

What Makes a Well-Documented Notebook? A Case Study of
Data Scientists’ Documentation Practices in Kaggle

April Yi Wang Dakuo Wang Jaimie Drozdal
aprilww@umich.edu dakuo.wang@ibm.com drozdj3@rpi.edu
University of Michigan IBM Research Rensselaer Polytechnic Institute

USA USA USA

Xuye Liu Soya Park Steve Oney
liux27@rpi.edu soya@mit.edu soney@umich.edu

Rensselaer Polytechnic Institute MIT CSAIL University of Michigan
USA USA USA

Christopher Brooks
brooksch@umich.edu
University of Michigan

USA

ABSTRACT KEYWORDS
Many data scientists use computational notebooks to test and Computational notebooks, code documentation, data science, Kag-
present their work, as a notebook can weave code and documenta- gle, machine learning
tion together (computational narrative), and support rapid iteration ACM Reference Format:
on code experiments. However, it is not easy to write good docu- April Yi Wang, Dakuo Wang, Jaimie Drozdal, Xuye Liu, Soya Park, Steve
mentation in a data science notebook, partially because there is a Oney, and Christopher Brooks. 2021. What Makes a Well-Documented
lack of a corpus of well-documented notebooks as exemplars for Notebook? A Case Study of Data Scientists’ Documentation Practices in
data scientists to follow. To cope with this challenge, this work looks Kaggle. In CHI Conference on Human Factors in Computing Systems Extended
at Kaggle — a large online community for data scientists to host Abstracts (CHI ’21 Extended Abstracts), May 8–13, 2021, Yokohama, Japan.
and participate in machine learning competitions — and considers ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3411763.3451617

highly-voted Kaggle notebooks as a proxy for well-documented
notebooks. Through a qualitative analysis at both the notebook 1 INTRODUCTION
level and the markdown-cell level, we fnd these notebooks are Computational notebooks (e.g., Jupyter Notebooks or Google Co-
indeed well documented in reference to previous literature. Our Labs) have become the predominant coding environment for data
analysis also reveals nine categories of content that data scientists scientists and machine learning engineers [13, 32]. Computational
write in their documentation cells, and these documentation cells notebooks allow users to write “computational narratives” that com-
often interplay with diferent stages of the data science lifecycle. bine code, natural language documentation, and visual output in the
We conclude the paper with design implications and future research same user interface. Compared to other coding environments (e.g.,
directions. rigid script in a console), computational notebooks better serve the

exploratory needs of the data science workfow [27]; a data scientist
can rapidly iterate and explore alternative solutions to a problem CCS CONCEPTS
and see the results. The combination of code and prose also allows • Human-centered computing → Interactive systems and tools; data scientists to easily share and present their solutions to other

Empirical studies in HCI; • Computing methodologies → Nat- data scientists or business partners.
ural language generation; • Software and its engineering → Doc- Despite these benefts of having documentation and code to-
umentation. gether in a computational narrative, in reality, data scientists often

neglect to write documentations in their notebooks [13, 25]. This
raises a research question that is underexplored thusfar: how can we
build technologies to support data scientists’ documentation practice?

Permission to make digital or hard copies of all or part of this work for personal or Our ultimate research goal is to develop features to alleviate data classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation scientists’ burden of writing documentation, while still enabling
on the frst page. Copyrights for components of this work owned by others than ACM rapid iteration and exploration. As a frst step to fulfll this vision,
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specifc permission and/or a we need to build an empirical understanding of what constitutes
fee. Request permissions from permissions@acm.org. good documentation in computational notebooks.
CHI ’21 Extended Abstracts, May 8–13, 2021, Yokohama, Japan Data science is highly interdisciplinary. It often involves various
© 2021 Association for Computing Machinery. roles [32], spans across diferent stages of the data science lifecy-ACM ISBN 978-1-4503-8095-9/21/05. . . $15.00
https://doi.org/10.1145/3411763.3451617 cle [30], and has a wide spectrum of usage scenarios [20]. Thus,

https://doi.org/10.1145/3411763.3451617
https://doi.org/10.1145/3411763.3451617
mailto:permissions@acm.org
https://doi.org/10.1145/3411763.3451617
mailto:permissions@acm.org
https://doi.org/10.1145/3411763.3451617
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3411763.3451617&domain=pdf&date_stamp=2021-05-08

CHI ’21 Extended Abstracts, May 8–13, 2021, Yokohama, Japan

diferent data scientists’ documentation best practices may be dif-
ferent depending on the user persona and the user scenario. For
example, a notebook written for one’s future self may have a difer-
ent defnition of documentation best practices than the notebooks
written for other audiences. This complex problem space imposes
a challenge for researchers to fnd a representative notebook data
corpus to analyze the documentation practices, which may partially
explain why this topic is understudied.

