
Democratizing Computational Tools for Interaction Designers

Stephen Oney
Human-Computer Interaction Institute

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213 USA

soney@cs.cmu.edu

Abstract

I am creating a new programming lan-

guage and editor that is aimed towards
authoring interactive behaviors. This lan-
guage is intended to allow more interaction
designers to write their own interactive appli-
cations. This paper discusses the motivation,
method, and design ideas for such a lan-
guage.

1. Introduction

Interaction designers interested in work-
ing with the virtual medium of computer ap-
plications face significant challenges that of-
ten hinder their ability to express their desired
behaviors. One of the barriers interaction de-
signers face is the effort that it takes to learn a
programming language to the point that they
can implement fully functional applications or
prototypes. Another challenge is that com-
puter application programming does not allow
for reflection in action, which is roughly the
act of evaluating one’s work before comple-
tion. Whereas in the course of working with
physical materials, the designer is able to
evaluate their work before completion, they
cannot with traditional computer program-
ming languages.

While many tools have been created to al-
low designers to create interactive software,
including Adobe Catalyst, Microsoft Blend,
and Processing, these tools still rely on a
fixed set of widgets for ease of use. Although

widgets can often provide a decent approxi-
mation of what an application designer wants,
they often are not able to capture exactly what
they want [2]. The application designer
might, for example, want to make a slight
tweak to a supplied widget, but this usually
requires re-implementing the widget from
scratch in a programming language like Ac-
tionScript, which is not a task that is possible
for most interaction designers.

Put another way, most existing tools have
placed an emphasis on parameterization, or
providing widgets and guessing which pa-
rameters application designers might want to
vary. However, in our research, we have
found that designers often want complex be-
haviors that widget creators cannot predict
and parameterize for. For this reason, I am
focusing on creating a new programming lan-
guage for interactive applications, rather than
a new tool on top of an existing programming
language, to allow more interaction designers
to author interactive behaviors.

2. Previous and Related Work

I have helped develop two tools aimed at
helping interaction designers: FireCrystal [3],
which is aimed at allowing interaction de-
signers to understand and duplicate interac-
tive behaviors on the web; and Playbook,
which is a tool that uses a simple language
and programming-by-demonstration to help
designers evaluate and compare early-stage
interface prototypes.

Our research group has also done several
studies on interaction designers and the needs
of tools to support interaction design. One
study showed that most interaction designers
have to rely on programmers to prototype or
implement their designs [2], which highlights
the need for tools that enable more interaction
designers to author their own behaviors. An-
other [4] investigates the requirements of an
environment for authoring interactive behav-
iors.

3. Method

Having already compiled a list of needs of
interaction designers in terms of features, we
are now exploring language primitives. To go
about this, we are looking at existing interac-
tive applications with “complex” behaviors,
where “complex” means difficult to imple-
ment in existing languages. We are examining
complex behaviors, because we feel they rep-
resent samples of behaviors that designers are
truly interested in, rather than a compromise
between the designer’s intention and the tools
available to them. We are also examining the
behaviors of standard widgets, like buttons
and scrollbars, to make sure they have a rep-
resentation that easy to understand. As men-
tioned in the introduction, we want to focus
on making the language easy to understand,
rather than providing a more complex lan-
guage and simple widgets that can be param-
eterized, with the aim of allowing more inter-
action designers to author custom interactive
behaviors.

One promising approach we have found
has been to revisit the spreadsheet paradigm
explored by environments like Forms/3 [1].
Spreadsheet and dataflow languages represent
one way to improve the reflection in action
component, because continuous evaluation
allows consequences to be immediately seen.
We want to augment this by reducing some of
the known deficiencies of spreadsheets, like
lack of visibility, and by making our pro-

gramming environment multimodal, so that
multiple views of a program can be used to
manipulate the logic. For example, when de-
signing program logic, a state machine might
be the best view of the program; when defin-
ing program dependencies, a spreadsheet;
when customizing animations, a timeline, etc.

Another important feature is that we want
behaviors to be localized, and to minimize
“spaghetti code”. Not only does this make
programs simpler and more modular, it also
allows for easier exploration because design-
ers can easy add, remove, or modify behav-
iors. After a set of language features is final-
ized, we plan on doing Wizard of Oz proto-
types with interaction designers before im-
plementing the language.

4. Conclusion

To enable more interaction designers to
program interactive applications, we plan on
creating a programming language and envi-
ronment tailored to interactive application
design.

5. References
1. Burnett, M., Atwood, J., Djang, R. W. et al.

Forms/3: A first-order visual language to
explore the boundaries of the spreadsheet
paradigm. J. Funct. Program., vol. 11, no. 2,
(2001), 155-206.

2. Myers, B. A., Park, S. Y., Nakano, Y. et al.
How Designers Design and Program
Interactive Behaviors. IEEE Symposium on
Visual Languages and Human-Centric
Computing (VL/HCC), (2008), 177-184.

3. Oney, S., and Myers, B. FireCrystal:
Understanding Interactive Behaviors in
Dynamic Web Pages. Visual Languages and
Human-Centric Computing, (2009 (to
appear)),

4. Ozenc, F., Kim, M., Zimmerman, J. et al.,
"How to Support Designers in Getting Hold
of the Immaterial Material of Software,"
2010.

