
Development Tools for Interactive Behaviors

Stephen Oney

Carnegie Mellon University

Human-Computer Interaction Institute
5000 Forbes Ave. Pittsburgh, PA, USA 15232

soney@cs.cmu.edu

Abstract. This research uses participatory design workshops and user-centered
design with trained interaction designers to guide the development of a new
programming language and environment for creating interactive applications.
Interactive behaviors, which define the operation of an interactive application,
are often difficult for interaction designers to program because many interaction
designers do not have formal programming training and many features of
interactive behaviors make the task of programming them distinct from, and
often more challenging than, other programming tasks. This research aims to
create a programming language and environment that is tailored to the needs of
interaction designers and that alleviates the problems that make programming
interactive behaviors difficult.

Keywords: end-user programming, interaction design

1 Introduction

Rogers, Sharp, & Preece define interaction design as “designing interactive products
to support the way people communicate and interact in their every day and working
lives.” [1] Interaction designers are often tasked with designing novel and complex
interactive software as part of their job. The medium of software presents a unique
challenge for interaction designers who are interested in writing interactive
applications. Unlike other designers, who work with their materials in a studio or
workshop, interaction designers are not able to engage in meaningful reflection-in-
action [2] (which means to evaluate and generate ideas while in the process of
creating) when designing interactive software. In addition, the threshold of
programming knowledge required to programmatically create new interactive
behaviors is prohibitively high for many interaction designers, which often forces
interaction designers to rely on professional developers to program the interactive
behaviors they design.

In my research, I am interested in investigating ways to enable and encourage
interaction designers themselves to design and develop interactive software. This
means accounting for not only the needs of interaction designers, but also analyzing
the features of interactive behaviors that make them difficult to program in traditional
programming languages and exploring ways to lower the threshold for creating

interactive software. This is a form of End-User Development since interaction
designers are authoring code, but they are not professional programmers.

2 Background

A recent survey of interaction designers shows that while interaction designers find it
more difficult to prototype and implement the feel of an interactive application than
the look [3]. Further, 78% of the participants in this survey indicated that designing
interactive behaviors requires collaborating with a developer. Designers often
communicate a design to a developer through annotated design sketches and
storyboards, but they indicated that communication breakdowns are frequent [3].

Even putting aside the possibility of communication breakdowns and the cost of
having to collaborate with professional developers, relying on another team member
to prototype in implement their interactive behaviors reduces their potential for
reflection-in-action and to iterate on and evaluate their design. So why do not more
interaction designers learn to program? In a different survey, they pointed to the high
learning curve, time consumption, the difficulty of creating novel interfaces, problems
with generated code, and toolset limitations as weaknesses of various programming
languages and environments [4]. Additionally, from a software engineering
perspective, the task of writing interactive applications presents a unique set of
challenges [5], as I will outline in the next section.

3 Research Approach

This research includes participatory design workshops conducted with interaction
designers to gain insight into design requirements, the design of the language &
environment, and evaluation & iteration through evaluative user studies of
environment prototypes.

In the participatory design workshops, conducted with fourteen interaction
designers and programmers with at least two years of professional experience, and
described in detail in [6], designers indicated the need to better evaluate their designs,
the importance of examples for exploration and communication, and of programming
tools that can keep track of design rationale.

In designing the language and environment, I focused on five features of
interactive behaviors that make creating interactive applications difficult. First,
interactive behaviors are usually graphical in nature, and while it is relatively easy to
declaratively specify the look of an application, imperatively writing a graphical
application that controls how it operates is difficult. Second, interactive behaviors are
often state-oriented; their behavior may be dependent on a combination of global and
local states. Third, interactive behaviors are often constraint-heavy; conceptually,
there are often constraints that update a view based on some underlying model, and
there are constraints on the layout of elements in the view with respect to each other.
Fourth, interactive behaviors are often event-based, as they react to user input.

