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ABSTRACT
Software APIs often contain too many methods and parame-
ters for developers to memorize or navigate effectively. In-
stead, developers resort to finding answers through online
search engines and systems such as Stack Overflow. How-
ever, the process of finding and integrating a working solution
is often very time-consuming. Though code search engines
have increased in quality, there remain significant language-
and workflow-gaps in meeting end-user needs. Novice and
intermediate programmers often lack the “language” to query,
and the expertise in transferring found code to their task. To
address this problem, we present CodeMend, a system to sup-
port finding and integration of code. CodeMend leverages a
neural embedding model to jointly model natural language
and code as mined from large Web and code datasets. We
also demonstrate a novel, mixed-initiative, interface to sup-
port query and integration steps. Through CodeMend, end-
users describe their goal in natural language. The system
makes salient the relevant API functions, the lines in the end-
user’s program that should be changed, as well as proposing
the actual change. We demonstrate the utility and accuracy of
CodeMend through lab and simulation studies.

Author Keywords
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embedding
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INTRODUCTION
Modern programming libraries present complex APIs that
are both powerful and potentially overwhelming. Python
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packages such as matplotlib and pandas are used in “tradi-
tional” programming environments but have also become crit-
ical for interactive computing environments. These environ-
ments enable end-users to perform data analysis in instanta-
neous read-eval-print loops (REPL). Driven by the demand of
data scientists and analysts, interactive environments such as
IPython/Jupyter Notebooks, Mathematica, and R, have grown
in popularity [12]. Though in some ways programming in in-
teractive environments is “easier”—with relatively short code
blocks and architectures—they are nonetheless difficult to
learn and master due to the significant scale of functions and
parameters provided through the APIs. Additionally, end-
users for interactive environments are broader than profes-
sional programmers and the development environments them-
selves are often less feature-rich. Search engines may help,
but using them successfully still demands a great amount of
knowledge and skill. Specifically, the end-user must formu-
late the query, identify good matches, interpret the APIs’ use
in example code, and correctly integrate this information into
her own code.

Take a user who is using a graphing library to generate a bar-
chart but doesn’t like the default location of the legend. She
searches for: “move the legend in Bokeh”.1 She is likely to
find lengthy documentation of the library, or possibly a long
example where the correct function and parameter is buried
inside. If she is really lucky (or an experienced searcher), she
may find an answer on Stack Overflow that clearly matches
the question and describes the function and parameter, but
even then she would need to figure out where exactly in her
code the function or parameter should go. We propose in-
stead that IDEs should short-circuit this and provide in-situ
code modification recommendations in response to natural
language (NL) queries. Suggestions should be contextual-
ized by inspecting the end-user’s current code context and
supported by a large database of code examples.

In this paper, we present CodeMend, an intelligent assis-
tant for interactive programming environments. CodeMend
is aware of what code the end-user has already written and
can respond to their NL requests directly in the context of
that code. For the example above, the system can understand
that the user has already created a legend, and can associate

1Bokeh is an increasingly popular Python plotting library.



Figure 1. CodeMend system screenshot: (A) code editor: highlights relevant lines and columns based on the user’s natural language query; (B) preview
window: shows the image generated by the code; (C) query box: allows the user to type in natural language queries; (D) multi-function information
box: provides code summary and nested-layer suggestions of possible code modifications.

to a large collection of code examples and understand what
people usually do after creating a legend. By combining this
contextual information with the user’s query, “move the leg-
end,” CodeMend can more precisely recommend the correct
function and parameter than a search engine would. Even
better, CodeMend not only indicates to the user where in the
code the modification should be made by highlighting the rel-
evant lines and parameters, but also displays the suggested
code changes through a novel interactive UI.

To build CodeMend, we adopt a neural network model,
namely a bimodal embedding model [2], to jointly model
code and NL. This model is based on n-gram representa-
tions of code and NL. It learns the distributed representations
of code and words in the same vector space by consuming
large text and code corpora. In CodeMend, the corpora in-
clude data ranging from API documentations, Stack Overflow
pages, GitHub repositories, and other webpages. After train-
ing, the model can be applied to different tasks, including
code prediction, code captioning, as well as the primary func-
tion of CodeMend, contextualized code modification sugges-
tion based on NL queries.

We trained CodeMend’s first model on matplotlib [20], a pop-
ular Python library for plotting scientific figures, and is fre-
quently used in IPython or Jupyter Notebook environments.
We targeted matplotlib initially as it is representative of a
broad set of additional libraries (e.g., numpy, pandas, net-
workx, and scikit-learn). To evaluate CodeMend, we tested
our model against a set of collected user queries, demonstrat-
ing that our model can accurately understand a significant
portion of the queries while handling many instances of vo-

cabulary mismatches. We also conducted a user study with
the full CodeMend interface to show an improvement in end-
user productivity.

CodeMend contributes a novel end-to-end solution that ap-
plies a neural network model trained on a large Web-mined
dataset to suggest API functions, parameters, values, or lines
of code for modifying the user’s code snippet to achieve their
tasks expressed in NL. Beyond the “back-end” models, Code-
Mend provides an innovative UI design that supports the
developer to efficiently search for code editing suggestions,
browse common parameter values, inspect live previews, and
integrate suggested modifications to their working code with-
out leaving the IDE. Finally, our evaluation of the system con-
tributes a set of insights into the ways that code search results
can be effectively presented to the end-user.

RELATED WORK
We briefly touch upon related solutions including both UI-
focused approaches as well as novel “code mining” backends.

