people on writing projects [31].
Thus, people have to work beyond their professional responsibilities to fnd accessible solutions
[23] and continually advocate for their access needs [81]. The above studies demonstrate the need
to develop a situated understanding of technology use to uncover its social implications for solo
and group work. Our research contributes to this growing body of work.

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 129. Publication date: April 2021.

129:6

3 METHODS

3.1 Participants
We conducted semi-structured interviews with 23 people with visual impairments (19 male, 4
female). The eligibility criteria for our study were that participants should be at least 18 years
old and self-identify as programmers. We recruited participants through personal contacts (n=3),
snowballing (n=2), and posting the recruitment call online (n=18). We posted on the program-l1

mailing list (n=16), which comprises programmers with visual impairments, and r/blind2 (n=2), a
subreddit for people with visual impairments.

Participants (P1–P23) were between 24 and 73 years old. We excluded one participant (P4) from
our fnal analysis because he self-reported his visual impairment as low vision while the remaining
participants identifed as nearly or fully blind. As a result, P4 used screen magnifcation on his
digital devices while the other participants used screen readers or a combination of screen readers
and braille displays. The screen readers mentioned by the participants included NVDA, JAWS, Orca,
and ZoomText.
Table 1 in the Appendix lists the demographic details of each participant, their self-described

visual ability and programming experience, the programming languages they currently use, and
the nature of the organization they work(ed) in. Our participants included software engineers, data
analysts, IT professionals, freelancers, and researchers. They were employed in software companies,
universities, research organizations, and NGOs. Our participants were based in the United States,
Europe, Africa, India, and China. In some cases, there are very few professional programmers with
visual impairments in the entire country, making it relatively easy to identify the participants.
Therefore, to preserve participants’ anonymity, we are not listing the countries they came from.

3.2 Procedure

We obtained approval to conduct the study from our university’s Institutional Review Board
(IRB). We conducted the interviews on participants’ preferred platforms, which included phone,
Skype, Google Hangouts, and WhatsApp. Interviews typically lasted 45–65 minutes and were all
conducted in English as the participants were comfortable with the language. Each interview was
audio-recorded (with participants’ informed verbal consent prior to the start of the study) and
transcribed verbatim by a third-party transcription service (approved by our university’s IRB). The
frst author verifed each of the transcripts. Each participant was compensated with an Amazon
gift card worth USD 15 or the equivalent amount in their local currency.
The questions in the interview protocol were organized across three sections. The frst section

focused on the participants’ background3, programming education, and experiences. The second
section elicited details about the software they used for programming. We asked them to describe
the reason behind their choice of software and how it ft into their programming workfow. We also
asked them about the accessibility challenges they faced using this software and the workarounds
they adopted to address the challenges. The last section focused on their collaborative experiences
with other programmers. In the initial 5–6 interviews, we asked participants to share the collabo-
rative programming activities they participated in. This led to participants naming activities like
code reviews, pair programming, UI development, etc., and giving an overview of how they carried
out these activities. In the latter interviews, we asked more specifc questions about the existing

1https://www.freelists.org/list/program-l
2https://www.reddit.com/r/Blind/
3We made a conscious decision not to ask the participants about their visual impairment. We instead asked them about their
AT usage in the context of programming. When answering these questions, most participants described their visual ability.

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 129. Publication date: April 2021.

https://www.freelists.org/list/program-l
https://www.reddit.com/r/Blind/

Understanding Accessibility and Collaboration in Programming for People with Visual Impairments 129:7

practices around these activities and the processes through which participants adopted or modifed
these practices to achieve collaboration.

3.3 Analysis
Before starting the analysis, we pre-coded [66] the data as we conducted the interviews. We high-
lighted quotes and sections in printed transcripts, and we also wrote analytic memos [66] to identify
emerging themes and missing details in the data to refne the questions for subsequent interviews.
In the frst round of coding, we used descriptive codes [66] to identify various programming ac-
tivities, collaborative activities, challenges faced by participants, and workarounds. We further
organized programming activities into three categories: (1) the pre-programming stage, focusing on
installation and integration of various tools; (2) the programming stage, focusing on code writing,
debugging, and compiling; and (3) the post-programming stage, focusing on code sharing. In the
second round, we used pattern coding [66] to reorganize the codes from phase 1 into fve high-level
themes: (1) group work, (2) ecosystem of tools and assistive technologies, (3) sighted assistance, (4)
extra work, and (5) social and personal implications.

4 FINDINGS

Our fndings are organized into three broad sections. We begin by describing the tools that par-
ticipants used to perform programming and related activities. Next, we discuss the accessibility
challenges in collaborative programming activities and the practices that participants co-created
with their colleagues to address these challenges. In the fnal section, we discuss the various social
interactions like help-seeking and advocacy that participants performed to negotiate these practices.

4.1 Tools Used in Collaboration

Being a programmer involves much more than writing code [62]. Our participants mentioned that
they spent signifcant time on project planning, communicating with colleagues, and coordinating
with others to write code. In this section, we elaborate on the diferent tools that participants used,
how these informed their programming workfows, and the accessibility challenges participants
faced. We fnd that making programming tools (such as IDEs and debuggers) accessible is necessary
but not sufcient; for efective collaboration, the entire ecosystem of tools needs to be accessible.

4.1.1 Choosing an Editor. Prior work has discussed the various accessibility issues within IDEs4 and
text editors5 [5, 51, 64]. We add to prior work by reporting on how participants selected and
set up their programming environment. This initial process also presented accessibility
challenges that could take signifcant time to resolve and impact programming:

I think for most people that would probably agree that it’s like setting up the [programming]
environment to start with, takes the time and getting all the tools lined up. – P20

Participants described the various steps they would perform before setting up an editor. First,
they would assess the compatibility of the software with their ATs. The most common way to
assess accessibility was checking if the software documentation mentioned screen readers and
keyboard shortcuts. In other cases, participants reported emailing the developers of the IDEs to
check whether they had been tested with screen readers. They would also post on mailing lists
dedicated to programmers with visual impairments. On these mailing lists, participants did not
have to provide additional details about ATs to other members. Plus, members would share their
personal experiences with code editors, leading to a more informed choice. By contrast, members
4Integrated Development Environments (IDEs) allow users to write, compile, execute, and debug code within one application.
5Text editors only allow users to write code, meaning they must use a diferent application to compile, debug, and execute
their code.

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 129. Publication date: April 2021.

129:8

of larger Q&A sites like Stack Overfow seemed to have a limited understanding of ATs and could
not provide useful advice:

No one on Stack Overfow is discussing the fact that in order to use Visual Studio Code
with JAWS, you have to restart JAWS or you can only have one Visual Studio code window
open at a time or you know that there’s some weird interaction with the virtual cursor.
Like no one’s going into that level of, of niche detail on Stack Overfow. – P9

The next step was identifying the installation options available to participants. Participants
preferred to install software through the command line, but this option was not available for many
editors. The more frequently available alternative was the installation wizard6—a GUI with a series
of dialog boxes for installing and confguring software. Participants reported that sometimes the
GUI “installers aren’t accessible whereas the programs themselves are” (P1). Thus, they would have
to seek sighted assistance to help install the programming tool and its packages (e.g., to click
inaccessible combo boxes and pop-ups).
Beyond installing local development environments, programmers must also set up the envi-

ronment in which their code will run. This includes setting up deployment infrastructure and
referencing third-party Software Development Kits (SDKs). SDKs—which allow developers to ac-
cess resources like proprietary data, functionality, or computing power—have become increasingly
popular with the rise of cloud computing platforms. However, developers can also face accessibility
barriers when confguring these SDKs.

To start programming for the Alexa, you need to create an account on their website [...]
you need to submit the form [...] And I need to spend like fve minutes looking for that
[submit] button and I accidentally like scrolled up to the top, and then I saw that on the
top it says ‘Submit’. So those are some issues, they can cost time until you fnd them. – P1

Participants observed that their sighted colleagues did not always have to go through a similar
process when installing or updating their programming environments:

Everyone else sighted who is starting out can just download this program, click the big
green button, and there you go, you are done. But I have gotta learn the command and all
the switches to use, and how to specify a path on the command line, just extra stuf! – P3

Many steps from the process outlined above had to be repeated when participants changed
their code editors. Further, participants’ choice of code editors was not determined individ-
ually; several social and logistical factors infuenced their choice. For starters, the decision
depended on the complexity of the project, often determined by the number of lines of code, the
number of fles one has to work with, and the number of programmers involved. Many participants
felt that it was faster to “write a small program, say, 100 to 200 lines program” (P23) in a text editor.
But with projects involving longer programs and multiple fles, they preferred an IDE:

I think where it gets taxing is when you have to maintain a project, say you’re developing
a web application in Java. Then it’s so hard to do all the confict fles and just pair the
WAR fle and everything manually... the IDE does it so easily. – P23

Complex software projects generally also involve larger teams with more programmers. If the
programmers on the team were using a particular IDE, participants preferred using the same IDE to
be consistent with their colleagues. This often meant compromising on accessibility, and additional
work on our participants’ part. For example, P17 had to switch between two versions of Visual
Studio for improved accessibility and to keep the codebase backwards-compatible for his team:

I have both [Visual Studio 2017 and 2019 editions] installed on my computer and sometimes
I’ll need to bounce into 2019 because it works a little bit better for some accessibility. But I

6https://en.wikipedia.org/wiki/Wizard_(software)

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 129. Publication date: April 2021.

https://en.wikipedia.org/wiki/Wizard_(software)

Understanding Accessibility and Collaboration in Programming for People with Visual Impairments 129:9

make sure that any of the builds and everything I do really comes from 2017 because we
want it to be in the same thing that everybody’s using. – P17

The choice of programming tool also depended on how easily participants could switch to
applications they were using concurrently. Generally, the teams used software that was designed
for Windows and Mac operating systems. As P9 pointed out, Linux was his preferred operating
system for programming and would allow him to program more efciently. However, the screen
reader on Linux would reduce the accessibility of other applications he used in parallel:

I fnd that Windows is best accessibility-wise, and it does ft best into the work infrastructure
[...] it’s primarily Windows directory, Outlook, Ofce 365 [...] If I really wanted to try to
use Linux, then that would be supported [...] But I look at Linux accessibility every once in
a while, and I think that in the GUI with Orca and all that it’s just not far enough along
for me to really be competitive. – P9

