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ABSTRACT KEYWORDS 
Many data scientists use computational notebooks to test and Computational notebooks, code documentation, data science, Kag-
present their work, as a notebook can weave code and documenta- gle, machine learning 
tion together (computational narrative), and support rapid iteration ACM Reference Format: 
on code experiments. However, it is not easy to write good docu- April Yi Wang, Dakuo Wang, Jaimie Drozdal, Xuye Liu, Soya Park, Steve 
mentation in a data science notebook, partially because there is a Oney, and Christopher Brooks. 2021. What Makes a Well-Documented 
lack of a corpus of well-documented notebooks as exemplars for Notebook? A Case Study of Data Scientists’ Documentation Practices in 
data scientists to follow. To cope with this challenge, this work looks Kaggle. In CHI Conference on Human Factors in Computing Systems Extended 
at Kaggle — a large online community for data scientists to host Abstracts (CHI ’21 Extended Abstracts), May 8–13, 2021, Yokohama, Japan. 
and participate in machine learning competitions — and considers ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3411763.3451617 

highly-voted Kaggle notebooks as a proxy for well-documented 
notebooks. Through a qualitative analysis at both the notebook 1 INTRODUCTION 
level and the markdown-cell level, we fnd these notebooks are Computational notebooks (e.g., Jupyter Notebooks or Google Co-
indeed well documented in reference to previous literature. Our Labs) have become the predominant coding environment for data 
analysis also reveals nine categories of content that data scientists scientists and machine learning engineers [13, 32]. Computational 
write in their documentation cells, and these documentation cells notebooks allow users to write “computational narratives” that com-
often interplay with diferent stages of the data science lifecycle. bine code, natural language documentation, and visual output in the 
We conclude the paper with design implications and future research same user interface. Compared to other coding environments (e.g., 
directions. rigid script in a console), computational notebooks better serve the 

exploratory needs of the data science workfow [27]; a data scientist 
can rapidly iterate and explore alternative solutions to a problem CCS CONCEPTS 
and see the results. The combination of code and prose also allows • Human-centered computing → Interactive systems and tools; data scientists to easily share and present their solutions to other 

Empirical studies in HCI; • Computing methodologies → Nat- data scientists or business partners. 
ural language generation; • Software and its engineering → Doc- Despite these benefts of having documentation and code to-
umentation. gether in a computational narrative, in reality, data scientists often 

neglect to write documentations in their notebooks [13, 25]. This 
raises a research question that is underexplored thusfar: how can we 
build technologies to support data scientists’ documentation practice? 

Permission to make digital or hard copies of all or part of this work for personal or Our ultimate research goal is to develop features to alleviate data classroom use is granted without fee provided that copies are not made or distributed 
for proft or commercial advantage and that copies bear this notice and the full citation scientists’ burden of writing documentation, while still enabling 
on the frst page. Copyrights for components of this work owned by others than ACM rapid iteration and exploration. As a frst step to fulfll this vision, 
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, 
to post on servers or to redistribute to lists, requires prior specifc permission and/or a we need to build an empirical understanding of what constitutes 
fee. Request permissions from permissions@acm.org. good documentation in computational notebooks. 
CHI ’21 Extended Abstracts, May 8–13, 2021, Yokohama, Japan Data science is highly interdisciplinary. It often involves various 
© 2021 Association for Computing Machinery. roles [32], spans across diferent stages of the data science lifecy-ACM ISBN 978-1-4503-8095-9/21/05. . . $15.00 
https://doi.org/10.1145/3411763.3451617 cle [30], and has a wide spectrum of usage scenarios [20]. Thus, 
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diferent data scientists’ documentation best practices may be dif-
ferent depending on the user persona and the user scenario. For 
example, a notebook written for one’s future self may have a difer-
ent defnition of documentation best practices than the notebooks 
written for other audiences. This complex problem space imposes 
a challenge for researchers to fnd a representative notebook data 
corpus to analyze the documentation practices, which may partially 
explain why this topic is understudied. 