To help fll this gap, we analyzed the notebooks submitted as
solutions to Kaggle competitions. Kaggle is a large online data sci-
ence community where users from diverse backgrounds can host or
participate in data science competitions across diferent felds, sub-
mit their solutions as notebooks, and compete with other solutions
in a public leaderboard. The public leaderboard ranks notebooks
based on the performance metrics of the solution (i.e., accuracy).
Community members can also vote on their favorite notebooks.
However, the top-voted notebooks by the community are often
not the top-ranked ones on the leaderboard. We hypothesize these
highly-voted notebooks generally have high readability and better
documentation, which is why they are highly regarded by the com-
munity members. These notebooks are generated from diverse user
personas and for diferent user scenarios. Thus, we can use them
to build a data corpus as a proxy to understand what constitutes
good documentation for data scientists’ notebooks.

In all, we sampled 80 highly-voted Kaggle notebooks and con-
ducted a qualitative content analysis to explore their documentation
practices. Our analysis is at both the notebook level and the cell
level.

At the notebook level, we aim to answer the question:

RQ1 Are the top-voted Kaggle notebooks a good approximation
of well-documented notebooks, in comparison to the gen-
erally available Github notebooks reported in a previous
study [25]?

At the code cell level, we aim to further explore:

RQ2 What types of documentation do data scientists write in the
top-voted notebooks?

RQ3 And, how do the documentation practices interplay with the
diferent stages of the data science lifecycle [30]?

2 RELATED WORK

2.1 Challenges of Documentation in
Computational Notebooks

Data scientists often use computational notebooks to combine a
variety of media, including text explanations, graphs, forms, interac-
tive visualizations, code segments, and their outputs, into computa-
tional narratives. The data science community has widely adopted
computational notebooks under the premise that it can help data
scientists to efectively create, communicate, and collaborate on
their analysis work [22].

However, many data scientists fnd the documentation practice
expensive and tedious, thus computational notebooks are often not
appropriately documented. For example, Rule et al. examined 1 mil-
lion open-source computational notebooks from Github and found
that one in four lacked any sort of written documentation [25].

Wang et al.

Among this data corpus, they further sampled 221 academic compu-
tational notebooks, which they considered are higher quality note-
books. Their analysis found that academic computational notebooks
contained documentation cells for the purpose of introduction, de-
scribing analytical steps, explaining the reasoning, and discussing
results. This known challenge of having incomplete or no docu-
mentation indeed hinders the readability and reusability of these
notebooks, when they are shared with other collaborators or with
one’s future self [2].

Some researchers attribute the cause of this challenge to the
iterative and explorative nature of data science projects; data sci-
entists often need to explore multiple hypotheses and candidate
coding solutions [14, 17, 23], many of which will be discarded later.
Documenting those alternatives while coding would impose an
unnecessary workload to data scientists, and could interfere with
their thinking process of coding.

Another possible explanation of why data scientists do not write
good quality documentation is that data science projects often in-
volve interdisciplinary domain knowledge, multiple stakeholders,
and many iterative stages of a data science lifecycle [7, 19, 30–32].
For example, Wang et al. [31] summarized a typical data science
workfow as three high-level phases: data preparation, model build-
ing, and model deployment, where each phase contains many sub-
goals and activities; Similarly, [30] proposes a taxonomy of ten
stages and six user personas to describe the complex research space.
It is possible that a good documentation practice for one user per-
sona in a particular data science stage may be considered not so
good for another user persona or in another stage.

We aim to build novel features to support data scientists’ doc-
umentation practices while still maintaining the benefts of note-
books (rapid iteration and exploration). Thus, we need to better
understand the best practices of data scientist documentation from
a good corpus of data science notebooks. In addition to under-
standing what contents are documented in such notebooks, we also
want to explore how the documentation interplay with data science
lifecycle.