4.1.2 Working Outside of the Code Editor. Besides IDEs and text editors, participants would interact
with other software related to project management (e.g., JIRA, Microsoft Teams), fle sharing (e.g., Git,
Microsoft Teams), communication (e.g., Slack, Skype), software design (e.g., LucidChart, Microsoft
Visio), and internal tools (such as code-reviewing platforms, databases, virtual machines, and web
servers). The information on these software informed their programming activities. Therefore,
accessibility breakdowns in these tools had a direct bearing on their ability to carry out their
responsibilities:

The laptop that I’m using at work right now only has 8 gigs of RAM and it has an integrated
graphics card rather than a dedicated graphics card [...] I’m having say a SQL server
sticky and Excel or maybe even Visual Studio Code open all at the same time as well
as ZoomText. ZoomText is so graphically intensive, it is using 60 to 90% of the GPU at
any given moment, to magnify whatever I may need to be magnifed. But all that is also
putting stress on the computer’s memory. So the computer slows to a crawl. – P7

The above quote informs us about the complex ecosystem of tools that participants have to use
simultaneously. It also tells us that the accessibility challenges can present themselves repeatedly
due to concurrent use of tools. Next, we share specifc instances of challenges that participants had
to tackle on a regular basis.
Participants often had to use software like JIRA to track issues in their projects. They were

required to log into the software to retrieve the project features and bugs assigned to them. However,
the accessibility challenges in the software necessitated seeking sighted assistance:

I get someone visually and they come over, I say, “Okay, Joe. You told me that there is a
ellipses button, that’s a status button there. I’m not fnding it!” And then he’ll stand next
to me [as] I press [the] tab key. – P17

P17 described how he worked with a sighted colleague, Joe, to overcome the accessibility challenges
with JIRA. P17’s screen reader, JAWS, is unable to read some of the JIRA buttons that are visible to
sighted people. As a result, P17 is unable to identify the button he should click to bring up the tasks
assigned to him. Joe verbalizes the content on the screen and announces the results of interactions
that P17 performs with his screen reader. Thus, completing a seemingly simple task like clicking a
button and determining its result necessitates sighted assistance and additional work, i.e. a series
of interactions without which they cannot complete their job as a programmer.

Similarly, many participants reported using software such as Slack, Skype, and Microsoft Teams
to communicate with team members, text project details, and share code snippets. These software
enabled informal conversations and quick coordination for sighted colleagues. However, the acces-
sibility constraints of the software did not aford the same ease and efciency of communication to

129:10

our participants. They shared that it was “daunting and frustrating” for them to “go through tons
of threads” (P11) and locate the messages pertinent to them. When colleagues would use these
software during remote collaboration to share their screens, participants would “only get the talking
part and [...] miss out on the screen share portion” (P9).
Participants preferred managing the accessibility challenges independently. However, the pres-

ence of deadlines, the time required to implement diferent solutions, and the increasing frustration
of not fnding “a way around” (P5) necessitated seeking sighted assistance. More importantly, these
challenges had an impact on their ability to write code and collaborate with their colleagues, as we
describe in the next section.

4.2 Emergent Practices in Collaborative Programming Activities
Our participants shared with us details of activities where they collaborated with other members of
the team: (1) code writing and styling, (2) code reviews, (3) pair programming, (4) software design,
and (5) UI development. Our analysis revealed that they worked with their colleagues to modify the
established work practices around these activities, resulting in practices that were more accessible.

4.2.1 Code Writing and Styling. When programming as part of a team, programmers often have to
follow coding standards. These are generally rules regarding the visual presentation of code so that
it is more readable and navigable, and sections of code are easily identifable. For example, Google’s
JavaScript style guide7 specifes rules regarding the use of braces and indentation, declaration of
variables, addition of comments, and more.

Participants reported that they learned the code-styling rules when they started collaborating
with sighted programmers. For instance, indenting code blocks enables sighted programmers to
easily identify relevant sections of code when scrolling past them [53]. However, since indenting
did not serve any visual purpose for our participants, they did not consider putting additional
spaces in the way they wrote code:

From very early on, I got into habits that were better on a braille display. You don’t put
spaces around equal signs because [...] you could ft two more characters on your braille
display [...] I would always put brace on the same line [...] So kinda stylistically I learned
some things that I have since discovered are not mainstream. – P3

The quote highlights that participants developed code-writing habits to make the best use of the
limited space available on the displays (typically 20–80 characters). Thus, their manner of writing
code was at odds with that of their sighted colleagues. When possible, they preferred removing
characters like extra whitespaces, braces, and trailing punctuation in the code they received from
their sighted colleagues. Sighted programmers’ use of whitespace characters like tabs and spaces
to indent code created problems on screen readers too. These characters were announced on
screen readers and slowed down the participants during code reading and navigation. Thus, they
preferred removing the indentations from the code. Participants further spoke about the lack of
nuanced information on screen readers. For instance, inconsistent use of case styles led to illegible
pronunciation on screen readers. While poor capitalization and naming are frowned upon by
sighted programmers too, they can make sense of it visually. This information is invisible to screen
readers:

It shouldn’t all be, ‘thisismyname’. The variable is called ‘thisIsMyName’. It shouldn’t
all be in lower case! It shouldn’t all be upper case! – P17

Participants reported that they found it easier to navigate, search, and edit their own code as
compared to other people’s code. Working with others’ code was more challenging due to the

7https://google.github.io/styleguide/jsguide.html

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 129. Publication date: April 2021.

https://google.github.io/styleguide/jsguide.html

Understanding Accessibility and Collaboration in Programming for People with Visual Impairments 129:11

combination of (1) inaccessibility of programming software, as described in the previous
subsection; (2) limitations of the access technologies in providing important information,
described above; and (3) how their team members wrote code, described above. Participants
had therefore developed code-writing strategies to work alongside other programmers:

I was using the comments and the separated dashes [...] when you hear a line being read
as dash dash dash dash dash, then that’s how somebody would know up here comes my
next comment. This and kind of just as much description as possible. – P11

I had made this thing that everyone would put their initials followed by the time of when
they were changing a particular code block in comments above the code block and then
mark begin. And then after they’re done changing N number of lines, at the end they
would again put a comment and say end of changing this. – P23

Thus, strategies like unique commenting style and descriptive comments enabled participants to
identify sections in the code efciently without assistance. Participants also shared these strategies
with their colleagues, either informally or in code reviews (next section), who were often willing to
follow them. For the beneft of sighted programmers, they would follow visually focused styling
rules. This demonstrates that participants and their colleagues would collaborate on establishing
code-styling rules that were better suited for mixed-ability programming contexts.

4.2.2 Code Reviews. Some participants reported that their teams had formal code reviews, through
which some of the more complex practices related to code writing were developed. Participants
shared how code reviews made sure everyone on the team wrote (1) shorter code segments that
made navigation easier on ATs; (2) documented the code, which reduced the task of information-
seeking and made searching the codebase more efcient; and (3) reduced redundancy in code,
which again positively afected code searching:

Everything in our code is just completely modularized. If you have more than 30 lines of
code in a function, everyone’s like refactor this put it into helper fle. – P18

The activity also provided a platform for all programmers to deliberate on the best code-writing
strategies and share tips for improving code clarity. Thus, code reviews ensured that our partic-
ipants did not have to articulate their preferred code-writing practices to their colleagues
separately—they could do so as part of the activity. This meant less work on their part in “getting
people on the same page to code in the same way” (P11). Plus, participants knew what was expected
of them in terms of code styling and knew what to anticipate from their colleagues:

By then doing that, which is sticking to standard practices for programming, then it’s
benefcial for all. – P17

Participants spoke positively about the code-review activity if the software used to facilitate
it was accessible. This allowed them to perform efciently without asking others for help. P18
compared his experience at his current organization with that at his previous organization. In the
current workplace, his team used a web-based code-review system that was accessible with screen
readers. He explained he did not have to ask for accommodations and he was able to participate
in the activity like his other colleagues. In his previous workplace, a sighted employee was hired
specifcally to assist him with the inaccessible code-review system. This not only afected his
collaboration experience but also impacted his productivity. It would take him a “couple hours a
day” (P18) just to share his comments on improving the code. This reemphasizes the importance of
looking beyond the accessibility of programming tools for collaboration in mixed-ability contexts.

4.2.3 Working Together and Pair Programming. Many participants reported that their teams prac-
ticed pair programming. As the related work section describes, one programmer (the driver) is

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 129. Publication date: April 2021.

129:12

responsible for typing the code while their colleague (the navigator) gives instructions and feedback
on the code being typed. Participants expressed that while they could perform as the driver, they
could not easily reverse the roles and give directions as the navigator:

So usually I’m the person writing the code because obviously I can’t look over the shoulder
[...] I would like to have to be able to do the same thing, but it’s not essential, me being the
person looking over the other person’s shoulder. – P19

The quote shows how participants’ contributions in pair programming are limited since they cannot
access their colleagues’ computer screens. The complications arise due to (1) lack of access to
colleagues’ computers, (2) social and legal limitations with regard to the installation of ATs, and (3)
colleagues being unable to describe all the details of the problems to participants. Next, we describe
each of these in detail.
Participants mentioned that ATs were generally not installed on their colleagues’ computers,

meaning that the code was inaccessible to them during real-time collaboration. This not
only made synchronous problem-solving challenging but it also prevented participants
from providing help to their colleagues in real time. This was exacerbated due to sighted
colleagues “trying to describe what’s going on” while “operating a computer” (P9). This can be
understood as sighted colleagues attempting to explain visual and textual details that would be
important for participants to provide assistance. To work around these challenges, participants
preferred their colleagues to share the code with them. This way they could read the code on their
computer that already had the ATs set up:

My coworkers either need to provide things in text form or they need to come and sit with
me or I need to be the one driving the computer that’s used to fnd the problem. – P9

P9’s quote reveals the breakdown in providing real-time assistance. He would ask his colleagues to
email him the code snippets. Other participants also echoed a strong preference for email over the
chat feature in software like Slack and Microsoft Teams. As section 4.1.2 describes, teams would
use these software to share code snippets but accessibility challenges prevented our participants
from locating the right message efciently.
Another alternative was adopting a multi-step process, which defeats the purpose of pair pro-

gramming to a degree. In this process, the code is uploaded to a shared repository, from where it
gets pulled and set up on the computer, and then the changes are reviewed. This approach again
does not have the benefts of working side by side, such as discussing issues spontaneously and
providing feedback in real time. It is also time-consuming, especially with large codebases.
P7 shared her workaround for achieving near real-time collaboration instead of following the

series of steps described above. She used ZoomText, an AT that combines magnifcation and
screen-reading technology. Until very recently, she would switch of text magnifcation during
pair programming. This allowed her sighted colleagues to read and navigate the code on her
computer but prevented her from understanding the changes they were making in real time. After
the changes were done, she would switch on magnifcation again to review the changes. This
provided intermittent access to the participant and her sighted colleague. P7 then went on to talk
about a recent feature that made screen sharing and, consequently, pair programming easier:

Dual monitors support was added like maybe a year ago [...] it gives you the option to
operate one screen magnifed. So my screen could be magnifed for me [...] with that same
image on another screen in regular size. So if I’m working with someone who’s sighted
and we have two monitors, then that makes it a little bit easier. – P7

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 129. Publication date: April 2021.