Context-based Code Search and Code Synthesis
Code-search solutions have long-existed to support the needs
of developers [3, 22, 23, 25, 30]. Though many search en-
gines are context-free, some have leveraged the end-user’s
current code to enhance search performance [5, 7, 18, 34, 48].
CodeBroker [48], for example, uses comments and function
definitions in the user’s current code to match code examples.
Strathcona [18], PRIME [34], and SWIM [40] extract class
types and function calls as context. Some systems go fur-
ther by helping adapt and integrate found code to the user’s



current code [15, 37, 47]. A few solutions can even synthe-
size new code blocks unseen by the system [6, 11, 13, 26,
40, 44]. To this end, the local variables defined in the user’s
current code (and even their runtime values) are leveraged,
which offers greater flexibility in terms of adapting the code
example to the current codebase and helping the user navigate
through complex APIs [27, 45, 46]. While most of these ex-
isting systems present results as a ranked list of synthesized
code snippets or directly modify the user’s code, CodeMend
takes an innovative approach that directs the user’s attention
to the part of the code that is most relevant to the query, and
uses a nested-layer spotlight search interface to help the user
select suggested code changes. To the best of our knowledge,
CodeMend is unique in offering an end-to-end solution that
combines mining massive Web resources, joint modeling of
text and code, support for long-tail NL queries, and a novel UI
to present code modifications with interactive visualizations.

Associating Code with NL
Many code-search systems use keyword matching to process
NL queries [6, 22, 29]. Although keyword matching can be
effective in catching lexical features (e.g., comments, vari-
able and function names), it fails when there is a vocabulary
mismatch between the query terms and the indexed terms. To
address this issue, a number of systems employs query ex-
pansion [14, 30, 40] or topic models [3, 48]. For example,
AnyCode [14] uses WordNet [33] to perform query expan-
sion, while SWIM [40] leverages a proprietary commercial
search engine’s click-through logs. Broker [48] and SSI [3]
use variants of Latent Semantic Analysis (LSA) [7]. In com-
parison, CodeMend uses a neural embedding model, which
has several advantages: it can be trained on openly available
domain-specific corpora and thus is not limited by the cover-
age of WordNet or proprietary data; it can be trained more ef-
ficiently than topic models; and it can easily consume a larger
amount of data and gain better performance.

A second line of research focuses on synthesizing programs
that perform small and repetitive tasks (e.g., text editing)
based on NL instructions [8, 28, 43, 49]. These systems
can achieve very high accuracy in composing domain-specific
programs but have relatively strict requirement on the syntax
of the NL query. In comparison, CodeMend focuses on han-
dling more open-ended task expressions.

Statistical Code Modeling
Statistical code modeling, or big code analysis [41], captures
regularities in a code corpus and distills useful knowledge
about APIs or the underlying programming language [4, 17,
36]. While such models are often used to enhance applica-
tions like plagiarism detection [19] or code completion [42],
they can also be used to enhance the modeling of code context
for suggesting code modifications as in CodeMend.

A popular choice for code modeling are n-gram models.
Hsiao et al. [19] use n-grams of code tokens to represent a
program, and show that tf-idf (term frequency–inverse docu-
ment frequency) weights, a common NL corpus statistic, can
effectively improve code similarity measurement (leading to
better performance in plagiarism detection). SLANG [42]

leverages an n-gram model of API call sequences, and al-
lows the user to write programs with placeholders which the
system will automatically fill in with appropriate API calls.
While CodeMend also leverages the n-gram representation
to model the code context, our objective is different and our
model is also dependent on the NL context.

Distributed Representation Models
Neural embedding models that learn distributed representa-
tions (vectors) of NL words have recently gained a great
amount of attention [24, 31, 32]. Such models are fast to
train and can take advantage of large-scale unlabeled training
data. They are shown to be able to learn representations of
words that carry deep semantics [32].

Several recent studies adapt the embedding approach to mod-
eling tasks [1] and programs [2, 38, 39]. Our model is in-
spired by Allamanis et al. [2]. Their solution frames the pro-
cess of code generation as searching for plausible children
tuples to be attached to a partially grown abstract syntax tree
(AST). The searching is contextualized based on the bag-of-
word representation of an NL utterance. As a result, their
model supports code retrieval by NL and also caption gener-
ation for code snippets. Our model stems from this approach,
but is based on a simpler code representation and employs a
novel method to generate training data from code examples,
so that the model can learn plausible code modifications.

Other work on recurrent neural networks (RNNs) and convo-
lutional neural networks (CNNs) also show promising results
when adapted to modeling programming language [21, 35].
CodeMend may benefit from these techniques in the future.

Exploratory Programming Interfaces
Exploratory programming, or live programming, is a
paradigm that is centered around the REPL experience [16]
Mathematica, MATLAB, R, IPython, and Jupyter Notebook
are all examples in this space. Recent work has focused on
augmenting these tools to support collaboration among data
scientists. For example, Tempe [10] is an integrated system
that supports collaborative analysis on temporal and stream-
ing data via REPL experience. The system can manage per-
sistent research notebooks and make the results of analysis
more reproducible than tools like Jupyter Notebooks by track-
ing workflow provenance. Although CodeMend has a similar
motivation—augmenting the REPL experience for data scien-
tists in general—our focus is on optimizing individual users’
experience of navigating through complex APIs.

