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Abstract—Monitoring in-class programming exercises can help
instructors identify struggling students and common challenges.
However, understanding students’ progress can be prohibitively
difficult, particularly for multi-faceted problems that include
multiple steps with complex interdependencies, have no pre-
dictable completion order, or involve evaluation criteria that
are difficult to summarize across many students (e.g., exercises
building interactive web-based user interfaces). We introduce
SPARK, a coding exercise monitoring dashboard designed to
address these challenges. SPARK allows instructors to flexibly
group substeps into checkpoints based on exercise requirements,
suggests automated tests for these checkpoints, and generates
visualizations to track progress across steps. SPARK also allows
instructors to inspect intermediate outputs, providing deeper
insights into solution variations. We also construct a dataset
of 40-minute keystroke coding data from N=22 learners solving
two web programming exercises and provide empirical insights
into the perceived usefulness of SPARK through a within-subjects
evaluation with 16 programming instructors.

Index Terms—programming education

I. INTRODUCTION

Programming instructors often use in-class exercises—

short hands-on coding tasks conducted during class time—

to actively engage students and reinforce the concepts being

taught [1]–[6]. However, ensuring students gain meaningful

learning outcomes from these exercises is not easy, given

the variability in coding abilities, paces, and problem solv-

ing approaches [2]. This variation can make it challenging

for instructors to provide timely and personalized feedback.

Without such assistance, students may struggle to develop

essential metacognitive skills, such as formulating effective

problem solving strategies, tracking their progress, and as-

sessing whether goals have been met [2], [7]–[9]. This can

lead to frustration and a potential loss of confidence in

their abilities [10]. Therefore, it is essential for instructors to

effectively monitor students’ progress and promptly recognize

the difficulties they encounter.

However, successfully monitoring students can be challeng-

ing, particularly for problems that are multi-faceted. We refer

to “multi-faceted” problems as those involving non-sequential

workflow paths with nested substeps—where some steps are

∗Work done as an undergraduate student at the University of Michigan.

interdependent, others independent, and where uniform eval-

uation criteria cannot be easily applied across many students.

For example, in a web programming exercise, students may

need to: (1) create the HTML layout, (2) add CSS for styling,

and (3) implement JavaScript for interactivity. Adding CSS

may involve edits to both the CSS and HTML files and

depends on the layout being complete, but is independent of

the JavaScript. Students can choose their own order and often

alternate between tasks as they work.

Prior work has emphasized the importance of real-time

monitoring tools, but existing solutions struggle to effectively

summarize student progress for complex, multi-faceted pro-

gramming problems. Code clustering tools (e.g., [11], [12])

and progress visualizations (e.g., [13]) can summarize many

code samples but do not give instructors control over which

aspects to group by or summarize. Techniques for monitoring

code in real-time (e.g., [14], [15]) give instructors real-time

feedback but do not summarize students’ progress and can

be overwhelming in large classes. Further, most prior work

does not address additional difficulties of monitoring in-class

exercises. Implementations for features often span multiple

files or modules [16], [17] but most prior work is focused

on short, one-file snippets [11], [13], [14]. Further, instructors

should be able to explore variations in students’ code output

and intermediate states to gain deeper insights into students’

approaches and challenges.

To address these challenges, we introduce SPARK, a coding

exercise monitoring dashboard designed for multi-faceted pro-

gramming exercises. SPARK enables instructors to customize

multi-level checkpoints with testing code suggestions, allow-

ing them to track student progress for individual tasks. At each

checkpoint, the testing code evaluates the intended outcomes,

ensuring that students meet the specific objectives of the

exercise. A progress visualization diagram that summarizes

students’ progress across tasks is generated using evaluation

data from the testing code. Additionally, SPARK allows in-

structors to customize inspections of intermediate variables

and outputs, providing active engagement and deeper insights

into students’ program state.

While SPARK is adaptable to various types of multi-faceted

programming exercises, its implementation is specifically tai-

lored for web programming. It includes features such as
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customized real-time inspections of output variations, as well

as viewing DOM attributes and clustered previews of selected

elements for evaluating web element performance across dif-

ferent students. Additionally, it allows for the simulation of

element interactions within the testing code before conducting

inspections, accommodating the event-driven nature of web

programming tasks [18]–[20].

We created a dataset consisting of 22 students’ keystroke

data for two web programming problems in a 40-minute

session. Using this data, we simulated a real-time classroom

setting and conducted a within-subject user study with 16 par-

ticipants to evaluate SPARK’s effectiveness in helping instruc-

tors monitor students’ programming progress. We found that

SPARK helps participants 1) identify students’ challenges more

accurately and 2) feel more confident in their understanding

of students’ programming progress. Participants also reported

that SPARK provides more detailed information and valuable,

customizable insights into variations in students’ code states.

This work can help instructors improve real-time teaching by

deepening their understanding of students’ mental models and

encouraging active engagement in the monitoring process. This

work makes the following contributions:

• A pipeline that uses customized checkpoints with nested

steps to visualize student progress and inspect immediate

output variations in real-time.