Understanding Accessibility and Collaboration in Programming for People with Visual Impairments 129:13

Thus, the collaboration still happened on her computer but it enabled synchronous work. We also
see how the slow introduction of features to ATs, compared to mainstream technologies, negatively
impacts the collaborative experiences of programmers with visual impairments.

She and a few other participants said that sometimes they would install ATs on their colleagues’
computers, provided they were willing:

They allow for a free trial version, that’s roughly 45 minutes in duration. If I have a
coworker [...] if they’re willing to install it, then they can put it on their computer for us to
troubleshoot a bug or something [...] So that’s something that’s helpful and useful. – P7

I have a professional license for that [JAWS] [...] that just allows me to be able to install
that on any of my work computers [...] as long as no other visually impaired person or
other people actually use that software package. – P17

This reveals that participants have to switch and share computers in the workplace to collaborate
efectively. To access colleagues’ computers, they may have to reinstall the AT. But sharing of ATs,
specifcally screen-reader software, is complicated by the limits on trial versions, policies around
AT use, and due consent of colleagues. In addition, the onus of establishing access generally falls
on the participants and not their colleagues.
When it was essential for both the participant and their colleague to be working on their

respective computers together, they preferred using communication software to do a screen share
with the participant sharing their screen. This can be thought of as switching to a collaboration
style akin to remote pair programming. The screen reader did not interfere with their discussions.
Plus, the screen share allowed the sighted colleague to view where the participant was in the
codebase. Both programmers could paste specifcs in the chat window to facilitate efcient search
and edits to the code:

I’ll pull the fle up that they’re doing as well and they say what they’re looking at [...] And
then by us having the instant message window open, they can paste in the line of their
code that they’re talking about [...] or they can tell me the line number. – P17

Thus, participants needed to access the information on their computers as well as the information
on their colleagues’ to achieve collaborative tasks. They had to collaboratively establish diferent
workarounds with their colleagues to achieve what sighted programmers are able to carry out
relatively easily by virtue of being able to view each other’s screens. This shows that accessibility
of the end user’s computer is necessary in the workplace but not always sufcient.

4.2.4 Sofware Design. Participants reported facing challenges in accessing and creating diagrams
that represent the software architecture. Participants shared that their teams used online tools
(LucidChart8, Microsoft Visio9, draw.io10) and whiteboarding to prepare the diagrams, which were
often presented in team meetings. Participants felt their colleagues “couldn’t translate those diagrams
into words” (P16) and describe all of the necessary details to explain the software architecture.
The lack of access to software design (1) impacted participants’ understanding of the
software, (2) prevented them from providing feedback to their colleagues, and (3) limited
their contributions to the project:

I wouldn’t know how the computers connected together [...] So I couldn’t contribute there
[...] the way the others worked was anyone could have managed issues of the sequencing
of the design process [...] I didn’t ever have a sequence of jobs that needed fxing. It was
always just a single program that was part of a process that had a breakdown in it. – P16

8https://www.lucidchart.com/
9https://en.wikipedia.org/wiki/Microsoft_Visio
10https://drawio-app.com/

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 129. Publication date: April 2021.

https://www.lucidchart.com/
https://en.wikipedia.org/wiki/Microsoft_Visio
https://drawio-app.com/

129:14

P16 further spoke of the visual nature of the “progress reports of a program”. His colleagues could
view the reports to measure the impact of their contributions while he had to acquire the same
information from his boss. He was unable to take on more active roles and had to “difer to the
team leader for the jobs to be done”—only doing the jobs that were accessible according to the
team leader. Thus, his contribution was pigeonholed to code writing and troubleshooting. It is
important to mention that P16 is a retired software developer. He was recounting his past work
experiences in the 1970s and 1980s, and it is likely that his experiences may not generalize to that
of programmers today. However, it highlights how lack of access to high-level software design can
result in programmers with visual impairments being assigned fewer responsibilities in comparison
to sighted programmers.

Teams often had the requirement that the architecture should be prepared visually and not rely
on descriptions, especially for complex projects. P18 shared that, for minor projects, he wrote out
descriptions of the system design along with the functions that needed to be implemented. He
shared the descriptive design with his team to seek their feedback in design meetings. For larger
projects, he would “try to put of or skip the step”. P18 mentioned that his performance on this
activity had even come up in his annual review. His manager felt that creating and presenting these
diagrams in meetings showcased his contributions to other teams and therefore insisted on visual
diagrams. However, with the available “design tools and design languages”, P18 could not “really do
much except write a description” of what he was doing. In P18’s case, he and his manager agreed to
collaborate on the activity:

My manager said maybe I can write up a description of what all the components do and
how they all work. Then he can sit with me and help me make a component diagram,
which he says should be pretty simple and straightforward. – P18

The co-creation of the system diagram was going to reduce the extra time and emotional stress
that P18 would have to go through if he were to work on it alone or seek help from others. The
nature of this collaboration also presented him as the primary contributor, since he was writing
the descriptions on which the diagrams were based:

If he can help make the little diagram based on what I wrote in the text [...] That’s just
a relief! [...] I’m not one of those people who cares about I need to independently do
everything myself. [...] As long as someone helps me get it done and I’m doing the majority
of my own work, that’s fne with me. – P18

4.2.5 UI Development. Prior work has mentioned UI development as particularly challenging
due to the visual nature of the activity [51, 72]. We add to the prior work by describing the
nuanced reasons due to which participants had to seek sighted assistance frequently in
this activity. These included (1) high-level design specifcations, (2) inaccessible design
documents, and (3) inaccessible UI developer tools. We also share practices and workarounds
that reduced the need for sighted help, enabling participants to work relatively independently.
Generally, the development of the interface is preceded by a discussion phase where designers

and programmers come to a common understanding of the form, functionality, and interactions of
the GUI. Often these discussions happen over visual artifacts like wireframes and design documents,
which developers refer to as they write code. These artifacts contain details on colors, sizes, and
placements of GUI elements on the screen. Alternatively, the discussions can be informal, with the
developers being informed of the general layout and interactivity of the GUI by either the designer
or the manager. In this case, the design guidelines are high level and strict rules and guides are
not provided. The decisions regarding the granularity of design documentation depended on the

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 129. Publication date: April 2021.

Understanding Accessibility and Collaboration in Programming for People with Visual Impairments 129:15

nature and practices of the workplace. For instance, one participant reported that her previous
organization was fairly small and therefore developers were also responsible for the design:

They [the employer] didn’t really have the concept of teams, everyone was an individual
contributor [...] So when you have an independent project that you are working on, you don’t
just code, you also have to design the interface. [...] it [the UI design] was communicated
in text [...] these are the forms and these are the controls that we need [...] nothing in detail
like, this should be ‘10 pixels away from this’ sort of thing, no! – P23

When working with loosely defned documentation, participants had to seek sighted as-
sistance often. We noted multiple challenges for our participants. First, they could not verify the
aesthetics of the UI as sighted programmers could. They could not decide if the UI “looked good
enough” (P23) and needed sighted people’s opinion. Second, when inspecting the visual output
with screen readers, it would announce the UI elements linearly, i.e. in the order in which they
appeared in the code. Thus, participants could not conclude if something was of the screen margins.
Similarly, the UI element could be present on the screen but not necessarily be visible:

Sometimes some of them will overlap with each other... And though I could hear two
diferent buttons but it could be the buttons are on top of each other. – P23

Third, in the context of web-based applications, a sighted programmer can use web-inspector tools
in the browser to make temporary changes and inspect how this modifes the interface. However,
web-inspector tools were not accessible to the participants. For example, P11 shared how the screen
reader would not announce the URLs on HTML pages nor inform her about text styling, i.e. whether
it was italicized, bold, underlined, etc. To verify this information, she had to refer back to the HTML
and CSS code in the text editor. She would have to search and navigate to the right section of the
code to get the necessary information and make the changes. This reveals the additional steps that
she has to perform compared to a sighted front-end programmer. Finally, participants shared that
it was difcult to calculate measurements for width, height, margins, paddings, and placements of
UI elements. P6 shared one way was to calculate the start and end positions of each element on the
web page when designing the layout:

If you want a div on a page that’s 100 pixels wide and 100 pixels tall, [...] a reasonable
point would be for 10 pixels from the left edge, 10 pixels from the top edge [...] That gives
you a good placement on where you could put your other stuf on the page. But it failed at
a lot of points because then people told their stuf wasn’t lined up right [...] you still need
have to have somebody spot check it. – P6

As P6 explained, this still required spot-checking from a sighted person. It was also a mentally
intense process that could not be scaled for complex websites. Screen readers with the right add-ons
could announce the measurements in percentages but this again required mental calculations on
the part of the participants. P6 described his work on the Developer Toolkit (DTK)11, an NVDA
add-on to support the visually impaired programming community in UI development.
The access challenges also depended on the kind of UI participants were developing. Many

participants shared that one of the advantages of mobile UI development was that they could verify
the output and interactions by installing the mobile app on their phones:

I can get an idea how big the button is relative to the window and the screen and I can get
an idea where the edges of the buttons are. I think that’s quite nice. You slide your fnger
across a touch screen and the moment you encounter the button, you hear its name [...] It
makes it very easy to explore graphical layouts. – P15

11https://addons.nvda-project.org/addons/developerToolkit.en.html

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 129. Publication date: April 2021.