SYSTEM OVERVIEW

Sample User Experience
Figure 1 displays the interface of our system. Suppose Alice
wants to create a scatter plot. She opens CodeMend with an
empty editor. The system displays a list of functions that are
likely to be called first (Figure 2). Although she can browse
the suggested functions, Alice types in a search query “cre-
ate a scatter plot”. As she types each word, the system up-
dates the ranked list of functions, while using color to encode
the likelihood of each candidate. When she stops typing, she



finds that scatter is highest ranked, and clicks on it. Code-
Mend shows a set of previews of scatter plots generated by
different code examples mined from the Web, ranked by the
simplicity (length) of the code. Alice clicks on one of them
and the system populates the editor with its code. Alice can
then replace the dummy data variables in the code with her
real data.

Figure 2. CodeMend showing a ranked list of suggested functions based
on the query “create a scatter plot”. Clicking on a suggested function
will make the system display a number of images generated by the code
examples using the function.

Unfortunately, the look of the chart still isn’t quite right. Al-
ice wants to change the transparency of the points on the plot,
but she does not know how to do this. She presses ESC to
focus on the query box, and types a query: “change trans-
parency of the points”. As Alice types, the system computes
how likely each line is associated with this modification task
and highlights the line with the highest likelihood. In this
case, it is the line that has the plt.scatter() function
(Figure 1 (A)). After she clicks on the line, the system shows
a suggestion box with a ranked list of parameters (Figure 1
(D)), and the top ranked one is alpha. She clicks on the pa-
rameter and the API documentation of the parameter shows
up, as well as a number of example values for this parameter.
These values are extracted from tens of thousands of code
examples online, and are ranked by the frequency of their us-
age. Alice clicks on a suggested value 0.5, and CodeMend
updates the code and the image preview immediately. Alice
checks the image and is satisfied with the change.

In summary, CodeMend has supported Alice’s editing pro-
cess via: (1) query-dependent code highlighting; (2) multi-
layer suggestion (functions, arguments, and values); and (3)
instant preview of the effects of code changes.

System Architecture
CodeMend contains three major components: an indexing
module, a modeling module, and a front-end user interface
component (Figure 3). The indexing module crawls GitHub
repositories and webpages (such as Stack Overflow discus-
sion pages), to collect code examples and NL text content.
This data is then fed into a bimodal embedding model, which
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Figure 3. Overview of the CodeMend architecture.

is a statistical model that can automatically learn the asso-
ciations between code and NL and handle vocabulary mis-
match by scanning large collections of data in both modes.
Once training is complete, the back-end model is used to pro-
vide code suggestions. It takes both code context and the
user query as input, and generates ranked lists of code ele-
ments (functions, parameters, and parameter values) for the
front-end to display. While the user only interacts with Code-
Mend’s UI, she benefits from the knowledge extracted from
a large collection of Web resources. Below, we detail each of
the CodeMend’s components.

DATA PREPARATION
To train a neural embedding model to learn high-quality rep-
resentations, one has to supply an extensive amount of data.
In our case, we need both a large collection of code examples
that use matplotlib and a large text corpus that talks about the
same library. To create a natural language corpus with rea-
sonably good coverage on how developers describe tasks and
problems in Python programming in general, we extracted all
the NL content from Stack Overflow threads that were tagged
“Python”. This resulted in a corpus of 90 million words ex-
tracted from 397,197 threads. All the text content was tok-
enized, lower-cased, and lemmatized.

To collect code examples, we searched GitHub for reposito-
ries that contained the string “matplotlib”, and cloned the first
1,000 repositories in the search results. We extracted code
from Python source files as well IPython Notebooks. Af-
ter discarding duplicates and unparseable files, we obtained
8,732 useful code examples. We also downloaded the en-
tire Stack Overflow data dump2 and extracted code examples
from positively rated answers in all the threads tagged “mat-
plotlib”, which resulted in an extra 15,570 code examples. To
obtain more code, we prepared a list of 1,428 queries using
frequent keywords of matplotlib and appended “matplotlib”
to the end of each query (e.g. “Axes matplotlib”). We submit-
ted these queries to the Yahoo! Boss Search API and collected
38,590 URLs. Using these URLs and their one-hop outgoing
links, we retrieved a total of 1,921,890 webpages. We then
built a classifier using character sequences as features to iden-
tify the code examples in these webpages. This step gave us
2https://archive.org/details/stackexchange
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import matplotlib.pyplot as plt

plt.pie(sizes, explode=explode, 
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Figure 4. Pipeline for training a bimodal embedding model.

99,424 code examples, of which 21,993 were useful (exam-
ples shorter than 3 lines were discarded). We also included
all the code examples of a textbook about matplotlib [9]. In
total, we collected 46,495 useful code examples.

In addition to training the model, the code examples are also
used to generate sample plots of functions (see Figure 2). For
this purpose, we consulted the documentation of matplotlib,
and identified 47 functions that can directly generate figures
(as opposed to adjusting a figure). For each function, we
found the code examples that used the function and filtered
out those that failed to execute. We ranked the remaining
code examples by simplicity (measured by number of char-
acters in code), and kept at most 20 shortest code examples
per function. Finally, a total of 405 code examples and their
generated plots were used for real-time previewing. Note that
we did not support automatic mapping from data to example
plots in the current version. Data transformation is beyond
the scope of CodeMend but is a very interesting direction for
future work.

MODELING CODE AND NATURAL LANGUAGE
Figure 4 illustrates our pipeline for training the CodeMend
model. Below, we detail our modeling techniques, including
creating simplified representations of code, modeling NL, and
jointly modeling code and NL (i.e., bimodal modeling).