To help fll this gap, we analyzed the notebooks submitted as 
solutions to Kaggle competitions. Kaggle is a large online data sci-
ence community where users from diverse backgrounds can host or 
participate in data science competitions across diferent felds, sub-
mit their solutions as notebooks, and compete with other solutions 
in a public leaderboard. The public leaderboard ranks notebooks 
based on the performance metrics of the solution (i.e., accuracy). 
Community members can also vote on their favorite notebooks. 
However, the top-voted notebooks by the community are often 
not the top-ranked ones on the leaderboard. We hypothesize these 
highly-voted notebooks generally have high readability and better 
documentation, which is why they are highly regarded by the com-
munity members. These notebooks are generated from diverse user 
personas and for diferent user scenarios. Thus, we can use them 
to build a data corpus as a proxy to understand what constitutes 
good documentation for data scientists’ notebooks. 

In all, we sampled 80 highly-voted Kaggle notebooks and con-
ducted a qualitative content analysis to explore their documentation 
practices. Our analysis is at both the notebook level and the cell 
level. 

At the notebook level, we aim to answer the question: 

RQ1 Are the top-voted Kaggle notebooks a good approximation 
of well-documented notebooks, in comparison to the gen-
erally available Github notebooks reported in a previous 
study [25]? 

At the code cell level, we aim to further explore: 

RQ2 What types of documentation do data scientists write in the 
top-voted notebooks? 

RQ3 And, how do the documentation practices interplay with the 
diferent stages of the data science lifecycle [30]? 

2 RELATED WORK 

2.1 Challenges of Documentation in 
Computational Notebooks 

Data scientists often use computational notebooks to combine a 
variety of media, including text explanations, graphs, forms, interac-
tive visualizations, code segments, and their outputs, into computa-
tional narratives. The data science community has widely adopted 
computational notebooks under the premise that it can help data 
scientists to efectively create, communicate, and collaborate on 
their analysis work [22]. 

However, many data scientists fnd the documentation practice 
expensive and tedious, thus computational notebooks are often not 
appropriately documented. For example, Rule et al. examined 1 mil-
lion open-source computational notebooks from Github and found 
that one in four lacked any sort of written documentation [25]. 

Wang et al. 

Among this data corpus, they further sampled 221 academic compu-
tational notebooks, which they considered are higher quality note-
books. Their analysis found that academic computational notebooks 
contained documentation cells for the purpose of introduction, de-
scribing analytical steps, explaining the reasoning, and discussing 
results. This known challenge of having incomplete or no docu-
mentation indeed hinders the readability and reusability of these 
notebooks, when they are shared with other collaborators or with 
one’s future self [2]. 

Some researchers attribute the cause of this challenge to the 
iterative and explorative nature of data science projects; data sci-
entists often need to explore multiple hypotheses and candidate 
coding solutions [14, 17, 23], many of which will be discarded later. 
Documenting those alternatives while coding would impose an 
unnecessary workload to data scientists, and could interfere with 
their thinking process of coding. 

Another possible explanation of why data scientists do not write 
good quality documentation is that data science projects often in-
volve interdisciplinary domain knowledge, multiple stakeholders, 
and many iterative stages of a data science lifecycle [7, 19, 30–32]. 
For example, Wang et al. [31] summarized a typical data science 
workfow as three high-level phases: data preparation, model build-
ing, and model deployment, where each phase contains many sub-
goals and activities; Similarly, [30] proposes a taxonomy of ten 
stages and six user personas to describe the complex research space. 
It is possible that a good documentation practice for one user per-
sona in a particular data science stage may be considered not so 
good for another user persona or in another stage. 

We aim to build novel features to support data scientists’ doc-
umentation practices while still maintaining the benefts of note-
books (rapid iteration and exploration). Thus, we need to better 
understand the best practices of data scientist documentation from 
a good corpus of data science notebooks. In addition to under-
standing what contents are documented in such notebooks, we also 
want to explore how the documentation interplay with data science 
lifecycle. 