2.2 Shared Computational Notebooks in
Github and Kaggle

Computational notebooks have the promise of easy sharing and
communicating the story of data analysis with others. Källén et al.
[12] found that cell-level cloning is common in Jupyter notebooks
hosted on GitHub, where “type 1” clones (exact copy) are seen more
often than “type 2” clones (where variables are renamed) and “type
3” clones (where a few statements were changed). Zhang et al. [33]
found that academic notebooks on GitHub contain more codes re-
lated to data exploration and less on model development. However,
these studies often focused on the code sharing and reusing prac-
tices, rather than documentation practices. As we describe above,
Github notebooks often lack documentation (one in four has no
documentation) [25], thus we need to look for a better data corpus
to explore data scientists’ documentation practices.

A number of recent studies started to explore another data sci-
ence online community — Kaggle. Kaggle provides a platform where
users or organizations can post datasets as machine learning chal-
lenges, and community members can submit their solutions in a

What Makes a Well-Documented Notebook?

notebook to those challenges. If a solution has the highest model
accuracy, it wins the competition. In addition, community members
can vote up or down on others’ submitted notebooks. Often, the
winning solutions are not the highly-voted ones, as community
members voted on the readability and completeness of the compu-
tational narrative. Cheng and Zachry [3] interviewed why users
participate in Kaggle competitions, and what challenges they have.
Tauchert et al. [28] studied the motivation of organizers hosting
Kaggle competitions. They characterized the practice as harvesting
crowd wisdom in online communities, as the solutions to a com-
petition can inspire organizers with state-of-art approaches and
connect organizers with promising competition participants.

In this work, we leverage the Kaggle online community to collect
highly-voted notebooks as a corpus for analysis to understand the
documentation practices in computational notebooks.

2.3 Code Documentation Practice in Software
Engineering

Although documentation practice is underexplored in data science
notebooks, we may leverage existing understandings of code docu-
mentaiton practices in software engineering. Programmers often
write comments in their source code to make the code easily under-
stood by both themselves and other developers [21]. Writing clear
and comprehensive documentation is critical to software projects’
development and maintenance [4, 11, 18, 24, 26]. However, writ-
ing documentation is also time-consuming. Thus, many projects
(especially open source projects) have low quality documentation,
partially due to the low level of intrinsic enjoyment for doing docu-
mentation [6].

The documentation practice in software engineering projects
is diferent from the ones in data science projects. Documentation
in software engineering primarily describes what the code does,
thus this documentation follows an established pattern. For these
straightforward and patterned documenation tasks, a template-
based approach is sufcient to support users to generate documen-
tations For example, tools like JavaDoc[8] allow programmers to
annotate code with tags (e.g., @param, @return) and automatically
generate documentation using these tags.

Our work focuses more on the underexplored research topic
about data science documentation. Documentation in data science
is less structured and more extensive. It may describe how a data set
is constructed, explain the motivation behind an analysis, and inter-
pret the model results and visualization. It can be much more com-
plicated than the documentation in software engineering projects.

3 METHOD
To understand data science documentation best practices in compu-
tational notebooks, we conducted a qualitative analysis on a set of
80 highly-voted Kaggle notebooks. The notebooks that we analyzed
were Jupyter notebooks [15], which consists of individual “cells”.
Every cell in a notebook contains either code or documentation
written in Markdown (a language for creating formatted text).

3.1 Data Collection
We collected notebooks from two popular Kaggle competitions —
a) House Price Prediction [9] and b) Titanic Survival Prediction

CHI ’21 Extended Abstracts, May 8–13, 2021, Yokohama, Japan

[10]. We chose these two competitions because they are the most
popular competitions (5,280 notebooks submitted for House Price
and 6,300 notebooks submitted for Titanic Survival), and because
many data science courses use these two competitions as tutorials [1,
5]. We collected the top 1% of the submitted notebooks from each
competition based on their voting numbers, which resulted in 53 for
House Price and 63 for Titanic Survival. We then cleaned the dataset
by fltering out the notebooks that were not written in English and
the ones that are not relevant to the particular challenge (e.g., a
computational notebook introduces a new Python library, but it is
irrelavent to the particular data science challenge), which returned
80 valid notebooks for analysis (39 for House Price and 41 for Titanic
Survival).