https://addons.nvda-project.org/addons/developerToolkit.en.html

129:16

Thus, touchscreen interfaces alleviated the issues pertaining to verifying visual feedback. However,
participants also observed that writing the code for mobile UI development had certain drawbacks.
While web UIs could be programmed by writing HTML/CSS/JavaScript in text editors, mobile UIs
often had to be developed within IDEs. As reported in prior work, IDEs are more complex software
and present several accessibility challenges compared to text editors to programmers with visual
impairments. For UI development, IDEs have features that are supposed to facilitate quick UI design
(e.g. Android Studio’s Layout Editor1012, Visual Studio’s Windows Forms Designer1113). Sighted
programmers can use these features to drag and drop the widgets and prepare the visual design
relatively quickly. The same features present signifcant mouse work for our participants, requiring
them to write the entire UI “by hand” (P12):

The designers for user interfaces are not accessible [...] It doesn’t read your controls, it
doesn’t review pixel presidency, it doesn’t read you anything in the UI designer. – P12

The challenges of calculating pixel positions and requiring spot-checking assistance
were signifcantly alleviated when participants were provided detailed design documents.
This enabled participants to work faster, as they could look up the measurement details in the
documentation and program accordingly. However, the design documents needed to be prepared
to be accessible on screen readers. Participants had to articulate to their team members how to
prepare accessible documents (e.g. not relying on screenshots only) and include design details for
all UI elements in textual format:

For instance, some designs that I would receive would have [...] dividers between diferent
buttons [...] And if they weren’t specifed in text [...] I wouldn’t be able to see them [...]
they would follow my instructions on what would make my job faster. – P1

Participants also reported spending time with the designers to understand the layout of the UI.
They felt that their colleagues generally struggled to explain things verbally, a detail we reported
in the context of pair programming and system architecture diagrams too. Thus, participants felt
the onus was on them to ask the right questions to understand the UI design, especially
in the initial days of the project:

When I put the question very precise one [...] They answer and they are eager to answer.
But if I ask for example, can you give me an idea of the layout, why it is too general, and
they used to say maybe much more than I need or maybe they miss some parts. It’s to me,
just to try to at the beginning, to ask very, very precise questions. – P13

Accessibility challenges in UI development also shaped many participants’ decisions to pursue
programming that would require them to deal with the front end as little as possible:

It’s easier that there are far fewer accessibility concerns with back end and as far as its
employment goes, they have a need for it. – P9

Participants who had specialized in front-end programming felt they faced signifcant chal-
lenges fnding employment. Participants shared several instances of employers doubting their
programming abilities and the credibility of their education:

I was more than qualifed for some of these jobs, like web designer, or web developer one
at a university. I went to this interview and it was a panel interview with the manager of
the group and the whole entire team. [...] Well, in the interview, the manager of this group
actually asked me how many web design classes were you exempted from? – P6

12https://developer.android.com/studio/write/layout-editor
13https://docs.microsoft.com/en-us/visualstudio/designers/windows-forms-designer-overview?view=vs-2019

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 129. Publication date: April 2021.

https://developer.android.com/studio/write/layout-editor
https://docs.microsoft.com/en-us/visualstudio/designers/windows-forms-designer-overview?view=vs-2019

Understanding Accessibility and Collaboration in Programming for People with Visual Impairments 129:17

4.3 Social and Personal Implications
In the previous sections, we have discussed the challenges participants faced in collaboration
and how they managed these challenges. In this section, we describe the impact of accessibility
challenges on seeking accommodations and help.
Most participants, independent of the country they resided and worked in, hesitated to ask

their employers to provide them with commercially available ATs like JAWS, ZoomText, and
braille displays. Participants felt their employers would perceive it as an expensive request and
felt uncomfortable asking their “boss to spend so much money” (P12). A few participants felt their
request would be seen as “excuses” (P23). Given the challenges in fnding employment, participants
preferred to not emphasize lack of access as it may be misinterpreted as a lack of programming
ability. Thus, participants preferred switching to free and open-source alternatives or using their
personal licenses instead of asking employers to provide the resources they were profcient with.
As explained in the previous sections, participants often established access by explaining

their preferred work practices through one-on-one and informal conversations. They gave
small demonstrations on how they used ATs to “show people [rather] than to tell them” (P15) about
potential breakdowns. They felt such interactions were better at familiarizing colleagues with ATs,
their workfows, and changing misperceptions about their programming ability. It also made their
colleagues more open to adopting their preferred strategies:

So what I try to do is try to teach as I go because I fnd that if you break things up, it
doesn’t seem as daunting and then the more they get to know what your style is, little by
little, it happens naturally, you know. – P11

While informally educating collaborators made them more amenable to changing their work
practices, it was also a slow and laborious process. Participants shared that explaining certain
concepts verbally was “tough” (P19) and they had to “remember the virtue of trying to be patient with
people” (P11). Participants also felt that not everyone was open to changing their perceptions about
them, in which case they had to advocate more strongly for themselves or avoid such colleagues:

You kind of have to take a step back and you say, “Hey, don’t disregard me, I know what
I’m doing” and sometimes people listen, sometimes they don’t! I try to avoid the people
that don’t listen and work with the people that do. – P19

Participants shared that advocacy and collaboration were easier when their team had employed a
person with a disability previously. In this case, sighted employees had some experience of working
in a mixed-ability context and participants did not have to put in additional work in educating
their colleagues or requesting access. They found that sighted colleagues were more comfortable
modifying their practices to cater to them:

I think I sort of had an easy time getting into the workplace because they already had
experience with a blind employee. – P15

Participants also spoke about their experiences in organizations that had policies in place with
regard to inclusion and accessibility. Participants felt more comfortable in requesting accessible
alternatives and voicing their concerns:

At [Company X]14 I didn’t have to do that because you have a big team and then they
already know what is inclusion, and what is accessibility. It was a place where I could say
that, “Okay this is not something accessible to me so why don’t you help me with this or
why don’t you delegate it to someone else?” – P23

14We substituted P23’s organization’s name to preserve anonymity. It is a large international software company.

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 129. Publication date: April 2021.

129:18

P23 spoke more positively about her experiences in her current organization. She could propose to
her team that she be assigned programming tasks that allow her to play to her strengths without
worrying about misperceptions about her competence or ability. Her previous organization did
not have any accessibility-related policies in place. In addition, P23 had faced signifcant hurdles
in fnding employment and the previous organization was her frst employer. Her status as a
junior employee made her position precarious. She felt voicing her concerns about the lack of
accommodations and accessibility would draw attention to her disability. Thus, she preferred to
work harder in addressing the accessibility challenges and avoided advocating for accessibility or
seeking sighted assistance.
Participants’ perceptions of the workplace also impacted how they sought help. This

was to a large degree shaped by social and technical factors. For instance, in small teams,
participants would work with the same group of people on all projects. Therefore, participants were
familiar with everyone and felt comfortable reaching out to their “supportive group of coworkers”
(P21). Many participants reported a positive working experience when internal tools like code-
review systems and internal websites were accessible:

[Company Y]15 has a whole accessibility team. They’re mostly located in retail accessibility,
but they provide advice and consulting for all the other teams. Generally, it seems like
they make an efort to make all their websites and internal tools accessible as best they
can. – P18

Accessible internal tools enhanced participants’ work experience in three ways. First, they enabled
participants to work more efciently. Second, participants had to only occasionally seek help and
only with “minor things like clicking the combo box” (P18). They did not have to worry about
incurring social debt by wasting their colleagues’ time. Such quick and infrequent acts did not
necessarily draw attention to participants’ disability. It was instead understood as a shortcoming
of the software. Third, it suggested to them that the organization was committed to providing an
accessible work environment. The presence of an accessibility team meant that there was recourse
against more serious challenges in internal software and the organization was also likely to fx
them. It also externalized their problems and did not necessarily make them unique to them.

By contrast, without accessible tools, participants had to seek assistance on a more regular basis.
Participants felt the act of seeking assistance did not emphasize inaccessibility as much as draw
attention to their disability. Participants also could not easily reciprocate the help due to lack of
ATs on colleagues’ computers, as discussed in section 4.2.3. Participants also worried about their
colleagues feeling obligated to help them—they did not want their colleagues to feel that “one of
their responsibilities is to help” (P17). To avoid this, participants would try to reach out to diferent
colleagues every time. A few participants shared they would spend time fnding coworkers who
would be more willing to spend time answering their questions:

There used to be a lady in the cube just right across mine. She was very nice! She left a
while ago. And there is nobody very close by that I feel really comfortable with. – P10

The above quotes show decisions around help-seeking are shaped by sociotechnical considerations.
Participants’ experiences are shaped largely by their team—as shown by the contradicting experi-
ences of P18 and P23, who had worked in the same organization but within diferent teams. This
demonstrates the degree to which each participant’s experiences are socially situated.
Advocacy and help-seeking in the context of programming complicated participants’ sense of

independence. Participants felt they could “infuence how things are done” (P19) by advising their
team on building accessible software. They would share their personal experiences and technical

15We substituted P18’s current organization’s name to preserve anonymity. It is a large international software company.

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 129. Publication date: April 2021.

Understanding Accessibility and Collaboration in Programming for People with Visual Impairments 129:19

expertise to improve the accessibility and user experience of software for end users with disabilities.
By doing so, they were able to advocate for accessibility in the software development process and
also teach their colleagues about accessibility. P12 shared how his input regarding accessibility on a
client-based project proved to be critical to the success of the project. Such instances enhanced the
participants’ sense of independence. At the same time, seeking assistance for challenges, however
small and infrequent, impinged on their sense of independence. This resulted in relative accessibility
of programming that contributed to a relative sense of independence:

You kinda run into this weird thing of partly empowering because computers are every-
where [...] and you are one of the people that knows more about them than most [...] at
the same time, you are far less able in a lot of ways because you can’t access the same
diagrams and tools [...] So it’s a weird mix of more independent because I can do more on
computers than a lot but less so, because at the same time I can’t do as much. – P3

5 DISCUSSION

Our fndings show that programmers with visual impairments use a complex ecosystem of tools.
This ecosystem includes software related to programming, project management and communication,
and internal corporate tools. Each of these is critical to the core task of programming and often
must be used concurrently. The accessibility challenges in the ecosystem afect collaboration and
help-seeking practices in mixed-ability contexts. Programmers with visual impairments and their
sighted colleagues co-create new work practices in order to collaborate efectively. The practices
are also shaped by characteristics of the team, advocacy, and additional work on the part of
programmers with visual impairments. Based on our analysis, we have framed our discussion
around (1) accessibility of group work, focusing on real-time collaboration and help interactions
among colleagues, and (2) implications for collaborative programming that can serve researchers,
designers, and employers.