2.2 Shared Computational Notebooks in 
Github and Kaggle 

Computational notebooks have the promise of easy sharing and 
communicating the story of data analysis with others. Källén et al. 
[12] found that cell-level cloning is common in Jupyter notebooks 
hosted on GitHub, where “type 1” clones (exact copy) are seen more 
often than “type 2” clones (where variables are renamed) and “type 
3” clones (where a few statements were changed). Zhang et al. [33] 
found that academic notebooks on GitHub contain more codes re-
lated to data exploration and less on model development. However, 
these studies often focused on the code sharing and reusing prac-
tices, rather than documentation practices. As we describe above, 
Github notebooks often lack documentation (one in four has no 
documentation) [25], thus we need to look for a better data corpus 
to explore data scientists’ documentation practices. 

A number of recent studies started to explore another data sci-
ence online community — Kaggle. Kaggle provides a platform where 
users or organizations can post datasets as machine learning chal-
lenges, and community members can submit their solutions in a 
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notebook to those challenges. If a solution has the highest model 
accuracy, it wins the competition. In addition, community members 
can vote up or down on others’ submitted notebooks. Often, the 
winning solutions are not the highly-voted ones, as community 
members voted on the readability and completeness of the compu-
tational narrative. Cheng and Zachry [3] interviewed why users 
participate in Kaggle competitions, and what challenges they have. 
Tauchert et al. [28] studied the motivation of organizers hosting 
Kaggle competitions. They characterized the practice as harvesting 
crowd wisdom in online communities, as the solutions to a com-
petition can inspire organizers with state-of-art approaches and 
connect organizers with promising competition participants. 

In this work, we leverage the Kaggle online community to collect 
highly-voted notebooks as a corpus for analysis to understand the 
documentation practices in computational notebooks. 

2.3 Code Documentation Practice in Software 
Engineering 

Although documentation practice is underexplored in data science 
notebooks, we may leverage existing understandings of code docu-
mentaiton practices in software engineering. Programmers often 
write comments in their source code to make the code easily under-
stood by both themselves and other developers [21]. Writing clear 
and comprehensive documentation is critical to software projects’ 
development and maintenance [4, 11, 18, 24, 26]. However, writ-
ing documentation is also time-consuming. Thus, many projects 
(especially open source projects) have low quality documentation, 
partially due to the low level of intrinsic enjoyment for doing docu-
mentation [6]. 

The documentation practice in software engineering projects 
is diferent from the ones in data science projects. Documentation 
in software engineering primarily describes what the code does, 
thus this documentation follows an established pattern. For these 
straightforward and patterned documenation tasks, a template-
based approach is sufcient to support users to generate documen-
tations For example, tools like JavaDoc[8] allow programmers to 
annotate code with tags (e.g., @param, @return) and automatically 
generate documentation using these tags. 

Our work focuses more on the underexplored research topic 
about data science documentation. Documentation in data science 
is less structured and more extensive. It may describe how a data set 
is constructed, explain the motivation behind an analysis, and inter-
pret the model results and visualization. It can be much more com-
plicated than the documentation in software engineering projects. 

3 METHOD 
To understand data science documentation best practices in compu-
tational notebooks, we conducted a qualitative analysis on a set of 
80 highly-voted Kaggle notebooks. The notebooks that we analyzed 
were Jupyter notebooks [15], which consists of individual “cells”. 
Every cell in a notebook contains either code or documentation 
written in Markdown (a language for creating formatted text). 

3.1 Data Collection 
We collected notebooks from two popular Kaggle competitions — 
a) House Price Prediction [9] and b) Titanic Survival Prediction 

CHI ’21 Extended Abstracts, May 8–13, 2021, Yokohama, Japan 

[10]. We chose these two competitions because they are the most 
popular competitions (5,280 notebooks submitted for House Price 
and 6,300 notebooks submitted for Titanic Survival), and because 
many data science courses use these two competitions as tutorials [1, 
5]. We collected the top 1% of the submitted notebooks from each 
competition based on their voting numbers, which resulted in 53 for 
House Price and 63 for Titanic Survival. We then cleaned the dataset 
by fltering out the notebooks that were not written in English and 
the ones that are not relevant to the particular challenge (e.g., a 
computational notebook introduces a new Python library, but it is 
irrelavent to the particular data science challenge), which returned 
80 valid notebooks for analysis (39 for House Price and 41 for Titanic 
Survival). 