3.2 Data Analysis
We began the analysis by describing how these 80 notebooks look
like (RQ1), and the general characteristics of these documentation
practices. Then, fve members of the research team conducted an
iterative open coding practice to analyze the cell-level documenta-
tion practices. We categorized each documentation cell’s purpose
and content type (RQ2). We also coded each cell with a data science
lifecycle stage to which the cell belongs (RQ3) (e.g., data cleaning
or modeling training [30]). We achieved pair-wise inter-rater relia-
bility ranged 0.78–0.95 (Cohen’s κ) In total, our analysis covered
4,427 code cells and 3,606 Markdown (documentation) cells in the
80 notebooks.

4 RESULTS
Our analysis shows that these 80 highly-voted computational note-
books are indeed well-documented notebooks, in comparison to
the Github data corpus (RQ1). Also, we extracted nine diferent
categories for the content to describe the documentation prac-
tices at the cell level (RQ2). In addition, we found these Kaggle
notebooks’ documentation only covered four of the ten stages of
the data science lifecycle (RQ3).

4.1 Highly-Voted Kaggle Notebooks are
Well-Documented Notebooks.

We found that on average, each notebook we analyzed contains 55.3
code cells and 45.1 Markdown cells. We replicated the notebook
descriptive analysis that Rule et al. used to analyze 1 million com-
putational notebooks on Github [25]. As shown in Figure 1, the left
side represents the descriptive visualization of the 80 highly-voted
computational notebooks from Kaggle (noted as Kaggle Corpus)
and the right side represents the descriptive visualization of the
1 million computational notebooks on Github (noted as Github
Corpus). We found that the Kaggle Corpus has more total cells
per notebook (Median = 95) than Github Corpus (Median = 18).
The kaggle Corpus has a roughly equal ratio of Markdown cells
and code cells per notebook, while Github Corpus is unbalanced
with the majority of cells being code cells. Notably, Kaggle Cor-
pus has more total words in Markdown cells (Median = 1728) than
Github Corpus (Median = 218). This result indicates that the 80
highly-voted computational notebooks are better documented than
general Github notebooks.

https://0.78�0.95
https://0.78�0.95

CHI ’21 Extended Abstracts, May 8–13, 2021, Yokohama, Japan Wang et al.

Figure 1: We replicated the notebook level descriptive analysis by Rule et al. [25] to the 80 highly-voted notebooks on Kaggle.
The left side (in red) represents the descriptive visualization of the 80 highly-voted computational notebooks from Kaggle
(noted as Kaggle Corpus) and the right side (in blue) represents the descriptive visualization of the 1 million computational
notebooks on Github (noted as Github Corpus). The Kaggle Corpus is better documented compared to the Github Corpus.

4.2 Data Science Documentation Covers a
Broad Range of Topics and Purposes.

As Table 1 shows, we coded nine categories of documentation in
the Markdown cells. Our analysis revealed that Markdown cells are
mostly used to describe what the adjacent code cell is doing (Process,
58.65%). Second to the Process category, 32.36% Markdown cells are
used to specify a headline for organizing the notebook into separate
functional sections and for navigation purposes (Headline).

Markdown cells can also be used to explain beyond the adjacent
code cells. We found that many Markdown cells are created to
describe the outputs from code execution (Result, 19.19%), to explain
results or critical decisions (Reason, 6.30%), or to provide an outline
for the readers to know what they are going to do in a list of todo
actions (Todo, 5.60%), and/or to recap what has been done so far
(Summary, 1.41%).

We observed that 11.48% Markdown cells explain what a general
data science concept means, or how a function works (Education),
while 5.54% Markdown cells are connected with external references
for readers to further explore the topics (Reference). We believe
these are the extra eforts that the notebook owners dedicated,
to attract a broader audience, especially beginners in the Kaggle
community. In addition, some authors want to leave their own sig-
nature, and so they spend spaces at the beginning of the notebooks
to debrief the project, to add the author’s information, or even to
add their mottos (Meta-Information, 3.91%).