5.1 Accessibility of Group Work

5.1.1 The burden of additional work. As we found in our study, several programming-related
workfows (including pair programming, UI development, and system design) rely on visual artifacts
and were inaccessible to participants as a result. Nonetheless, our participants found unique
workarounds to circumvent the challenges. For example, in synchronous programming, participants
and their colleagues used communication software to do a remote screen share and inform each
other of their whereabouts in the codebase by announcing line numbers. This enabled them to
work on their respective computers and access each other’s programming contributions without
having to change their AT settings. Finding such workarounds is invisible work [74]; it is necessary
but falls outside the purview of formal defnitions of work for our participants. By highlighting this
work, we bring to fore the otherwise invisible work done by people with visual impairments in
creating and maintaining access [16]. The invisible work is not limited to fnding workarounds to
circumvent inaccessibility. It includes other activities, also not included within formal defnitions of
work, such as information-seeking on mailing lists, identifying the right colleague to seek assistance
from, and educating colleagues about improving the accessibility of software in the development
process.
Furthermore, to perform their roles in the various programming workfows, especially in the

context of collaborative tasks, participants had to articulate their own ways of working in the
frst place. They used informal demonstrations and one-on-one meetings with team members
to communicate their strategies. Das et al. similarly found that people with visual impairments
engaged in conversations with their collaborators to change work practices [31]. Through these

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 129. Publication date: April 2021.

129:20

interactions, participants conveyed their preferred methods for pair programming, code styling,
communication, and more. Generally, the articulation for access needs happened outside the con-
text of programming-related tasks and, as characterized by participants, was a slow and repetitive
process. Again, this goes to show that access is not inherent in the workplace or programming
workfows. It is the articulation work—the work to make work possible—performed by
people with visual impairments that leads to the creation of access and modifes the es-
tablished arrangements around work practices [28]. The articulation work remains invisible
and is central to achieving collaborations in mixed-ability contexts. Our fndings further showed
that the nature of articulation work was contingent on the workplace and participants’ perceptions
of it. Participants were more at ease advocating for their needs and had to do less articulation in
workplaces that had previously hired people with visual impairments or that seemed to prioritize
inclusiveness and accessibility. In less-accommodating workplaces, participants had to perform
emotional labor as they tried to be patient in explaining their workfows to their colleagues.

5.1.2 Fostering beter interactions around help-seeking and help-giving. We saw instances of people
seeking help from colleagues to circumvent challenges with technologies and activities that relied
on visual artifacts. Similar to prior work in workplace contexts [23, 31], we found that the nature of
the relationship between our participants and their colleagues afected when and how the former
sought help. For instance, in smaller teams, participants shared a good professional relationship with
most colleagues and felt comfortable seeking assistance with accessibility challenges. Consistent
with prior work, our participants expressed concerns about incurring social debt [21, 83, 88], and
they were concerned about the impact help-seeking would have on their sense of independence [84].
However, we also observed that decisions around seeking assistance were based on participants’
perceptions of the accessibility of the work environment. For example, participants were more at
ease in seeking assistance from colleagues when they felt their workplace made eforts to provide
accessible internal tools and accessibility support. In such cases, the act of help-seeking was minor,
quick, and infrequent. It was not likely to foreground the person’s disability or result in colleagues
spending too much time assisting the person with a visual impairment. When seeking help with
minor challenges, participants also had to perform less work in explaining the issue to their sighted
colleague. This was also evident from participants’ preference for using mailing lists primarily
composed of programmers with visual impairments to seek information about the accessibility of
programming tools. They preferred emailing on these lists instead of posting on large programming
websites like Stack Overfow where most members were unaware of the workfows of visually
impaired programmers. Here, the desire to avoid the work associated with explaining concepts
like accessibility and screen readers, which were inherently understood by people on accessibility
mailing lists, guided participants’ decisions.
Beyond help-seeking, there can be challenges for programmers with visual impair-

ments in giving help. Help-giving relies on employees’ “sense of citizenship” [13] and is mo-
tivated by “principles of reciprocity” in the workplace [40]. In collaborative activities like pair
programming and software design, this reciprocity is inherently present—the expectation is that
programmers seek assistance and provide help to their collaborators. For our participants, the
expectation to provide help was amplifed by their concerns about incurring social debt when
seeking help for accessibility challenges. Assisting colleagues with their problems provided partici-
pants the opportunity to return the favors, meet workplace expectations, and also mitigate some of
their concerns about help-seeking costs. However, the help-giving process for our participants was
complicated due to various factors. These include reasons like unavailability of ATs on colleagues’
computers, lack of AT licenses, work involved in setting up ATs, etc. Thus, participants and their
colleagues have to adopt workarounds to provide help, especially when immediate or real-time

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 129. Publication date: April 2021.

Understanding Accessibility and Collaboration in Programming for People with Visual Impairments 129:21

assistance is needed. Further, help-giving can also be an important way for our participants to
establish competence through everyday actions and interactions [37], thereby conveying their
abilities [39, 46]. Shinohara and Wobbrock have touched upon how the use of ATs to provide
help boosts self-efcacy and self-confdence among people with disabilities [71]. In the context of
programming, help-giving is closely intertwined with other processes like feedback and information
provisioning. For instance, collaborative activities like pair programming require programmers
to brainstorm solutions collectively. The inability to provide help and support in these activities
may not only have implications for their competence and confdence but also pigeonhole them in
specifc roles. For example, it may mean that programmers with visual impairments are only doing
code writing and not making recommendations toward code improvement during collaboration.
We recommend that designers use the Design for Social Accessibility (DSA) framework when

designing to facilitate group work. This framework emphasizes to designers that ATs should be
a vehicle to convey the end user’s ability and identity in social settings [71]. This is done by
considering both functional and social factors of AT use [69]. We argue that designers should
specifcally use methods to foreground interactions around help in professional contexts, especially
help-giving by people with visual impairments. For instance, we noted how participants worked
around the problem of a lack of ATs to assist their colleagues. They would install the trial version of
ATs on colleagues’ computers or use their license to install multiple versions on diferent computers.
While these workarounds allowed synchronous assistance, they necessitated extra work on the
part of the programmers with visual impairments. Additionally, they required colleagues’ consent
and were further complicated by legal limits on installations. Therefore, when designing ATs and
collaborative tools, we recommend considering the time and work required by these workarounds
as well as their impact on real-time help-giving and collaboration.

5.2 Implications for Collaborative Programming

Prior studies on the accessibility of programming have been limited in their scope. They have studied
the experiences of programmers with visual impairments removed from group-work settings, which
require carrying out multiple collaborative activities. Our empirical contributions serve as a
generative site for thinking about accessibility in collaborative programming. We discuss
some of the design implications in this section, situating them in the perspectives recommended
for designing for disability [16, 17, 69].
In mixed-ability contexts, programming is a sociotechnical achievement. Programmers with

visual impairments carry out a series of social and technical interactions to address accessibility
challenges—using creative code-writing strategies, articulating their workfows, advocating for
their access needs, and more. Designers should consider and foster these interactions and build
on the workarounds that programmers with visual impairments have identifed [17]. Designers
should take into account the factors that shape the choice of programming tools such as project
complexity, workplace requirements, and concurrent use with other tools in the ecosystem. We
also strongly recommend examining the setup process, as well as maintaining accessibility across
software updates [31]. This requires ensuring the accessibility of activities in the installation process
such as account creation, assessing the tool’s accessibility, and fnding the appropriate installer.

Current code-styling standards are largely intended to improve code navigation and readability
for sighted programmers. However, in our study we report on the emergence of a new set of
practices that were benefcial for our participants as well as their sighted colleagues. Some of the
rules, like writing modular code and frequent documentation, were useful to everyone. On the other
hand, visually focused practices (e.g., indenting code segments, using inline spaces, or placing braces
on diferent lines) did not necessarily help programmers with visual impairments but they adopted
them in their collaboration with sighted programmers. We also noted that participants’ strategies

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 129. Publication date: April 2021.

129:22

(such as adding descriptive comments, using camel case for names, and long variable names) were
incorporated by their colleagues. We recommend that code-styling standards, especially when
shared online by large software companies like Google16, should also advocate for the adoption
of strategies preferred by programmers with visual impairments and thereby present a more
inclusive document. This would inform sighted programmers about the code-writing preferences
of programmers with visual impairments and reduce the work of communication for the latter. It
would also improve the efciency of tasks associated with code reading and writing on computers
with and without ATs in mixed-ability contexts. Additionally, an inclusive set of standards can lead
to more efcient collaboration in the code-reviewing activity. It would also afrm the organization’s
commitment to accessibility, resulting in a more positive experience for programmers with visual
impairments.
In UI development, participants had to expend mental efort in calculating the pixel position

of elements when design documents were high level. Participants also reported that ATs lacked
relevant information and UI development tools were largely inaccessible. They had to seek sighted
assistance frequently to verify the placement and aesthetics as they were developing the UI. As
in the context of homes [22], repeated assistance with things like spot-checking may be minor
but can add up. Participants preferred help that was minor and infrequent and allowed them to
independently carry out the majority of the work. A lack of accessible tools also had implications for
participants’ employment opportunities and careers. It prevented participants from contributing to
front-end development and made them choose other sub-domains within programming like backend
programming or data management. This speaks to the relative accessibility of programming—it
is more accessible than other STEM felds but domains within it remain relatively inaccessible.
This again motivates thinking about the accessibility of UI development tools using the DSA
framework to convey programmers’ ability and competence at developing UIs [69]. For instance,
one participant explained that some IDEs had relatively accessible UI tools but these were replaced
with inaccessible options in later versions. Another participant was working on developing an
NVDA add-on to support his peers. Such tools can serve as starting points to brainstorm about
improving the accessibility of front-end development tools. They also provide opportunities to
engage programmers with visual impairments in the design process as “designing bodies” [17].
Crowd-supported solutions like VizWiz [19], BeMyEyes17, and AIRA18 are recommended alter-

natives to sighted assistance from personal and professional networks. Past research has shown
that people with visual impairments prefer using these networks because they ofer quicker and
more contextual help without leading to social costs [21, 50]. Thus, assistance for certain program-
ming activities like spot-checking, assessing the UI, and accessibility challenges in setting up the
programming environment can be outsourced to these services. Given their familiarity with ATs,
they may be better suited to provide assistance than workplace IT support. They are also likely to
reduce the extra work that programmers with visual impairments have to perform in explaining the
accessibility challenges to sighted people. However, usage of these services is likely to be regulated
by an employing organization’s policies around intellectual property, as there is a risk of disclosure
of internal ideas and artifacts. This warrants thinking about formal integration of these services in
the workplace to support programmers with visual impairments.