3.2 Data Analysis 
We began the analysis by describing how these 80 notebooks look 
like (RQ1), and the general characteristics of these documentation 
practices. Then, fve members of the research team conducted an 
iterative open coding practice to analyze the cell-level documenta-
tion practices. We categorized each documentation cell’s purpose 
and content type (RQ2). We also coded each cell with a data science 
lifecycle stage to which the cell belongs (RQ3) (e.g., data cleaning 
or modeling training [30]). We achieved pair-wise inter-rater relia-
bility ranged 0.78–0.95 (Cohen’s κ) In total, our analysis covered 
4,427 code cells and 3,606 Markdown (documentation) cells in the 
80 notebooks. 

4 RESULTS 
Our analysis shows that these 80 highly-voted computational note-
books are indeed well-documented notebooks, in comparison to 
the Github data corpus (RQ1). Also, we extracted nine diferent 
categories for the content to describe the documentation prac-
tices at the cell level (RQ2). In addition, we found these Kaggle 
notebooks’ documentation only covered four of the ten stages of 
the data science lifecycle (RQ3). 

4.1 Highly-Voted Kaggle Notebooks are 
Well-Documented Notebooks. 

We found that on average, each notebook we analyzed contains 55.3 
code cells and 45.1 Markdown cells. We replicated the notebook 
descriptive analysis that Rule et al. used to analyze 1 million com-
putational notebooks on Github [25]. As shown in Figure 1, the left 
side represents the descriptive visualization of the 80 highly-voted 
computational notebooks from Kaggle (noted as Kaggle Corpus) 
and the right side represents the descriptive visualization of the 
1 million computational notebooks on Github (noted as Github 
Corpus). We found that the Kaggle Corpus has more total cells 
per notebook (Median = 95) than Github Corpus (Median = 18). 
The kaggle Corpus has a roughly equal ratio of Markdown cells 
and code cells per notebook, while Github Corpus is unbalanced 
with the majority of cells being code cells. Notably, Kaggle Cor-
pus has more total words in Markdown cells (Median = 1728) than 
Github Corpus (Median = 218). This result indicates that the 80 
highly-voted computational notebooks are better documented than 
general Github notebooks. 

https://0.78�0.95
https://0.78�0.95
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Figure 1: We replicated the notebook level descriptive analysis by Rule et al. [25] to the 80 highly-voted notebooks on Kaggle. 
The left side (in red) represents the descriptive visualization of the 80 highly-voted computational notebooks from Kaggle 
(noted as Kaggle Corpus) and the right side (in blue) represents the descriptive visualization of the 1 million computational 
notebooks on Github (noted as Github Corpus). The Kaggle Corpus is better documented compared to the Github Corpus. 

4.2 Data Science Documentation Covers a 
Broad Range of Topics and Purposes. 

As Table 1 shows, we coded nine categories of documentation in 
the Markdown cells. Our analysis revealed that Markdown cells are 
mostly used to describe what the adjacent code cell is doing (Process, 
58.65%). Second to the Process category, 32.36% Markdown cells are 
used to specify a headline for organizing the notebook into separate 
functional sections and for navigation purposes (Headline). 

Markdown cells can also be used to explain beyond the adjacent 
code cells. We found that many Markdown cells are created to 
describe the outputs from code execution (Result, 19.19%), to explain 
results or critical decisions (Reason, 6.30%), or to provide an outline 
for the readers to know what they are going to do in a list of todo 
actions (Todo, 5.60%), and/or to recap what has been done so far 
(Summary, 1.41%). 