Finally, interactive behaviors are often integrated with animations, and coordinating
the behavior with the animation is often a significant challenge.

4 Progress

The current iteration of a prototype of our language and environment is shown in
Figure 1 above. Interactive behaviors are written declaratively; every object has a set
of attributes that can be static values (3, red, etc.) or constraints (this.x+foo.bar,
max(a,b), etc.). Attributes of objects are represented by rows in the object. Events
are represented as columns, with the values in a column specifying the constraints that
will hold after that event occurs. Our prototype is implemented in client-side
Javascript and provides immediate feedback after the user updates the code. An initial
user test conducted with interaction designers showed promise; interaction designers
took advantage of the immediate feedback that our prototype provided when they
updated their code. They also were very willing to experiment in their code. In fact,

Fig. 1. A representation of a draggable red circle. The top half of the window shows
the “design” view, while the bottom half shows the “code” view. In the code view,
attribute names are shown in the far left column. The current values of the attributes
are shown in “Value” column. Initial values are shown in the INIT column. The
subsequent two columns specify constraints that will hold in various states: the fourth
column specifies constraints that will hold when the user is dragging the circle (to
constrain the center of the circle to always be the mouse location), and the last
column specifies constraints that will hold after the user stops dragging (KEEPVALUE
keeps the current value but gets rid of the constraints that were in place when the user
was dragging the circle.)

some designers asked for more immediate feedback where the design view would
update as they were typing code.

For future work, I plan on making additions to the prototype, including a timeline
view for specifying and coordinating animations, a state-flow diagram view to
illustrate states and transitions between states, and improving the usability of the
language syntax through iterative usability evaluation. Another addition that I plan to
make for the environment is to create an “open box” widget set. One of the strengths
interaction designers see in tools like Adobe Flash Catalyst is the availability of
widgets to help them get started [4]. However, widgets in such tools are usually
inflexible, and cannot be customized. An open box widget set would include pre-
provided widgets that encourage designers to extend and customize them.

5 Impact for End-User Development

This research will result in the creation of, and design recommendations for
programming languages and environments for creating interactive behaviors. The
two-dimensional representation that the current prototype uses is a unique
contribution that may prove to be a simpler representation for interactive behaviors
than the style of imperative code used by C-derived languages like Processing and
OpenFrameworks1. Although previous research has focused on providing widgets, or
programming-by-example tools to reduce the threshold of creating interactive
applications, my research focuses on the underlying representation of interactive
behaviors. While interaction designers have played a large part in the design of this
environment, its usefulness will likely extend beyond interaction designers. I plan on
releasing the development environment for general use over the web.

Acknowledgments. I thank my advisor, Brad Myers, for his continuing guidance and
support. The author is also supported by the Ford and ARCS foundations. This
research has been partially funded by NSF grants IIS-0757511 and CCF-0811610.

References

1. Rogers, Y., Sharp, H., Preece, J.: Interaction Design: Beyond Human-Computer Interaction.
John Wiley & Sons, Ltd., West Sussex, England (2007).

2. Schön, D.: The Reflective Practitioner: How professionals think in action. (1983).
3. Myers, B.A., Park, S.Y., Nakano, Y., Mueller, G., Ko, A.J.: How Designers Design and

Program Interactive Behaviors. VL/HCC pp. 177-184 (2008).
4. Carter, A., Hundhausen, C.: How is User Interface Prototyping Really Done in Practice? A

Survey of User Interface Designers. VL/HCC, pp. 207-211 (2010).
5. Letondal, C., Chatty, S., Phillips, G., Fabien, A., Conversy, S.: Usability requirements for

interaction-oriented development tools. Psychology of Programming, (2010).
6. Ozenc, F.K., Kim, M., Zimmerman, J., Oney, S., Myers, B.: How to support designers in

getting hold of the immaterial material of software. CHI, pp. 2513-2522, (2010).

1 http://processing.org/ & http://www.openframeworks.cc/