16http://google.github.io/styleguide/
17https://www.bemyeyes.com/
18https://aira.io/

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 129. Publication date: April 2021.

http://google.github.io/styleguide/
https://www.bemyeyes.com/
https://aira.io/

Understanding Accessibility and Collaboration in Programming for People with Visual Impairments 129:23

5.3 Limitations and Future Work

Despite our best eforts to have a more balanced gender representation, most of our participants
were men (18 of 22). This was possibly due to two reasons. First, most of our participants were
recruited online (17 of 22) and online communities are predominantly male [80]. Second, the feld
of programming is heavily skewed towards men [45], and disabled people marginalized on the
basis of their gender face further barriers to participation in computing felds [20]. We are also
aware that our participant base skews towards young programmers. This may again be because
most participants were recruited through online channels. In future work, we would focus on
understanding the perspectives of gender-based minorities and older adults in programming.
Our participants hail from various countries. We are aware that cultural and legal diferences

persist in the workplaces of diferent countries and this is likely to shape our participants’ experi-
ences. To compare and contrast the fndings, we would need a larger sample of participants from
each of the countries. In future work, we intend to address this by recruiting more participants and
analyzing the data taking into account the legal, educational, and cultural landscapes.
Our study fndings rely on the self-reported data gathered from programmers with visual

impairments, and we do not have the perspectives of their sighted colleagues. We therefore cannot
speak to how sighted programmers feel about changing work practices. In future work, we would
conduct interviews with and collect observations from our participants’ sighted colleagues to
uncover micro-interactions pertaining to collaborative activities in mixed-ability contexts.

6 CONCLUSION

Work at the intersection of accessibility, HCI, and programming tends to examine people with
visual impairments and their interaction with a single category of tools [5, 6, 63, 64]. However, our
study suggests that, in a collaborative environment, programmers with visual impairments use
an ecosystem of tools to accomplish their tasks. They have to access internal resources such as
databases and virtual machines, acquire the information on responsibilities assigned to them from
project management software like JIRA and Microsoft Teams, and use communication software to
coordinate collaborative programming activities. In this light, we echo the fndings of Das et al.,
who also fnd that people with visual impairments use multiple ATs and word processors in work
environments to collaboratively write with their colleagues [31]. Similarly, our study highlights
the need for access studies in HCI to be broader in their examination of programmers’ interactions
with tools to collaborate with their colleagues.

ACKNOWLEDGMENTS

This study would not have been possible without our participants. We thank them for sharing their
experiences and insights with us. We also thank Anubha Singh, Robin Brewer, and Silvia Lindtner
for their time and feedback at various points in this research. The work was supported by a gift
from Google.

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 129. Publication date: April 2021.

129:24

A DETAILS OF INTERVIEW PARTICIPANTS

Table 1. Participant Information
*Note: “Did not share” refers to participants not describing their visual ability at any time during the interview.
We interpret this as their decision to not foreground their disability in the interviews.

Age Gender Self- Self- Prog. Prog. Organization
described described Languages Editors
Visual Prog.
Ability Experience

(in years)
P1 29 M Vision loss 7 Java Visual Freelancer

from retini- Studio
tis pigmen-
tosa in early
20s

P2 26 M Did not 1-2 HTML, Notepad, NGO
share CSS, PHP, Eclipse oc-

Python, casionally
Java

P3 30 M Blind since 11-12 Python, Notepad++ Sports Com-
birth SQL, PHP, pany

JavaScript

P419 45 M Gradual 20+ .NET, Diferent Software
vision JavaScript, text editors Startup
loss from HTML, CSS
retinitis
pigmentosa

P5 24 M Blind since 3-4 Java, IntelliJ, IT Com-
birth Python Visual pany

Studio

P6 45 M Blind since 1 10+ Python, Visual Freelancer
year old HTML, CSS, Studio, VS

PHP, Java Code

P7 32 F Legally 3 Python, VS Code Healthcare
blind with Java, Company
corrected HTML, CSS,
vision JavaScript
20/200

P8 27 M Blind since 6 4 Python, Visual IoT Startup
years old JavaScript Studio

Continued on next page

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 129. Publication date: April 2021.

Understanding Accessibility and Collaboration in Programming for People with Visual Impairments 129:25

Table 1 – continued from previous page
Age Gender Self- Self- Prog. Prog. Organization

described described Languages Editors
Visual Prog.
Ability Experience

(in years)
P9 39 M Blind since 20 Python, Go, Vim U.S. State

birth Perl, SQL Govern-
ment ITS

P10 52 M Lost total vi- 24 Python, VS Code Telecommunications
sion in an JavaScript Company
accident at (Node.js)
50

P11 39 F Did not 2 HTML, CSS, Native Text U.S. State
share JavaScript Editor Govern-

ment ITS

P12 28 M Blind since 5 C#, Python, Visual Digital
birth Java Studio Software

Agency

P13 41 M Blind since 15 HTML, Eclipse Software
birth CSS, Java, preferred, Startup and

JavaScript, Occa- University
Python sionally

Notepad++

P14 32 M Blind since 19 C#, Android, Visual Freelancer
birth PHP Studio

P15 29 M Blind since 13 C, Go, Emacs University
birth Python, and Inde-

Haskell pendent
Research
Organiza-
tion

P16 73 M Vision loss 30 COBOL Organization’sRetired
from retini- internal text from Bank
tis pigmen- editor
tosa in late
30s

P17 50 M Vision loss 26 Visual Fox- Visual Fox- Healthcare
from retini- Pro Pro Company
tis pigmen-
tosa in early
20s

Continued on next page

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 129. Publication date: April 2021.

129:26

P18

Age

39

Gender

M

Table 1 – continued from previous page
Self- Self- Prog. Prog.
described described Languages Editors
Visual Prog.
Ability Experience

(in years)
Blind since 4 JavaScript, Emacs
birth Python

Organization

Large In-
ternational
Software
Company

P19 30 M Blind since
birth

4-5 Go Diferent
text editors,
avoids IDEs

Big Data An-
alytics Com-
pany

P20 55 F Did not 20+, scat- Python, C, Notepad++ University
share tered pro- ChucK

gramming
experience

P21 35 M Blind since 16-17 C#, SQL Visual Advertising
birth Studio Agency

P22 33 M Vision 10 HTML, PHP, Notepad++ University
loss from Python,
macular de- JavaScript,
generation Auto-
in early 20s Hotkey

P23 27 F Vision loss 7 .NET, Java, Eclipse Large In-
from retini- PHP, HTML, for Java, ternational
tis pigmen- CSS Python, Vi- Software
tosa in mid- sual Studio Company
teens for .NET,

Notepad for
PHP

REFERENCES
[1] [n.d.]. ([n. d.]).
[2] 2019. Blindness Statistics. https://www.nfb.org/resources/blindness-statistics
[3] 2019. Stack Overfow Developer Survey Results 2019. https://insights.stackoverfow.com/survey/2019
[4] Ali Abdolrahmani, William Easley, Michele Williams, Stacy Branham, and Amy Hurst. 2017. Embracing Errors:

Examining How Context of Use Impacts Blind Individuals’ Acceptance of Navigation Aid Errors. In Proceedings of
the 2017 CHI Conference on Human Factors in Computing Systems (Denver, Colorado, USA) (CHI ’17). Association
for Computing Machinery, New York, NY, USA, 4158–4169. https://doi.org/10.1145/3025453.3025528

[5] Khaled Albusays and Stephanie Ludi. 2016. Eliciting Programming Challenges Faced by Developers with Visual
Impairments: Exploratory Study. (2016). https://doi.org/10.1145/2897586.2897616

[6] Khaled Albusays, Stephanie Ludi, and Matt Huenerfauth. 2017. Interviews and Observation of Blind Software
Developers at Work to Understand Code Navigation Challenges. (2017). https://doi.org/10.1145/3132525.3132550

[7] Steve Alexander. 1998. Blind programmers face an uncertain future. ComputerWorld 32, 44 (1998), 86–87.

19Participant’s data excluded from the analysis

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 129. Publication date: April 2021.

https://www.nfb.org/resources/blindness-statistics
https://insights.stackoverflow.com/survey/2019
https://doi.org/10.1145/3025453.3025528
https://doi.org/10.1145/2897586.2897616
https://doi.org/10.1145/3132525.3132550

Understanding Accessibility and Collaboration in Programming for People with Visual Impairments 129:27

[8] Paul R Amato and Julie Saunders. 1985. The perceived dimensions of help-seeking episodes. Social Psychology
Quarterly (1985), 130–138.

[9] Alberto Bacchelli and Christian Bird. 2013. Expectations, outcomes, and challenges of modern code review. In 2013
35th International Conference on Software Engineering (ICSE). IEEE, 712–721.

[10] Catherine M Baker, Cynthia L Bennett, and Richard E Ladner. 2019. Educational Experiences of Blind Programmers.
(2019). https://doi.org/10.1145/3287324.3287410

[11] Catherine M Baker, Lauren R Milne, and Richard E Ladner. 2015. StructJumper: A Tool to Help Blind Programmers
Navigate and Understand the Structure of Code. (2015). https://doi.org/10.1145/2702123.2702589

[12] Mark S Baldwin, Sen H Hirano, Jennifer Mankof, and Gillian R Hayes. 2019. Design in the Public Square: Supporting As-
sistive Technology Design Through Public Mixed-Ability Cooperation. Proceedings of the ACM on Human-Computer
Interaction 3, CSCW (2019), 1–22.

[13] Peter Bamberger. 2009. Employee help-seeking: Antecedents, consequences and new insights for future research.
Research in personnel and human resources management 28, 1 (2009), 49–98.

[14] Andrew Begel. 2008. Efecting change: Coordination in large-scale software development. In Proceedings of the 2008
international workshop on Cooperative and human aspects of software engineering. 17–20.

[15] Edward C Bell and Natalia M Mino. 2015. Employment outcomes for blind and visually impaired adults. (2015).
[16] Cynthia L. Bennett, Erin Brady, and Stacy M. Branham. 2018. Interdependence as a Frame for Assistive Technology

Research and Design. In Proceedings of the 20th International ACM SIGACCESS Conference on Computers and
Accessibility - ASSETS ’18. ACM Press, New York, New York, USA, 161–173. https://doi.org/10.1145/3234695.3236348

[17] Cynthia L Bennett and Daniela K Rosner. 2019. The Promise of Empathy: Design, Disability, and Knowing the" Other".
In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. 1–13.