Simplified Code Representation
We use a set of n-grams {x} to represent a piece of code
C. Each n-gram x is a concatenation of a subset of tokens
{t} 2 C, and each token t can be a module, a function, a pa-
rameter, or a keyword. The tokens in x must follow a specific
order, which obeys the dependencies between the tokens. For
example, a module token tM must be followed by a function
token tF , while tF may be followed by another function to-
ken t

0
F if t0F is a member function of the returned value of tF ,

or alternatively tF may be followed by a parameter token, tP .

Figure 4(c) shows an example set of n-grams ex-
tracted from a given piece of code. One of the n-
grams is plt.title.set bbox@1, which consists of
four tokens: tM=plt, tF1=title, tF2=set bbox, and
tP =@1. It represents the first positional argument of the
set bbox() method of the returned variable of the func-
tion title(), which belongs to the module plt (short for
matplotlib.pyplot).

Generating these n-grams from code and counting them is
relatively cheap and convenient, which enables us to leverage
the large collection of code examples quickly without losing
much representational power. It also reduces the complexity
of the downstream bimodal embedding model. However, the
use of n-grams as code representation does limit the model’s
capability of understanding the sequential ordering of code
elements or more complex code structure. We describe these
limitations further in the Discussion section as well as alter-
native designs.

To convert code examples to n-grams, we parsed found code
using Python’s built-in ast module. We obtained 177,033
unique n-grams. Filtering those n-grams that did not relate
to matplotlib or occurred fewer than 10 times. After filtering,
we retained 9,569 unique n-grams as the vocabulary of pro-
gram tokens. In subsequent processing, each code example,
as well as the user’s code context, were abstracted as a “bag”
of these n-grams.

Modeling Natural Language
To handle the potential vocabulary mismatch between the
user’s query and the documentation of the library, we used
the word2vec package [31] to train a word embedding model
(see Figure 4(d)) by consuming the previously collected text
corpus. We used the continuous bag-of-word (CBOW) model
with a vector size of 150, a window of 10 words, and negative
sampling of 5 samples per instance. Discarding rare words
which occurred less than 20 times in the corpus resulted in



a vocabulary of 28,872 words. We ran 10 iterations over the
corpus for training.

Since the text corpus we collected was from all Python-
related Stack Overflow threads, we were curious whether it
had good precision in modeling terms specific to matplotlib.
We looked at the terms that are most “similar”, as measured
by cosine similarity, to the parameter names in matplotlib,
and inspected whether these terms are indeed relevant to the
concept of the parameters. Though anecdotal, this initial in-
spection shows that a number of terms relevant to matplotlib
are precisely captured in the model. For example, among the
most similar terms to “alpha” are “opacity”, “lightness”, “sat-
uration”, and “transparency”; and among the most similar
terms to “rotation” are “angle”, “orientation”, “clockwise”,
and “counter-clockwise”. These term associations are impor-
tant for handling vocabulary mismatch in the subsequent bi-
modal modeling process.
Bimodal Modeling
Thus far we have introduced how we model the code context
and NL, but these two models are still separate. In this sec-
tion, we describe the techniques to jointly model code and
NL in a single unified model—a neural embedding network.
The reason we favor a single unified model over two separate
ones is that the predictive outputs of the separate models of-
ten need to be merged based on human heuristics, whereas
a unified model can automatically capture the associations
between data of two domains with much less human inter-
vention and is thus more robust than models heavily involved
with heuristics.

The unified bimodal model we use is illustrated in Figure 4(f).
The model is inspired by [31] and [2], but is specifically tai-
lored for our code modification task. It takes a code context C
and a user’s query Q as input, and generates a likelihood pre-
diction p(X|C,Q) over all possible code n-grams X = {x}
as output. In our specific context, it takes a subset of 9,569
code n-grams and a subset of 28,872 NL tokens as input, and
produces a score for each of the 9,569 code n-grams (see Fig-
ure 4). By training the model, we want the score p(X|C,Q)
to align well with the relevance of a code n-gram to the user’s
task expressed by Q in the context of C.

For example, if C contains the plt.pie (generate a pie
chart) function and Q contains the term “rotate”, then we
want the correct parameter, startangle of the function
pie, to have a very high ranking among all x 2 X . Since
many functions have a parameter related to rotation, the code
context, plt.pie, serves to disambiguate the user query.
Conversely, Q disambiguates all related API functions.

To train the model, we need to supply a series of training
instances, (C,Q, x

⇤), where C is the code context, Q is the
query, and x

⇤ is the expected output. These training instances
are generated by going through all the code n-grams of a code
example, selecting one code n-gram as x⇤ at a time, and using
the surrounding code elements within a window (e.g., 5 lines
of code on each side) as C, and using the docstring of x⇤ as
Q. When we construct C, we randomly drop the n-grams
within the window with a 50% chance, so as to simulate the
situations with incomplete code.

Internally, the model holds three sets of vector representa-
tions: (1) VC , the vectors of the code n-grams in the context;
(2) VX , the vectors of code n-grams in the output layer; and
(3) VQ, the vectors of NL words. For each training instance
(C,Q, x

⇤), the model fixes the positions of VQ, which are
learned previously using word2vec, and adjusts the positions
of VC and VX in the vector space to optimize the predicted
score p(x⇤|C,Q).

(a) Code	to	Code (b) NL	to	Code

(c) NL	+	Code	to	Code (d) Code	to	NL

Figure 5. Four usage scenarios of the bimodal embedding model.

Once trained, the bimodal model can be applied in a variety
of scenarios. Figure 5 illustrates four applications that are
supported by the model, which we review below respectively.