4.3 Notebook Documentations Interplay with
the Stages of the Data Science Lifecycle.

We coded Markdown cells based on where they belong in the data
science workfow [30]. We found that the data science problems
on Kaggle competitions contain clearly project goals and datasets,

where data scientists do not need to go through processes like trans-
forming business goals to data science goals and collecting data.
Notebooks on Kaggle also do not refect the model deployment
stage, where in practice, data scientists need to deploy models,
monitor performances, and further improve their models. In to-
tal, we identifed four stages and 13 tasks. The four stages include
environment confguration (4.50%), data preparation and ex-
ploration (37.05%), feature engineering and selection (10.40%),
and model building and selection (27.57%). At the fner-grained
task level, in particular, notebook authors create more Markdown
cells for documenting exploratory data analysis tasks (26.62%) and
model training tasks (10.45%). The rest of the Markdown cells are
evenly distributed along with other tasks.

5 DISCUSSION

5.1 Best Practices for Data Science
Documentation and Design Implications

Our fndings suggest that the highly-voted computational note-
books on Kaggle present well-documentation practices among data
science professionals. Novice data scientists can learn not only
data science programming and problem-solving skills, but also the
documentation practices from online data science communities.
Instructors can beneft from these documentation practices so that
they can better educate and prepare future data scientists. In ad-
dition, tool designers can get design inspirations to improve the
current data science programming tools to better support documen-
tation writing. Below, we discuss several design opportunities.

Our analysis identifed nine categories of documentation in com-
putational notebooks, and we suggest building automation tech-
niques (AI) to support human data scientists’ documentation tasks,
similar to prior work on leveraging AI to support the model building

What Makes a Well-Documented Notebook? CHI ’21 Extended Abstracts, May 8–13, 2021, Yokohama, Japan

Table 1: We identifed 9 categories based on the purpose of Markdown cells. Note that a Markdown cell may belong to multiple
categories of contents or none of the categories.

Category N Description Example

Process 2115 The Markdown cell describes what the following Transforming Feature X to a
(58.65%) code cell is doing. This always appears before the new binary variable

relevant code cell.
Headline 1167 The Markdown cell contains a headline in Markdown # Blending Models

(32.36%) syntax. The cell is used for navigation purposes or
marking the structure of the notebook. It may be
relevant to a nearby code cell.

Result 692 The Markdown cell explains the output. This type It turns out there is a long
(19.19%) always appears after the relevant code cell. tail of outlying properties...

Education 414 The Markdown cell provides a rich content as an Multicollinearity increases
(11.48%) educational tutorial, but may not be relevant to a the standard errors of the

specifc code cell. coefficients.

Reason 227 The Markdown cell explains the reasons why certain We do this manually, because
(6.30%) functions are used or why a task is performed. This ML models won't be able to

may appear before or after the relevant code cell. reliably tell the differences.

Todo 202 The Markdown cell describes a list of actions for fu- 1. Apply models
(5.60%) ture implementations. This normally is not relevant 2. Get cross validation scores

to a specifc code cell. 3. Calculate the mean

Reference 200 The Markdown cell contains an external reference. Gradient Boosting Regression
(5.55%) This is also relevant to the adjacent code cell. Refer [here](https://...)

Meta- 141 The Markdown cell contains meta-information such The purpose of this notebook
Information (3.91%) as project overview, author’s information, and a link is to build a model with

to the data sources. This often is not relevant to a Tensorflow.
specifc code.

Summary 51 The Markdown cell summarizes what has been done **In summary**
(1.41%) so far for a section or a series of steps. This often is By EDA we found a strong impact

not relevant to a specifc code. of features like Age, Embarked..

Table 2: We coded each Markdown cell to which data science stage (or task) they belong. We identifed 4 stages with 13 tasks.
Note that a Markdown cell may belong to multiple stages or none of the stages.

Stage Total Task N

Environment Confguration 162 (4.49%) Library Loading
Data Loading

33 (0.92%)
129 (3.58%)

Data Preparation and Exploration 1336 (37.05%)
Data Preparation
Exploratory Data Analysis
Data Cleaning

91 (2.52%)
960 (26.62%)
285 (7.90%)

Feature Engineering and Selection 375 (10.40%)
Feature Engineering
Feature Transformation
Feature Selection

120 (3.32%)
178 (4.94%)
77 (2.14%)

Model Building and Selection 994 (27.57%)

Model Building
Data Sub-Sampling and Train-Test Splitting
Model Training
Model Parameter Tuning
Model Validation and Assembling

247 (6.85%)
61 (1.69%)
377 (10.45%)
81 (2.25%)
288 (6.32%)

CHI ’21 Extended Abstracts, May 8–13, 2021, Yokohama, Japan

tasks [29]. For diferent types of documentaitons, we can use design
diferent generation approahces. For example, the Process category,
which simply describes what the code does, may be inferred by
parsing the API documentation. Thus, the notebook can automati-
cally complete documentation, as in software engineering coding
systems [8, 16]. But for some other categories, such as Education
and Reason, there needs a more human-centered approach. Maybe
a simple prompt to nudge users is more efective for helping users
to create this documentation.