[18] Cynthia L Bennett, Daniela K Rosner, and Alex S Taylor. 2020. The Care Work of Access. In Proceedings of the 2020
CHI Conference on Human Factors in Computing Systems. 1–15.

[19] Jefrey P Bigham, Chandrika Jayant, Hanjie Ji, Greg Little, Andrew Miller, Robert C Miller, Robin Miller, Aubrey
Tatarowicz, Brandyn White, Samual White, et al. 2010. VizWiz: nearly real-time answers to visual questions. In
Proceedings of the 23nd annual ACM symposium on User interface software and technology. 333–342.

[20] Brianna Blaser, Cynthia Bennett, Richard E. Ladner, Sheryl E. Burgstahler, and Jennifer Mankof. 2019. Perspectives of
Women with Disabilities in Computing. Cambridge University Press, 159–182. https://doi.org/10.1017/9781108609081.
010

[21] Erin L. Brady, Yu Zhong, Meredith Ringel Morris, and Jefrey P. Bigham. 2013. Investigating the appropriateness of social
network question asking as a resource for blind users. In Proceedings of the 2013 conference on Computer supported
cooperative work - CSCW ’13. ACM Press, New York, New York, USA, 1225. https://doi.org/10.1145/2441776.2441915

[22] Stacy M. Branham and Shaun K. Kane. 2015. Collaborative Accessibility: How Blind and Sighted Companions Co-
Create Accessible Home Spaces. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing
Systems (Seoul, Republic of Korea) (CHI ’15). ACM, New York, NY, USA, 2373–2382. https://doi.org/10.1145/2702123.
2702511

[23] Stacy M. Branham and Shaun K. Kane. 2015. The Invisible Work of Accessibility. In Proceedings of the 17th International
ACM SIGACCESS Conference on Computers & Accessibility - ASSETS ’15. ACM Press, New York, New York, USA,
163–171. https://doi.org/10.1145/2700648.2809864

[24] Eric Brechner. 2003. Things they would not teach me of in college: what Microsoft developers learn later. In Companion
of the 18th annual ACM SIGPLAN conference on Object-oriented programming, systems, languages, and applications.
134–136.

[25] Robin N Brewer and Vaishnav Kameswaran. 2019. Understanding Trust, Transportation, and Accessibility through
Ridesharing. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. 1–11.

[26] Sallyann Bryant, Pablo Romero, and Benedict du Boulay. 2008. Pair programming and the mysterious role of the
navigator. International Journal of Human-Computer Studies 66, 7 (2008), 519–529.

[27] Mary Elaine Calif, Mary Goodwin, and Jake Brownell. 2008. Helping Him See: Guiding a Visually Impaired Student
through the Computer Science Curriculum.

[28] Juliet M Corbin and Anselm L Strauss. 1993. The articulation of work through interaction. The sociological quarterly
34, 1 (1993), 71–83.

[29] Nicola Cornally and Geraldine McCarthy. 2011. Help-seeking behaviour: A concept analysis. International journal of
nursing practice 17, 3 (2011), 280–288.

[30] D Crary. 2008. Employer bias thwarts many blind workers. Associated Press (2008).
[31] Maitraye Das, Darren Gergle, and Anne Marie Piper. 2019. "It doesn’t win you friends" Understanding Accessibility in

Collaborative Writing for People with Vision Impairments. Proceedings of the ACM on Human-Computer Interaction
3, CSCW (2019), 1–26.

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 129. Publication date: April 2021.

https://doi.org/10.1145/3287324.3287410
https://doi.org/10.1145/2702123.2702589
https://doi.org/10.1145/3234695.3236348
https://doi.org/10.1017/9781108609081.010
https://doi.org/10.1017/9781108609081.010
https://doi.org/10.1145/2441776.2441915
https://doi.org/10.1145/2702123.2702511
https://doi.org/10.1145/2702123.2702511
https://doi.org/10.1145/2700648.2809864

129:28

[32] Guy Dewsbury, Karen Clarke, Dave Randall, Mark Rouncefeld, and Ian Sommerville. 2004. The anti-social model of
disability. Disability & society 19, 2 (2004), 145–158.

[33] Carolyn D Egelman, Emerson Murphy-Hill, Elizabeth Kammer, Maggie Morrow Hodges, Collin Green, Ciera Jaspan,
and James Lin. 2020. Pushback: Characterizing and Detecting Negative Interpersonal Interactions in Code Review.
(2020).

[34] Hongfei Fan, Jiayao Gao, Hongming Zhu, Qin Liu, Yang Shi, and Chengzheng Sun. 2017. Balancing Confict Prevention
and Concurrent Work in Real-Time Collaborative Programming. In Proceedings of the 12th Chinese Conference on
Computer Supported Cooperative Work and Social Computing. 217–220.

[35] Joan M Francioni and Ann C Smith. 2002. Computer science accessibility for students with visual disabilities. In
Proceedings of the 33rd SIGCSE technical symposium on Computer science education. 91–95.

[36] Vinitha Gadiraju. 2019. BrailleBlocks: Braille Toys for Cross-Ability Collaboration. In The 21st International ACM
SIGACCESS Conference on Computers and Accessibility. 688–690.

[37] H. Garfnkel. 1991. Studies in Ethnomethodology. Wiley. https://books.google.com/books?id=zj_leg8-tIEC
[38] David Garlan and Mary Shaw. 1993. An introduction to software architecture. In Advances in software engineering

and knowledge engineering. World Scientifc, 1–39.
[39] Erving Gofman et al. 1978. The presentation of self in everyday life. Harmondsworth London.
[40] Alvin W Gouldner. 1960. The norm of reciprocity: A preliminary statement. American sociological review (1960),

161–178.
[41] Nancy Gourash. 1978. Help-seeking: A review of the literature. American journal of community psychology 6, 5

(1978), 413.
[42] Rajesh Hegde and Prasun Dewan. 2008. Connecting programming environments to support ad-hoc collaboration. In

2008 23rd IEEE/ACM International Conference on Automated Software Engineering. IEEE, 178–187.
[43] Ric Holt. 2002. Software architecture as a shared mental model. Proceedings of the ASERC Workhop on Software

Architecture, University of Alberta (2002), 64.
[44] Joe Hutchinson and Oussama Metatla. 2018. An Initial Investigation into Non-visual Code Structure Overview

Through Speech, Non-speech and Spearcons. In Extended Abstracts of the 2018 CHI Conference on Human Factors in
Computing Systems - CHI ’18. ACM Press, New York, New York, USA, 1–6. https://doi.org/10.1145/3170427.3188696

[45] D. Izquierdo, N. Huesman, A. Serebrenik, and G. Robles. 2019. OpenStack Gender Diversity Report. IEEE Software 36,
1 (2019), 28–33.

[46] Vaishnav Kameswaran, Jatin Gupta, Joyojeet Pal, Sile O’Modhrain, Tifany C Veinot, Robin Brewer, Aakanksha
Parameshwar, and Jacki O’Neill. 2018. ’We can go anywhere’ Understanding Independence through a Case Study of Ride-
hailing Use by People with Visual Impairments in metropolitan India. Proceedings of the ACM on Human-Computer
Interaction 2, CSCW (2018), 1–24.

[47] Niall Kennedy. 2006. Google Mondrian: web-based code review and storage. https://www.niallkennedy.com/blog/
2006/11/google-mondrian.html

[48] Miryung Kim, Thomas Zimmermann, Robert DeLine, and Andrew Begel. 2016. The emerging role of data scientists
on software development teams. In 2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE).
IEEE, 96–107.

[49] Tien Fabrianti Kusumasari, Iping Supriana, Kridanto Surendro, and Husni Sastramihardja. 2011. Collaboration model of
software development. In Proceedings of the 2011 International Conference on Electrical Engineering and Informatics.
IEEE, 1–6.

[50] Reeti Mathur and Erin Brady. 2018. Mixed-Ability Collaboration for Accessible Photo Sharing. In Proceedings of the
20th International ACM SIGACCESS Conference on Computers and Accessibility. 370–372.

[51] Sean Mealin and Emerson Murphy-Hill. 2012. An exploratory study of blind software developers. In Proceedings
of IEEE Symposium on Visual Languages and Human-Centric Computing, VL/HCC. 71–74. https://doi.org/10.1109/
VLHCC.2012.6344485

[52] Oussama Metatla, Alison Oldfeld, Taimur Ahmed, Antonis Vafeas, and Sunny Miglani. 2019. Voice user interfaces
in schools: Co-designing for inclusion with visually-impaired and sighted pupils. In Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems. 1–15.

[53] Richard J. Miara, Joyce A. Musselman, Juan A. Navarro, and Ben Shneiderman. 1983. Program Indentation and
Comprehensibility. Commun. ACM 26, 11 (Nov. 1983), 861–867. https://doi.org/10.1145/182.358437

[54] Jonas Moll and Eva-Lotta Sallnäs Pysander. 2013. A haptic tool for group work on geometrical concepts engaging
blind and sighted pupils. ACM Transactions on Accessible Computing (TACCESS) 4, 4 (2013), 1–37.

[55] Jonas Moll, Kerstin Severinson-Eklundh, and Eva-Lotta Sallnas. 2007. Group Work About Geometrical Concepts
Among Blind and Sighted Pupils Using Haptic Interfaces. In 2007 2nd Joint EuroHaptics Conference and Symposium
on Haptic Interfaces for Virtual Environments and Teleoperator Systems. 330–335.

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 129. Publication date: April 2021.

https://books.google.com/books?id=zj_leg8-tIEC
https://doi.org/10.1145/3170427.3188696
https://www.niallkennedy.com/blog/2006/11/google-mondrian.html
https://www.niallkennedy.com/blog/2006/11/google-mondrian.html
https://doi.org/10.1109/VLHCC.2012.6344485
https://doi.org/10.1109/VLHCC.2012.6344485
https://doi.org/10.1145/182.358437

Understanding Accessibility and Collaboration in Programming for People with Visual Impairments 129:29

[56] Cecily Morrison, Edward Cutrell, Anupama Dhareshwar, Kevin Doherty, Anja Thieme, and Alex Taylor. 2017. Imagining
Artifcial Intelligence Applications with People with Visual Disabilities using Tactile Ideation. In Proceedings of the
19th International ACM SIGACCESS Conference on Computers and Accessibility. 81–90.