Code to Code

If we only supply the code context C to the model (see Fig-
ure 5(a)), then the model is computing p(x|C), essentially
predicting what the developer would write next, given the
code she has already written. Table 1 gives an example ranked
list of suggested code n-grams. It is interesting to note that
the model captures the plt.bar@label in the code con-
text, and provides a reasonable recommendation to “create a
legend” among the highest ranked result, i.e., plt.legend.

Suggested n-gram Score (Unnormalized)
plt.bar@1 -3.510
plt.legend -3.715
plt.bar@0 -4.478
plt.bar@hatch -4.556
plt.bar@log -5.512

Table 1. Top-ranked code n-grams based on code context only. The
code context contains: plt.bar,plt.title,plt.bar@label.

NL to Code

As shown in Figure 5(b), if we only give the model NL input
Q, then the model is predicting p(x|Q)—the equivalent to
performing a function or parameter look-up. Table 2 shows a
ranked list of code n-grams based only on an NL query, “add
text label”.

NL & Code to Code

Figure 5(c) shows the scenario in which the full model is at
work. In this scenario, the model is predicting p(x|Q,C)—
recommending a code n-gram based on both code and NL
contexts. The NL query is the same as in the last example, but



Suggested n-gram Score (Unnormalized)
plt.plot@label 6.143
plt.text 5.881
plt.clabel 5.638
plt.text@1 4.832
plt.clabel@0 4.215

Table 2. Top-ranked code n-grams based on NL query only. The query
is “add text label”.

the additional code context promotes the n-gram that creates
a contour plot (plt.contourf) to the top. This example
illustrates how code context helps improve the precision of
NL-based search.

Suggested n-gram Score (Unnormalized)
plt.clabel 5.342
plt.plot@label 4.210
plt.clabel@0 4.154
plt.text 4.023
plt.xlabel 3.955

Table 3. Top-ranked code n-grams based on a combination of NL query
and code context. The query is “add text label” and the code context is
plt.contourf, which creates a contour plot.

Code to NL

Figure 5(d) shows the reverse process, in which the model
computes p(Q|x,C)—given a code context and one or more
code n-grams, as well as a collection of short NL utterances,
determine which utterance would have best predicted the
given code n-gram. The last scenario can be used to gen-
erate code captions, i.e., short text that summarizes the code.
Table 4 shows a set of results obtained through this process.

Suggested NL utterance Score (Unnormalized)
make a log log histogram 54.19
fit to a log scale 38.64
annotate doesn’t work on log scale 33.93
create square log-log plots 30.79
use log scale on polar axis 29.55

Table 4. Top-ranked NL utterances based on code context. The code con-
text is plt.hist@log. The collection of NL utterances are extracted
from the titles of the Stack Overflow posts that are tagged matplotlib.

In addition to being able to perform the above prediction
tasks, the vectors learned by the neural network also cap-
tures the regularities of the code elements. One aspect
of such regularities is analogous relations between code n-
grams. Figure 6 demonstrates this feature. The vectors VX ’s
of four “symmetric” pairs of functions are visualized in a
2D plot. Such relations can be potentially used to com-
plete a prediction based on existing context. For example, if
the user has called plt.xlim, plt.ylim, plt.xlabel,
then the model can complete the analogy and recommend
plt.ylabel.

USER INTERFACE
We implemented our front-end UI using a client-server
model. The interface is loaded in a browser. The code ed-
itor is rendered using CodeMirror3, and the interactive results
3https://codemirror.net/

Figure 6. Function name analogy in the vector space.

are rendered using D3.4 Whenever the user’s cursor moves in
the code editor or the user types in a query, the code and the
query are sent to a back-end Python server to process. The
server loads a bimodal neural network model to compute pre-
diction scores. The scores are then sent back to the front-end
to render as interactive visualized suggestions.

Unlike most existing code suggestion approaches that involve
complex algorithmic search and inference, our model is sim-
ple in that it is stateless and global. At any given point (as
illustrated in Figure 5), the model takes the combination of
code context (can be empty) and NL query (can be empty) as
input, and produces an output likelihood distribution among
tens of thousands of possible code elements. Since the model
essentially operates like a search engine, we could, in theory,
directly display the results as a series of search engine results
and have the user browse through them. However, showing
results this way has two shortcomings: (1) it might be hard for
the user to interpret and adapt the result to their code context
correctly; (2) it might be frustrating to the user if the model
misinterprets the user’s intent due to severe vocabulary mis-
match or ambiguity that the model is not yet able to handle.
So the question becomes: what interface design can not only
take full advantage of the neural embedding model’s predic-
tive power, but also make its results easily understandable by
the user, easily convertible to actual modifications to the code,
and will not get in the way of the user’s workflow when the
model fails?

Nested-layer Spotlight Search
Our solution follows the idea of using multiple cues to guide
the user’s focus to the correct result. When the user submits a
search query, matching lines in the code editor will be high-
lighted. New functions that can be inserted are suggested in
the right-hand panel and are ranked by their likelihood. If the
user clicks on a line in the editor, or clicks on a suggested
function on the right (e.g., plt.grid in Figure 7), then the
detailed documentation and parameter suggestions will ap-
pear. These parameters are, again, ranked by their likelihoods
as predicted by the same model. If the user is interested in
any of the parameters (e.g., linestyle in Figure 7), then

4https://d3js.org/



the possible values mined from the code repositories will ap-
pear, which are ranked by their usage frequency. If the user
clicks on any of the items, the choice will be backpropagated
to the top-layer so that the user can preview the modification
made so far. She may later accept or abandon the modifica-
tions. In some cases, the value of a parameter can have its
own substructure, such as a dictionary, then a deeper layer
will be displayed to allow more precise control of the pro-
gram’s behavior.