We observed that 11.48% Markdown cells explain what a general 
data science concept means, or how a function works (Education), 
while 5.54% Markdown cells are connected with external references 
for readers to further explore the topics (Reference). We believe 
these are the extra eforts that the notebook owners dedicated, 
to attract a broader audience, especially beginners in the Kaggle 
community. In addition, some authors want to leave their own sig-
nature, and so they spend spaces at the beginning of the notebooks 
to debrief the project, to add the author’s information, or even to 
add their mottos (Meta-Information, 3.91%). 

4.3 Notebook Documentations Interplay with 
the Stages of the Data Science Lifecycle. 

We coded Markdown cells based on where they belong in the data 
science workfow [30]. We found that the data science problems 
on Kaggle competitions contain clearly project goals and datasets, 

where data scientists do not need to go through processes like trans-
forming business goals to data science goals and collecting data. 
Notebooks on Kaggle also do not refect the model deployment 
stage, where in practice, data scientists need to deploy models, 
monitor performances, and further improve their models. In to-
tal, we identifed four stages and 13 tasks. The four stages include 
environment confguration (4.50%), data preparation and ex-
ploration (37.05%), feature engineering and selection (10.40%), 
and model building and selection (27.57%). At the fner-grained 
task level, in particular, notebook authors create more Markdown 
cells for documenting exploratory data analysis tasks (26.62%) and 
model training tasks (10.45%). The rest of the Markdown cells are 
evenly distributed along with other tasks. 

5 DISCUSSION 

5.1 Best Practices for Data Science 
Documentation and Design Implications 

Our fndings suggest that the highly-voted computational note-
books on Kaggle present well-documentation practices among data 
science professionals. Novice data scientists can learn not only 
data science programming and problem-solving skills, but also the 
documentation practices from online data science communities. 
Instructors can beneft from these documentation practices so that 
they can better educate and prepare future data scientists. In ad-
dition, tool designers can get design inspirations to improve the 
current data science programming tools to better support documen-
tation writing. Below, we discuss several design opportunities. 

Our analysis identifed nine categories of documentation in com-
putational notebooks, and we suggest building automation tech-
niques (AI) to support human data scientists’ documentation tasks, 
similar to prior work on leveraging AI to support the model building 
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Table 1: We identifed 9 categories based on the purpose of Markdown cells. Note that a Markdown cell may belong to multiple 
categories of contents or none of the categories. 

Category N Description Example 

Process 2115 The Markdown cell describes what the following Transforming Feature X to a 
(58.65%) code cell is doing. This always appears before the new binary variable 

relevant code cell. 
Headline 1167 The Markdown cell contains a headline in Markdown # Blending Models 

(32.36%) syntax. The cell is used for navigation purposes or 
marking the structure of the notebook. It may be 
relevant to a nearby code cell. 

Result 692 The Markdown cell explains the output. This type It turns out there is a long 
(19.19%) always appears after the relevant code cell. tail of outlying properties... 

Education 414 The Markdown cell provides a rich content as an Multicollinearity increases 
(11.48%) educational tutorial, but may not be relevant to a the standard errors of the 

specifc code cell. coefficients. 

Reason 227 The Markdown cell explains the reasons why certain We do this manually, because 
(6.30%) functions are used or why a task is performed. This ML models won't be able to 

may appear before or after the relevant code cell. reliably tell the differences. 

Todo 202 The Markdown cell describes a list of actions for fu- 1. Apply models 
(5.60%) ture implementations. This normally is not relevant 2. Get cross validation scores 

to a specifc code cell. 3. Calculate the mean 

Reference 200 The Markdown cell contains an external reference. Gradient Boosting Regression 
(5.55%) This is also relevant to the adjacent code cell. Refer [here](https://...) 

Meta- 141 The Markdown cell contains meta-information such The purpose of this notebook 
Information (3.91%) as project overview, author’s information, and a link is to build a model with 

to the data sources. This often is not relevant to a Tensorflow. 
specifc code. 

Summary 51 The Markdown cell summarizes what has been done **In summary** 
(1.41%) so far for a section or a series of steps. This often is By EDA we found a strong impact 

not relevant to a specifc code. of features like Age, Embarked.. 

Table 2: We coded each Markdown cell to which data science stage (or task) they belong. We identifed 4 stages with 13 tasks. 
Note that a Markdown cell may belong to multiple stages or none of the stages. 