The timing of suggesting documentation is also an important
consideration. Previous studies [13, 25] suggest that data scientists
are hesitant to follow the practice of literate programming to create
documentation during the development of code, despite they ac-
knowledge the benefts that these informal notes have for recalling
the analysis path. What if we can use some automation or prompt to
help data scientists generate documentation during the exploration
process? Alternatively, some data scientists may prefer to focus
only on the thinking of code, and leave the documentation work
to the end after they fnish all the coding in the notebook. Then,
the technology can be designed to scan through the notebook code
cells, and automatically fll in the documentations in appropriate po-
sitions. This is promising as there are many breakthroughs in NLP
and ML for automatically generating natural language descriptions
for code snippets [16].

5.2 Limitation and Future Work
In this work, we used highly-voted Kaggle notebooks as an ap-
proximation to the well-documented notebooks and explored their
documentation practices. Our result indeed shows that our corpus is
generally well documented, and it yields insightful understandings
of data scientists’ documentation practices. However, we acknowl-
edge that our approximation may be inaccurate, and there may
be other data corpora that are better suited for understanding the
documentation practices of data scientists. For example, the code in
our Kaggle notebook corpus stopped at the Model Building stage of
the lifecycle, yet we know in a real data science project, there are
many other stages (model deployment and model runtime monitor-
ing), but due to the nature of Kaggle competition setup, this corpus
can not reveal documentation practices of those later stages. We
welcome other researchers to join our efort to fnd and share their
data corpora for the whole research community. 1 In addition, it
is worth examining the general data science documentation prac-
tice on Kaggle by looking at both high-voted notebooks and low
popularity notebooks.

Future works can leverage our data corpus to further explore
other data science best practices, given our work only looked at
the documentation behavior. Another future direction is to actually
implement documentation-support features to support the variety
of documentation types in a notebook. And once such features
are implemented, a user study is required to further evaluate the
benefts and tradeofs of how the diferent design decisions may
infuence users’ coding or documentation behaviors.

1Our data corpus is open sourced and available upon request.

Wang et al.

6 CONCLUSION
We present an empirical study that aims to explore the best prac-
tices of writing documentation in computational notebooks by
qualitatively analyzing 80 highly-voted notebooks sampled from
Kaggle. In comparison to prior work, our sampled notebooks are
indeed well-documented. In particular, the analyses extract nine
types of documentation practices, and reveal that documentation
interplay with the data science lifecycle. These fndings point to
promising future work on designing automated features to support
data scientists’ notebook documentation practices.

ACKNOWLEDGMENTS
We thank all of our participants for their help in the study, and the
anonymous reviewers for their valuable feedback.

REFERENCES
[1] Liang Bai and Yanli Hu. 2018. Problem-driven teaching activities for the cap-

stone project course of data science. In Proceedings of ACM Turing Celebration
Conference-China. 130–131.

[2] Souti Chattopadhyay, Ishita Prasad, Austin Z Henley, Anita Sarma, and Titus
Barik. 2020. What’s Wrong with Computational Notebooks? Pain Points, Needs,
and Design Opportunities. In Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems. 1–12.

[3] Ruijia Cheng and Mark Zachry. 2020. Building Community Knowledge In Online
Competitions: Motivation, Practices and Challenges. Proceedings of the ACM on
Human-Computer Interaction 4, CSCW2 (2020), 1–22.

[4] Sergio Cozzetti B de Souza, Nicolas Anquetil, and Káthia M de Oliveira. 2005. A
study of the documentation essential to software maintenance. In Proceedings of
the 23rd annual international conference on Design of communication: documenting
& designing for pervasive information. 68–75.