• SPARK, a system based on this pipeline, designed to

monitor student progress for web programming exercises.

• A dataset containing coding keystroke data from 22

students for two web programming exercises.

• A within-subject user study (N=16) involving 16 partic-

ipants validating the effectiveness of SPARK.

II. RELATED WORK

A. Understanding Students’ Programming Progress

Prior research has introduced various methods to visualize

students’ programming progress and support real-time moni-

toring, clustering, and runtime inspection. Many tools used 2D

maps to track code changes and similarities [21], [22], and

tools like VizProg [13] helped track different programming

approaches. While these maps reflect the relative proximity of

code states based on edit distance, they do not convey absolute

positioning or capture the nuances of non-linear workflows in

multi-faceted programming tasks. Such tasks involve interde-

pendent subgoals that students often tackle out of sequence,

making traditional linear visualizations insufficient. To address

this, SPARK introduces a checkpoint-based framework for

tracking progress across varied sequences.

Real-time monitoring is essential for timely feedback and

maintaining student engagement [1]–[5], [10]. Tools like

Codeopticon [14], RIMES [23], and VizProg [13] offer dash-

boards for live observation, yet they often present fixed data

views. PuzzleMe [15] provides insights via peer-generated

test cases, but it is designed for peer support, not instructor

control. These systems fall short when instructors need to

customize what they monitor, leading to either data overload or

insufficient detail. SPARK overcomes this by letting instructors

selectively view runtime outputs and variables, tailoring the

feedback to immediate teaching needs.

To manage growing class sizes, many studies have employed

clustering to summarize student solutions. Techniques such as

AST edit distances [22], Overcode [11], and CFlow [12] group

similar code to surface common patterns. Others, like [24]–

[26], focus on functional patterns or errors. However, these

methods often assume structural similarity, which is not al-

ways present in open-ended, multi-section exercises like web

development. SPARK supplements clustering with test case

results, enabling instructors to evaluate functional correctness

regardless of divergent implementation paths.

Finally, understanding the runtime behavior of students’

code is critical, especially when students struggle to articulate

their issues [27]. Systems like Callisto [28] link questions

to code, but real-time classroom scenarios demand more

scalable solutions. Visualizing runtime values helps compre-

hension [29], yet with many students, it becomes hard to

decide where to focus [30], [31]. Tools like RunEx [32] and

TeachNow [33] provide scalable inspection and assistance.

SPARK integrates workflow visualization with variable inspec-

tion, allowing instructors to first identify students with unusual

progress patterns, and then drill down into variable-level

details, offering a guided path from overview to diagnosis.

B. Runtime Variable Visualization

Variable visualizations play a crucial role in code compre-

hension, as inspecting variable states is essential to understand-

ing how a program behaves [34]. Prior works have visualized

variable values adjacent to code [35]–[38], while tools like

Omnicode [39] and Theseus [40] present runtime behavior

through scatterplot matrices or inline displays. CrossCode [41]

extends this by visualizing multi-level execution traces. How-

ever, in classroom settings, instructors face significant cogni-

tive load when trying to inspect runtime variables for every

student [30]. To address this, SPARK enables clustered runtime

value visualizations, helping instructors see variable states,

outputs, and program behavior at scale. In event-driven, in-

teractive web programming tasks, visual outputs are often key

to understanding runtime behavior. Tools like Colaroid [42],

CoCapture [43], and InterState [44] demonstrate the power

of visual representations in supporting comprehension and

communication. SPARK integrates this approach, allowing in-

structors to view students’ rendered output directly, improving

their understanding of dynamic interface behavior.

In the context of AI-generated code, research highlights the

importance of building trust through runtime feedback [45],

with visualizing intermediate values shown to help validate

AI outputs [46]. Beyond AI, comparisons of runtime states

also aid in understanding and debugging student or unfamil-

iar code. For instance, DITL helps data scientists compare

datasets [47], and Doppio visualizes changes in UI flows [48].

These findings support the value of runtime comparison. In

SPARK, instructors can monitor runtime behavior as students

write code, and when creating test cases, they can combine
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AI-generated suggestions with reference validation to verify

both intermediate and final states—offering a reliable path to

ensure code correctness.

III. SYSTEM DESIGN

A. System Design Goals

SPARK aims to support instructors in effectively monitoring

students’ progress during multi-faceted programming exercises

in real time. Its design goals stem from the reflective analysis

of instructional challenges around the difficulty of tracking

diverse learning paths [13], [49].