Stage Total Task N 

Environment Confguration 162 (4.49%) Library Loading 
Data Loading 

33 (0.92%) 
129 (3.58%) 

Data Preparation and Exploration 1336 (37.05%) 
Data Preparation 
Exploratory Data Analysis 
Data Cleaning 

91 (2.52%) 
960 (26.62%) 
285 (7.90%) 

Feature Engineering and Selection 375 (10.40%) 
Feature Engineering 
Feature Transformation 
Feature Selection 

120 (3.32%) 
178 (4.94%) 
77 (2.14%) 

Model Building and Selection 994 (27.57%) 

Model Building 
Data Sub-Sampling and Train-Test Splitting 
Model Training 
Model Parameter Tuning 
Model Validation and Assembling 

247 (6.85%) 
61 (1.69%) 
377 (10.45%) 
81 (2.25%) 
288 (6.32%) 
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tasks [29]. For diferent types of documentaitons, we can use design 
diferent generation approahces. For example, the Process category, 
which simply describes what the code does, may be inferred by 
parsing the API documentation. Thus, the notebook can automati-
cally complete documentation, as in software engineering coding 
systems [8, 16]. But for some other categories, such as Education 
and Reason, there needs a more human-centered approach. Maybe 
a simple prompt to nudge users is more efective for helping users 
to create this documentation. 

The timing of suggesting documentation is also an important 
consideration. Previous studies [13, 25] suggest that data scientists 
are hesitant to follow the practice of literate programming to create 
documentation during the development of code, despite they ac-
knowledge the benefts that these informal notes have for recalling 
the analysis path. What if we can use some automation or prompt to 
help data scientists generate documentation during the exploration 
process? Alternatively, some data scientists may prefer to focus 
only on the thinking of code, and leave the documentation work 
to the end after they fnish all the coding in the notebook. Then, 
the technology can be designed to scan through the notebook code 
cells, and automatically fll in the documentations in appropriate po-
sitions. This is promising as there are many breakthroughs in NLP 
and ML for automatically generating natural language descriptions 
for code snippets [16]. 

5.2 Limitation and Future Work 
In this work, we used highly-voted Kaggle notebooks as an ap-
proximation to the well-documented notebooks and explored their 
documentation practices. Our result indeed shows that our corpus is 
generally well documented, and it yields insightful understandings 
of data scientists’ documentation practices. However, we acknowl-
edge that our approximation may be inaccurate, and there may 
be other data corpora that are better suited for understanding the 
documentation practices of data scientists. For example, the code in 
our Kaggle notebook corpus stopped at the Model Building stage of 
the lifecycle, yet we know in a real data science project, there are 
many other stages (model deployment and model runtime monitor-
ing), but due to the nature of Kaggle competition setup, this corpus 
can not reveal documentation practices of those later stages. We 
welcome other researchers to join our efort to fnd and share their 
data corpora for the whole research community. 1 In addition, it 
is worth examining the general data science documentation prac-
tice on Kaggle by looking at both high-voted notebooks and low 
popularity notebooks. 

Future works can leverage our data corpus to further explore 
other data science best practices, given our work only looked at 
the documentation behavior. Another future direction is to actually 
implement documentation-support features to support the variety 
of documentation types in a notebook. And once such features 
are implemented, a user study is required to further evaluate the 
benefts and tradeofs of how the diferent design decisions may 
infuence users’ coding or documentation behaviors. 

1Our data corpus is open sourced and available upon request. 

Wang et al. 

6 CONCLUSION 
We present an empirical study that aims to explore the best prac-
tices of writing documentation in computational notebooks by 
qualitatively analyzing 80 highly-voted notebooks sampled from 
Kaggle. In comparison to prior work, our sampled notebooks are 
indeed well-documented. In particular, the analyses extract nine 
types of documentation practices, and reveal that documentation 
interplay with the data science lifecycle. These fndings point to 
promising future work on designing automated features to support 
data scientists’ notebook documentation practices. 
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