[57] Arie Nadler, Shmuel Ellis, and Iris Bar. 2003. To seek or not to seek: The relationship between help seeking and job
performance evaluations as moderated by task-relevant expertise. Journal of Applied Social Psychology 33, 1 (2003),
91–109.

[58] Mala D Naraine and Peter H Lindsay. 2011. Social inclusion of employees who are blind or low vision. Disability &
Society 26, 4 (2011), 389–403.

[59] John T Nosek. 1998. The case for collaborative programming. Commun. ACM 41, 3 (1998), 105–108.
[60] Shotaro Omori and Ikuko Eguchi Yairi. 2013. Collaborative music application for visually impaired people with

tangible objects on table. In Proceedings of the 15th International ACM SIGACCESS Conference on Computers and
Accessibility. 1–2.

[61] Steve Oney, Alan Lundgard, Rebecca Krosnick, Michael Nebeling, and Walter S Lasecki. 2018. Arboretum and
arbility: Improving web accessibility through a shared browsing architecture. In Proceedings of the 31st Annual ACM
Symposium on User Interface Software and Technology. 937–949.

[62] Dewayne E Perry, Nancy A. Staudenmayer, and Lawrence G Votta. 1994. People, organizations, and process improve-
ment. IEEE Software 11, 4 (1994), 36–45.

[63] Vanessa Petrausch and Claudia Loitsch. 2017. Accessibility Analysis of the Eclipse IDE for Users with Visual Impairment.
(2017). https://doi.org/10.3233/978-1-61499-798-6-922

[64] Venkatesh Potluri, Priyan Vaithilingam, Suresh Iyengar, Y Vidya, Manohar Swaminathan, and Gopal Srinivasa. 2018.
Codetalk: Improving programming environment accessibility for visually impaired developers. In Proceedings of the
2018 CHI Conference on Human Factors in Computing Systems. 1–11.

[65] Caitlin Sadowski, Emma Söderberg, Luke Church, Michal Sipko, and Alberto Bacchelli. 2018. Modern code review: a case
study at google. In Proceedings of the 40th International Conference on Software Engineering: Software Engineering
in Practice. 181–190.

[66] Johnny Saldaña. 2015. The coding manual for qualitative researchers. Sage.
[67] Emmanuel Schanzer, Sina Bahram, and Shriram Krishnamurthi. 2019. Accessible AST-Based Programming for Visually-

Impaired Programmers. In Proceedings of the 50th ACM Technical Symposium on Computer Science Education -
SIGCSE ’19. ACM Press, New York, New York, USA, 773–779. https://doi.org/10.1145/3287324.3287499

[68] Helen Sharp, Robert Biddle, Phil Gray, Lynn Miller, and Jef Patton. 2006. Agile Development: Opportunity or Fad?.
In CHI ’06 Extended Abstracts on Human Factors in Computing Systems (Montréal, Québec, Canada) (CHI EA ’06).
Association for Computing Machinery, New York, NY, USA, 32–35. https://doi.org/10.1145/1125451.1125461

[69] Kristen Shinohara, Cynthia L. Bennett, Wanda Pratt, and Jacob O. Wobbrock. 2018. Tenets for Social Accessibility:
Towards Humanizing Disabled People in Design. ACM Trans. Access. Comput. 11, 1, Article 6 (March 2018), 31 pages.
https://doi.org/10.1145/3178855

[70] Kristen Shinohara and Jacob O Wobbrock. 2011. In the shadow of misperception: assistive technology use and social
interactions. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 705–714.

[71] Kristen Shinohara and Jacob O. Wobbrock. 2016. Self-Conscious or Self-Confdent? A Diary Study Conceptualizing
the Social Accessibility of Assistive Technology. ACM Trans. Access. Comput. 8, 2, Article 5 (Jan. 2016), 31 pages.
https://doi.org/10.1145/2827857

[72] Robert M Siegfried. 2006. Visual Programming and the Blind : The Challenge and the Opportunity. Science Education
(2006), 275–278. http://www.adelphi.edu/{~}siegfrir/molly

[73] Darja Šmite, Nils Brede Moe, and Richard Torkar. 2008. Pitfalls in remote team coordination: Lessons learned from a
case study. In International Conference on Product Focused Software Process Improvement. Springer, 345–359.

[74] Susan Leigh Star and Anselm Strauss. 1999. Layers of Silence, Arenas of Voice: The Ecology of Visible and Invisible
Work. (1999). https://link.springer.com/content/pdf/10.1023/A:1008651105359.pdf

[75] Andreas Stefk, Andrew Haywood, Shahzada Mansoor, Brock Dunda, and Daniel Garcia. 2009. Sodbeans. In 2009 IEEE
17th International Conference on Program Comprehension. IEEE, 293–294.

[76] Anja Thieme, Cynthia L. Bennett, Cecily Morrison, Edward Cutrell, and Alex S. Taylor. 2018. "I can do everything but
see!" – How People with Vision Impairments Negotiate their Abilities in Social Contexts. In Proceedings of the 2018
CHI Conference on Human Factors in Computing Systems - CHI ’18. ACM Press, New York, New York, USA, 1–14.
https://doi.org/10.1145/3173574.3173777

[77] Anja Thieme, Cecily Morrison, Nicolas Villar, Martin Grayson, and Siân Lindley. 2017. Enabling collaboration in
learning computer programing inclusive of children with vision impairments. In Proceedings of the 2017 Conference
on Designing Interactive Systems. 739–752.

[78] Alexia Tsotsis. 2011. Meet Phabricator, The Witty Code Review Tool Built Inside Facebook. https://techcrunch.com/
2011/08/07/oh-what-noble-scribe-hath-penned-these-words/

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 129. Publication date: April 2021.

https://doi.org/10.3233/978-1-61499-798-6-922
https://doi.org/10.1145/3287324.3287499
https://doi.org/10.1145/1125451.1125461
https://doi.org/10.1145/3178855
https://doi.org/10.1145/2827857
http://www.adelphi.edu/{~}siegfrir/molly
https://link.springer.com/content/pdf/10.1023/A:1008651105359.pdf
https://doi.org/10.1145/3173574.3173777
https://techcrunch.com/2011/08/07/oh-what-noble-scribe-hath-penned-these-words/
https://techcrunch.com/2011/08/07/oh-what-noble-scribe-hath-penned-these-words/

129:30

[79] Janine van der Rijt, Piet Van den Bossche, Margje WJ van de Wiel, Sven De Maeyer, Wim H Gijselaers, and Mien SR
Segers. 2013. Asking for help: A relational perspective on help seeking in the workplace. Vocations and learning 6, 2
(2013), 259–279.

[80] Bogdan Vasilescu, Andrea Capiluppi, and Alexander Serebrenik. 2014. Gender, representation and online participation:
A quantitative study. Interacting with Computers 26, 5 (2014), 488–511.

[81] Herman Wahidin, Jenny Waycott, and Steven Baker. 2018. The Challenges in Adopting Assistive Technologies in the
Workplace for People with Visual Impairments. In Proceedings of the 30th Australian Conference on Computer-Human
Interaction (Melbourne, Australia) (OzCHI ’18). Association for Computing Machinery, New York, NY, USA, 432–442.
https://doi.org/10.1145/3292147.3292175

[82] April Yi Wang, Anant Mittal, Christopher Brooks, and Steve Oney. 2019. How Data Scientists Use Computational
Notebooks for Real-Time Collaboration. Proceedings of the ACM on Human-Computer Interaction 3, CSCW (2019),
1–30.

[83] Emily Q. Wang and Anne Marie Piper. 2018. Accessibility in Action: Co-Located Collaboration among Deaf and
Hearing Professionals. Proc. ACM Hum.-Comput. Interact. 2, CSCW, Article Article 180 (Nov. 2018), 25 pages. https:
//doi.org/10.1145/3274449

[84] Michele A Williams, Caroline Galbraith, Shaun K Kane, and Amy Hurst. 2014. "Just let the cane hit it" how the
blind and sighted see navigation diferently. In Proceedings of the 16th international ACM SIGACCESS conference on
Computers & accessibility. 217–224.

[85] Judith D Wilson, Nathan Hoskin, and John T Nosek. 1993. The benefts of collaboration for student programmers.
ACM SIGCSE Bulletin 25, 1 (1993), 160–164.

[86] Jacob O Wobbrock, Shaun K Kane, Krzysztof Z Gajos, Susumu Harada, and Jon Froehlich. 2011. Ability-based design:
Concept, principles and examples. ACM Transactions on Accessible Computing (TACCESS) 3, 3 (2011), 1–27.

[87] Chien Wen Yuan, Benjamin V Hanrahan, Sooyeon Lee, Mary Beth Rosson, and John M Carroll. 2017. I Didn’t Know
That You Knew I Knew: Collaborative Shopping Practices Between People with Visual Impairment and People with
Vision. Proceedings of the ACM on Human-Computer Interaction 1, CSCW (2017), 1–18.

[88] Yuhang Zhao, Shaomei Wu, Lindsay Reynolds, and Shiri Azenkot. 2017. The efect of computer-generated descriptions
on photo-sharing experiences of people with visual impairments. Proceedings of the ACM on Human-Computer
Interaction 1, CSCW (2017), 1–22.

[89] Annuska Zolyomi, Anushree Shukla, and Jaime Snyder. 2017. Technology-Mediated Sight: A Case Study of Early
Adopters of a Low Vision Assistive Technology. In Proceedings of the 19th International ACM SIGACCESS Conference
on Computers and Accessibility (Baltimore, Maryland, USA) (ASSETS ’17). Association for Computing Machinery,
New York, NY, USA, 220–229. https://doi.org/10.1145/3132525.3132552

Received June 2020; revised October 2020; accepted December 2020

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW1, Article 129. Publication date: April 2021.

https://doi.org/10.1145/3292147.3292175
https://doi.org/10.1145/3274449
https://doi.org/10.1145/3274449
https://doi.org/10.1145/3132525.3132552

	Abstract
	1 Introduction
	2 Related Work
	2.1 Accessibility and Programming
	2.2 Collaborative Programming
	2.3 Accessibility and the Social

	3 Methods
	3.1 Participants
	3.2 Procedure
	3.3 Analysis

	4 Findings
	4.1 Tools Used in Collaboration
	4.2 Emergent Practices in Collaborative Programming Activities
	4.3 Social and Personal Implications

	5 Discussion
	5.1 Accessibility of Group Work
	5.2 Implications for Collaborative Programming
	5.3 Limitations and Future Work

	6 Conclusion
	Acknowledgments
	A Details of Interview Participants
	References