[5] Jesus Fernandez-Bes, Jerónimo Arenas-García, and Jesús Cid-Sueiro. [n.d.]. En-
ergy generation prediction: Lessons learned from the use of Kaggle in Machine
Learning Course. Group 7, 8 ([n. d.]), 9.

[6] R Stuart Geiger, Nelle Varoquaux, Charlotte Mazel-Cabasse, and Chris Holdgraf.
2018. The types, roles, and practices of documentation in data analytics open
source software libraries. Computer Supported Cooperative Work (CSCW) 27, 3-6
(2018), 767–802.

[7] Youyang Hou and Dakuo Wang. 2017. Hacking with NPOs: collaborative analytics
and broker roles in civic data hackathons. Proceedings of the ACM on Human-
Computer Interaction 1, CSCW (2017), 53.

[8] JavaDoc 2020. JavaDoc. https://docs.oracle.com/javase/8/docs/technotes/tools/
windows/javadoc.html.

[9] Kaggle Competition 2020. House Prices - Advanced Regression Techniques.
https://www.kaggle.com/c/house-prices-advanced-regression-techniques.

[10] Kaggle Competition 2020. Titanic - Machine Learning from Disaster. https:
//www.kaggle.com/c/titanic.

[11] Mira Kajko-Mattsson. 2005. A survey of documentation practice within corrective
maintenance. Empirical Software Engineering 10, 1 (2005), 31–55.

[12] Malin Källén, Ulf Sigvardsson, and Tobias Wrigstad. 2020. Jupyter Notebooks on
GitHub: Characteristics and Code Clones. arXiv preprint arXiv:2007.10146 (2020).

[13] Mary Beth Kery, Marissa Radensky, Mahima Arya, Bonnie E John, and Brad A
Myers. 2018. The story in the notebook: Exploratory data science using a literate
programming tool. In Proceedings of the 2018 CHI Conference on Human Factors
in Computing Systems. 1–11.

[14] Mary Beth Kery, Marissa Radensky, Mahima Arya, Bonnie E. John, and Brad A.
Myers. 2018. The Story in the Notebook: Exploratory Data Science Using a
Literate Programming Tool. In Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems (Montreal QC, Canada) (CHI ’18). ACM, New York,
NY, USA, Article 174, 11 pages. https://doi.org/10.1145/3173574.3173748

[15] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian E Granger,
Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica B Hamrick, Jason
Grout, Sylvain Corlay, et al. 2016. Jupyter Notebooks – a publishing format for
reproducible computational workfows.. In ELPUB. 87–90.

[16] Alexander LeClair, Siyuan Jiang, and Collin McMillan. 2019. A neural model
for generating natural language summaries of program subroutines. In 2019
IEEE/ACM 41st International Conference on Software Engineering (ICSE). IEEE,
795–806.

[17] Jiali Liu, Nadia Boukhelifa, and James R Eagan. 2019. Understanding the role
of alternatives in data analysis practices. IEEE transactions on visualization and
computer graphics 26, 1 (2019), 66–76.

https://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html
https://www.kaggle.com/c/house-prices-advanced-regression-techniques
https://www.kaggle.com/c/titanic
https://www.kaggle.com/c/titanic
https://doi.org/10.1145/3173574.3173748

What Makes a Well-Documented Notebook?

[18] Walid Maalej and Martin P Robillard. 2013. Patterns of knowledge in API reference
documentation. IEEE Transactions on Software Engineering 39, 9 (2013), 1264–
1282.

[19] Yaoli Mao, Dakuo Wang, Michael Muller, KUSH VARSHNEY, IOANA Baldini,
CASEY Dugan, and ALEKSANDRA MOJSILOVIÄ†. 2020. How Data Scientists
Work Together With Domain Experts in Scientifc Collaborations. In Proceedings
of the 2020 ACM conference on GROUP. ACM.

[20] Michael Muller, Ingrid Lange, Dakuo Wang, David Piorkowski, Jason Tsay, Q. Vera
Liao, Casey Dugan, and Thomas Erickson. 2019. How Data Science Workers
Work with Data: Discovery, Capture, Curation, Design, Creation. In Proceedings
of the 2019 CHI Conference on Human Factors in Computing Systems (Glasgow,
Scotland Uk) (CHI ’19). ACM, New York, NY, USA, Article 126, 15 pages. https:
//doi.org/10.1145/3290605.3300356

[21] Yoann Padioleau, Lin Tan, and Yuanyuan Zhou. 2009. Listening to program-
mersâ€”Taxonomies and characteristics of comments in operating system code.
In 2009 IEEE 31st International Conference on Software Engineering. IEEE, 331–341.