Figure 7. Example of nested-layer spotlight search.

Using this design of nested-layer spotlight search, we direct
the user’s attention to the most relevant information on the
interface, while providing a mapping between the structure
of the search results and the user’s mental model of the code
structure. Compared to conventional search interfaces, where
a fixed number of search results are displayed per query, our
interface makes a much larger number of alternative solu-
tions (i.e., functions, parameters, values) visible to the user
at once. As a result, when the system fails to rank a certain
expected function high enough, the user can easily identify
and try other options, instead of having to experiment with
other queries. This also enables the user to conveniently ex-
plore the solution space and even have serendipitous findings.

Automatic Search Scoping
When the user enters a new query, there may still be several
layers of suggestions expanded. In such cases, it is not obvi-
ous whether the user intends to refine the existing query (i.e.,
stays in the current nested layer view), or to start a search for
a new task (i.e., expands a different set of layers). To resolve
this ambiguity, we rely on the output of the model. If the
predicted ranking of the items on the current layer is above a
cut-off threshold, then we leave the current layer expanded,
otherwise we close the current layer, and recursively inspect
the upper layers. If none of the expanded layers match the
user’s intention, then we close all layers and allow the user to
pick new lines to focus on.

EVALUATION
We performed two evaluations of CodeMend. The first tested
the CodeMend model’s performance with respect to the func-
tion and parameter search task. This was a more conventional
information retrieval (IR)-style analysis which allowed us to
quantify how well CodeMend could retrieve relevant results.
The second experiment tested CodeMend’s usability through
a lab user study.

Search Task Evaluation
One of the main features of CodeMend is that it finds relevant
functions and parameters and then highlights lines of code
that are targets for modification. We framed the function and
parameter search as a standard IR problem and tested where
relevant results were ranked.

Query Collection

To generate a test set of queries, we leveraged workers on
Amazon’s Mechanical Turk. We generated five pairs of plots,
covering bar charts, pie charts, scatter plots, line plots, and
contour plots. Each pair had one “original” plot and one
“modified” plot (see Figure 8 for an example). Workers saw
the pair and were asked to provide NL descriptions of the
changes between the two. They were prompted to generate
these as if they would issue a Google query to find code to
achieve this change.

For the example pair shown in Figure 8, workers produced
queries like: “change the color of bars”, “remove the grid”,
“move the position of the legend”, and “add the shadow into
the bars”. In the end, 50 workers provided queries. On aver-
age, for each pair of images, a worker spent 150.2 seconds,
composed 3.74 queries, and was paid $0.13 dollars.

Plot A Plot B

Figure 8. Example of pairs of images shown to workers in Amazon
Mechnical Turk

The quality of the obtained queries varied greatly. For exam-
ple, some workers misunderstood the task instructions and,
instead of describing how one would specifically change Fig-
ure A to obtain Figure B, many workers submitted vague de-
scriptions (e.g., “the figure styles are different”). Among the
883 queries we initially obtained, we manually selected 361
qualified queries. We filtered out queries if they were (1) du-
plicate (⇠40%); (2) too vague or incorrect (⇠30%); or (3)
junk (e.g., a single word taken from the figure labels, ⇠30%).

In the end, we observed that most selected queries were com-
mands to change functions and parameters in the code, such
as “change the font size of title.” The selected queries cover
the different changes and different chart types.

Results

We used the queries generated above to test CodeMend in the
context of the matplolib API. Because we had both the code
that generated the original plot as well as the modified code,
we naturally had ground truth on which to test the queries.
We used mean reciprocal rank (MRR) as the metric to eval-
uate the ranking results of CodeMend. We also used R@1,
R@5, and R@10, where R@K tests if the correct answer was
ranked among the top K results.



Model MRR R@1 R@5 R@10
NL Only 0.153 0.091 0.224 0.249

Code Only 0.090 0.055 0.116 0.141
NL + Code (Bimodal) 0.245 0.163 0.335 0.429

Table 5. Performance of different models on the search task. NL Only is
the word2vec baseline; Code Only is the bimodal model with only code
as context; NL + Code (Bimodal) is the bimodal model with both NL and
code as context.

We developed three models for the function and parameter
search: (1) a word2vec model (treated as baseline); (2) a bi-
modal model that only used code context, as another baseline;
and (3) a bimodal model using both code context and NL.

As shown in Table 5, the bimodal model using both NL and
code context outperformed the baseline word2vec model (us-
ing NL Only) as well as the baseline that used only code con-
text. Although the bimodal model did not solve parameter
and function search tasks perfectly, it demonstrated the abil-
ity to return the correct parameters and functions in many sce-
narios.5 Note that because CodeMend does not list the search
results in linear fashion like Google, this current performance
is actually very reasonable, as we can direct the user’s atten-
tion to the results by using line highlighting and nested-layer
suggestion in the interface.

Lab User Study
We recruited 20 subjects in our lab user study to investigate
whether CodeMend could help with coding tasks. All but
one students were graduate students (the last was an under-
graduate). All were in CS/IS or related majors. Based on
pre-study reports on skills we had: Python: 6 experts, 9 in-
termediates, and 5 beginners; Matplotlib: 2 experts, 7 inter-
mediates, 7 beginners, and 4 never used it before. To ensure
a variety of responses, we did not filter participants based on
their self-reported experience. This greatly increased the vari-
ance of the distribution in both control and treatment groups
and likely influenced the significance in the results.