[22] Jefrey M. Perkel. 2018. Why Jupyter is data scientists’ computational notebook
of choice. Nature 563 (2018), 145. https://doi.org/10.1038/d41586-018-07196-1

[23] Mohammed Suhail Rehman. 2019. Towards Understanding Data Analysis Work-
fows using a Large Notebook Corpus. In Proceedings of the 2019 International
Conference on Management of Data. 1841–1843.

[24] Tobias Roehm, Rebecca Tiarks, Rainer Koschke, and Walid Maalej. 2012. How
do professional developers comprehend software?. In 2012 34th International
Conference on Software Engineering (ICSE). IEEE, 255–265.

[25] Adam Rule, Aurélien Tabard, and James D Hollan. 2018. Exploration and expla-
nation in computational notebooks. In Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems. 1–12.

[26] Lin Shi, Hao Zhong, Tao Xie, and Mingshu Li. 2011. An empirical study on
evolution of API documentation. In International Conference on Fundamental
Approaches To Software Engineering. Springer, 416–431.

CHI ’21 Extended Abstracts, May 8–13, 2021, Yokohama, Japan

[27] Krishna Subramanian, Nur Hamdan, and Jan Borchers. 2020. Casual Notebooks
and Rigid Scripts: Understanding Data Science Programming. In 2020 IEEE Sym-
posium on Visual Languages and Human-Centric Computing (VL/HCC). IEEE,
1–5.

[28] Christoph Tauchert, Peter Buxmann, and Jannis Lambinus. 2020. Crowdsourcing
Data Science: A Qualitative Analysis of Organizationsâ€™ Usage of Kaggle Com-
petitions. In Proceedings of the 53rd Hawaii International Conference on System
Sciences.

[29] Dakuo Wang, Josh Andres, Justin Weisz, Erick Oduor, and Casey Dugan. 2021.
AutoDS: Towards Human-Centered Automation of Data Science. In Proceedings
of the CHI 2021.

[30] Dakuo Wang, Q. Vera Liao, Yunfeng Zhang, Udayan Khurana, Horst Samulowitz,
Soya Park, Michael Muller, and Lisa Amini. 2021. How Much Automation Does a
Data Scientist Want?. In preprint.

[31] Dakuo Wang, Justin D Weisz, Michael Muller, Parikshit Ram, Werner Geyer, Casey
Dugan, Yla Tausczik, Horst Samulowitz, and Alexander Gray. 2019. Human-AI
Collaboration in Data Science: Exploring Data Scientists’ Perceptions of Auto-
mated AI. Proceedings of the ACM on Human-Computer Interaction 3, CSCW
(2019), 1–24.

[32] Amy X Zhang, Michael Muller, and Dakuo Wang. 2020. How do Data
Science Workers Collaborate? Roles, Workfows, and Tools. arXiv preprint
arXiv:2001.06684 (2020).

[33] Ge Zhang, Mike A Merrill, Yang Liu, Jefrey Heer, and Tim Althof. 2020. CORAL:
COde RepresentAtion Learning with Weakly-Supervised Transformers for Ana-
lyzing Data Analysis. arXiv preprint arXiv:2008.12828 (2020).

https://doi.org/10.1145/3290605.3300356
https://doi.org/10.1145/3290605.3300356
https://doi.org/10.1038/d41586-018-07196-1

	Abstract
	1 introduction
	2 Related Work
	2.1 Challenges of Documentation in Computational Notebooks
	2.2 Shared Computational Notebooks in Github and Kaggle
	2.3 Code Documentation Practice in Software Engineering

	3 Method
	3.1 Data Collection
	3.2 Data Analysis

	4 Results
	4.1 Highly-Voted Kaggle Notebooks are Well-Documented Notebooks.
	4.2 Data Science Documentation Covers a Broad Range of Topics and Purposes.
	4.3 Notebook Documentations Interplay with the Stages of the Data Science Lifecycle.

	5 Discussion
	5.1 Best Practices for Data Science Documentation and Design Implications
	5.2 Limitation and Future Work

	6 Conclusion
	Acknowledgments
	References