In the study, all subjects undertook a brief training session
with CodeMend, and were subsequently given programming
tasks, with and without the help of CodeMend. The training
was provided through a short demo video and an interactive
tutorial. Subjects were asked to complete a set of tasks. In
each task, a subject was shown one original plot and images
of three modified versions (each building upon the result of
the last). Subjects were asked to generate the modified plots,
one at a time, starting from the original plot.

For example, one task had the participant change a bar plot.
The modified versions included the addition of a grid, rotation
of the labels on the x-axis, and addition of shadows to the
bars. The pie chart task required changing the size of title
box, changing the color of title box, and rotating the pie for
90 degrees. Each participant completed both tasks (bar and
5The MRR value of .245 looks much worse than it actually is. As a
reminder: the reciprocal rank (RR) of a result is the inverse (1/K) of
the rank of the correct answer. If the winner is at rank 1, RR is 1/1;
at rank 2: 1/2=.5; at rank 3: 1/3=.33; at rank 4: 1/4 = .25. Therefore,
a score of .245 means that on average the desired answer is ranked
at the 4th place for bimodal but 6th or lower for the other models.

pie) using one of two interfaces: a version of CodeMend that
replaced the suggestions with a list of Google search results
for the query (clicking on these would open the webpage),
and a version of CodeMend with all features enabled (and the
Google search results listed underneath). We opted to offer
Google in both as we did not feel that preventing Web search
would be a realistic environment. We logged all interactions
with both versions.

Each participant completed one task with the Code-
Mend+Google version, and one with only Google. Tasks
were counterbalanced to account for learning effects.

At the end of the lab user study, the users were asked to fill
in another survey to discuss the strengths and weaknesses of
CodeMend, and describe whether CodeMend helped them
with programming. They were also asked to assign grades
to the search results of CodeMend and Google.

Results

In the user studies, we found that CodeMend helped the users
find parameters and functions to use quickly, and as a result,
the users who used CodeMend accomplished more subtasks
than those using just the Google baseline. It is also interest-
ing to note that while the users in the treatment group (with
CodeMend) were also given access to Google, they averaged
1.5 Google queries per session, while the number of queries
under the Google-only setting averaged at 5.5.

We counted the number of completed subtasks for users, and
found that users completed 46 subtasks using CodeMend,
whereas they completed 41 using Google search only. Es-
pecially, when faced with challenging subtasks, those users
with CodeMend were more likely to complete the subtasks
compared to users with Google search.

The time spent on completing a subtask with CodeMend was
108.70 seconds on average, whereas the time with Google
search only is 134.12 seconds. Furthermore, we divided the
users into two groups based on their responses in the pre-
study survey: one with high expertise in programming with
matplotlib, the other with low expertise. We found the dif-
ference of spent time was relatively larger in the group with
low expertise than that in the group with high expertise. Thus
CodeMend appears to be more helpful for users with low ex-
pertise in the programming with matplotlib. However, we
note that these were not significantly different statistically.
Based on our observations of participants, we believe that the
novelty of the CodeMend led subjects to spend more time
with the tool than we might expect in ordinary use. In addi-
tion, to ensure a variety of responses, we did not filter par-
ticipants based on their self-reported experience. This also
greatly increased the variance of the distribution in both con-
trol and treatment groups and likely influenced the signifi-
cance in the results.

According to the responses of the post-survey, 70% of users
agreed or strongly agreed with “CodeMend system efficiently
helps me solve my assigned tasks,” whereas 55% of users
agreed or strong agreed with “Google can efficiently helps me
solve my assigned tasks.” Users appeared to be more satis-
fied with the results from CodeMend than Google search. We



also found that users uniformly appreciated the function and
parameter suggestions provided by CodeMend. Most users
chose this as their favorite feature of CodeMend.

Limitations

According to the users’ responses, the returned results of
CodeMend were not always accurate enough. Users some-
times needed to change the query multiple times before even-
tually finding the correct functions and parameters. We took
this concern to heart, and after the conclusion of the study
we improved the model with additional training and tuning.
Anecdotally, we found that performance improved (i.e., by
checking the queries from the lab study, better suggestions
were generated).

Subjects also found the number of options in the interface
overwhelming at times. In part, this was due to the unfamil-
iarity of the tool for the subjects. Additional, long-term use
may correct for this concern. However, reducing the amount
of information in the UI and making the matches more salient
is an area of future work for us.

DISCUSSION
We briefly describe a number of limitations and future oppor-
tunities for CodeMend.

Given that CodeMend uses n-grams to represent NL and
code, it may seem that the system can only serve the pur-
pose of connecting NL names and functions and parame-
ters. However, our code-based n-grams collapse the AST
into a set of tokens, which can capture not only functions
and parameters, but also certain hierarchical structures (e.g.
nested function calls). For example, as shown in Figure 1(c),
the set bbox function is called on the return value of an-
other function plt.title. This dependency is captured by
CodeMend, which suggests the entire line of plt.title
when it is absent. However, the simple n-gram representation
does limit CodeMend’s capability of handling more complex
code constructs. In particular: (1) CodeMend does not under-
stand control flows (if-else, for-loops); (2) it cannot suggest
parameter values that are return values of previous function
calls; (3) it cannot generate code blocks that require coor-
dination of multiple operations (e.g., set up a color palette,
adjust its configurations, and apply it to a plotting function),
although each individual step is well supported. To overcome
such limitations, we believe more complex neural network
structures are necessary.

CodeMend does not presently support contextualized recom-
mendations based on specific values—these are based on pop-
ularity and not on the bimodal model. For example, when the
user issues a query such as “make the color darker,” the sys-
tem should be able to promote darker color values over lighter
colors. However, parameter values are difficult to incorporate
into the vector space. These would introduce a huge sparsity
issue—there would be simply too many vectors and too few
data to train these additional vectors. Currently the parame-
ter values are suggested based on their counts. While we find
this approach to work reasonably well, it will be meaningful
in the future to explore solutions to encode certain kinds of
values as vectors as well.

Finally, we believe CodeMend is currently well suited for
coding styles that use the REPL paradigm. Such program-
ming tasks usually involve a series of relatively stateless func-
tion calls to a complex API, and is particularly common
among data scientists doing data manipulation and visual-
ization. Some relevant libraries include pandas, scikit-learn,
and networkx. We chose matplotlib because its visual output
allows novice users (including many of our participants) to
verify their codes correctness. However, even in non-visual
code, there are either visual or textual responses that can be
displayed (e.g., network visualization, statistical summaries,
or sample pandas dataframes). CodeMend may work in more
traditional code settings, but the architecture of more complex
code bases (e.g., where many modules or objects are used)
will likely require modifications to the underlying model.

CONCLUSIONS
In this work, we have developed and evaluated CodeMend, an
integrated system that supports natural language queries for
code modification suggestions. CodeMend is able to high-
light areas of code to change and suggest lines, functions,
parameters, or values to use based on the context. We have
shown that our model, a bimodal embedding model trained
with unlabeled data (text and code), can indeed support pro-
gramming tasks. We have also proposed a novel UI to provide
a way for developers to interpret suggested results and eas-
ily integrate them. Through information retrieval benchmark
evaluations as well as in-lab user studies, we demonstrated
that the proposed model can indeed accurately suggest the
relevant solutions and the proposed interface can help with
query disambiguation and support the programmer to effi-
ciently explore multiple different parameters to discover new
solutions to their task.

We believe there is significant opportunity in the use of better
models of code and natural language. These new techniques
also present both opportunity and challenge in developing UIs
that can provide effective interfaces between the end-user and
underlying models.

[Code & data: https://github.com/ronxin/codemend]

ACKNOWLEDGEMENTS
We thank Adobe for providing funding for this research. We
also thank our reviewers for their helpful comments.

REFERENCES
1. Adar, E., Dontcheva, M., and Laput, G. Commandspace:

Modeling the relationships between tasks, descriptions
and features. In Proceedings of the 27th Annual ACM
Symposium on User Interface Software and Technology,
UIST ’14, ACM (2014), 167–176.

2. Allamanis, M., Tarlow, D., Gordon, A., and Wei, Y.
Bimodal modelling of source code and natural language.
In Proceedings of The 32nd International Conference on
Machine Learning (2015), 2123–2132.

3. Bajracharya, S. K., Ossher, J., and Lopes, C. V.
Leveraging usage similarity for effective retrieval of
examples in code repositories. In Proceedings of the

https://github.com/ronxin/codemend


18th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE ’10, ACM
(2010), 157–166.

4. Bielik, P., Raychev, V., and Vechev, M. Programming
with “Big Code”: Lessons, Techniques and
Applications. 1st Summit on Advances in Programming
Languages (2015), 41.

5. Brandt, J., Dontcheva, M., Weskamp, M., and Klemmer,
S. R. Example-centric programming: Integrating web
search into the development environment. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ACM (2010), 513–522.

6. Chatterjee, S., Juvekar, S., and Sen, K. Sniff: A search
engine for java using free-form queries. In Fundamental
Approaches to Software Engineering. Springer, 2009,
385–400.

7. Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer,
T. K., and Harshman, R. Indexing by latent semantic
analysis. Journal of the American Society for
Information Science 41, 6 (1990), 391–407.

8. Desai, A., Gulwani, S., Hingorani, V., Jain, N., Karkare,
A., Marron, M., R, S., and Roy, S. Program synthesis
using natural language. In Proceedings of the 38th

International Conference on Software Engineering,
ICSE ’16, ACM (2016), 345–356.

9. Devert, A. matplotlib Plotting Cookbook. Packt
Publishing Ltd, 2014.

10. Fisher, D., Chandramouli, B., DeLine, R., Goldstein, J.,
Aron, A., Barnett, M., Platt, J. C., Terwilliger, J. F., and
Wernsing, J. Tempe: an interactive data science
environment for exploration of temporal and streaming
data. Tech. rep., MSR-TR-2014–148, 2014.

11. Galenson, J., Reames, P., Bodik, R., Hartmann, B., and
Sen, K. Codehint: Dynamic and interactive synthesis of
code snippets. In Proceedings of the 36th International
Conference on Software Engineering, ACM (2014),
653–663.

12. Granger, B., Silvester, S., Grout, J., Perez, F., Corlay, S.,
Colbert, Chris, O. C., Willmer, D., and Darian, A.
Jupyterlab: Building blocks for interactive computing.
SciPy 2016, 2016.

13. Gvero, T., and Kuncak, V. Interactive synthesis using
free-form queries. In 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering,
vol. 2 (May 2015), 689–692.

14. Gvero, T., and Kuncak, V. Synthesizing Java expressions
from free-form queries. In Proceedings of the 2015
ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages,
and Applications, ACM (2015), 416–432.

15. Hartmann, B., MacDougall, D., Brandt, J., and
Klemmer, S. R. What would other programmers do:
suggesting solutions to error messages. In Proceedings
of the SIGCHI Conference on Human Factors in
Computing Systems, ACM (2010), 1019–1028.

16. Hey, T., Hey, A. J., and Pápay, G. The computing
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