1) DG1: Customizable Structured Progress Monitoring:
Effectively monitoring individual student progress during pro-

gramming exercises is critical for classroom management and

student success [2], [15], [49], but it remains challenging. First,

the diversity of teaching contexts requires flexible monitoring

approaches [50], as classroom needs and instructional goals

vary [51], [52]. This highlights the limitations of one-size-

fits-all solutions and underscores the need for customizable

tools. Second, interpreting student progress data can impose

significant cognitive load on instructors [14], particularly in

exercises involving complex workflows and varied learning

paths. Even with real-time data, making sense of it remains

difficult. Tools like Glancee [53] and VizProg [13] help

visualize progress to reduce cognitive demands, but Lee et al.

[54] emphasize that flexibility and customizability are essential

to avoid information overload. This supports Dillenbourg’s

[55] argument that loosely structured activities are hard to

manage without checkpoints.

These insights motivate DG1: customizable structured
progress monitoring, calling for tools that provide customiz-

able, organized insights tailored to the teaching contexts.

2) DG2: Gain a Holistic Understanding of Class Progress:
While individual code submissions offer detailed insights,

instructors need efficient tools to detect broader patterns that

indicate conceptual misunderstandings across the class [56].

This need arises in two key contexts: in real-time teaching,

instructors must balance individual support with class-wide

awareness [54], [57]; in lab sessions, they often rely on

large scale of retrospective reviews such as recordings or edit

histories due to limited real-time visibility [58].

These challenges underscore the need for tools that aggre-

gate and simplify synchronous and asynchronous program-

ming data to reveal meaningful patterns while minimizing

information loss [13], [21], [22]. Prior work demonstrates this

principle: Taniguchi et al. [21] and Huang et al. [22] used 2D

maps to visualize code evolution and similarity, and Zhang

et al. [13] showed the value of tracking student progress at

multiple granularities for classroom management. These align

with visualization principles aimed at simplifying complex

data without sacrificing essential information [59]–[61], and

with Tissenbaum’s call for real-time visualization to support

instructional orchestration [62].

From these insights, we derive DG2: aggregated progress
tracking, enabling instructors to efficiently detect class-wide

patterns and bottlenecks.

3) DG3: Query Multiple Properties of Students’ Code:
DG3 builds on research in program comprehension [35]–[40],

[46], [48] and instructional needs in classroom settings [30],

[51], [52]. Studies show that understanding program behavior

requires more than reviewing source code or final outputs—it

involves examining intermediate runtime states [46], [48].

To support this, prior work has introduced techniques such

as displaying variable values next to code [35]–[38] and

embedding runtime visualizations in code editors [39], [40].

Instructors face additional challenges in classrooms, where

they must assess knowledge mastery [51], [52], manage lim-

ited time and cognitive resources [30], and monitor many stu-

dents simultaneously. Real-time visualization of intermediate

code behavior can support this process, enhancing teaching

efficiency.

Thus, DG3: code querying capabilities promotes tools that

go beyond passive code review, allowing instructors to actively

query checkpoint correctness, runtime state, and output. This

empowers them to apply their expertise in diagnosing and

supporting student learning.

B. Overview of SPARK

Informed by our design goals, we developed SPARK as a

dashboard to help instructors monitor students’ programming

progress in real-time for multi-faceted programming problems,

with its implementation focus on web programming exercises.

SPARK consists of five panels:

• Reference panel (Fig.1.a), where instructors can enter

their reference code answers to Reference Code board.

The related preview (in Reference Page Preview board)

and DOM tree (in DOM Tree Reference board) would be

automatically generated.

• Checkpoints panel (Fig.1.b), which allows the creation

and display of nested-task checkpoints. Each task in-

cludes a description and testing code for assessment.

• Progress Visualization panel (Fig.1.c), which features a

progress visualization diagram.

• Components Inspector panel (Fig.1.d), which allows

instructors to inspect students’ output variations.

• My Classroom panel (Fig.1.e), which contains classroom

statistics and student code boxes.

To illustrate the experience of using SPARK, we describe

how a hypothetical instructor, Emily, conducts a multi-faceted

programming exercise in class in real-time. Emily wishes

to monitor students’ programming progress, understand their

programming progress, and provide timely assistance. For

instance, she wants to identify common issues students are

facing, as well as those who are falling behind, and offer

support accordingly. Below, we describe how SPARK can help

Emily monitor the classroom, highlighting both its features

and implementation. In the scenario below, descriptions of

SPARK’s key features are integrated with screenshots and
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Fig. 1. SPARK consists of five panels. Here’s an overview of the SPARK dashboard: the Reference Panel (a), which provides instructors with the expected
code answer, the webpage, and a DOM tree preview for the programming exercise; the Checkpoints Panel (b), which allows for the creation and display
of nested-task checkpoints; the Progress Visualization (c), which presents a visualization of students’ programming progress; the Component Inspector (d),
which enables instructors to customize inspections of students’ output variations; and the My Classroom (e), which contains student code and statistics on
overall task performance.

implementation details for each feature. Only instructors can

see the features of SPARK.

C. Creating Checkpoints with Nested Tasks

Before the class begins, to use SPARK to monitor students’

programming progress, Emily first creates checkpoints with

grouped steps in the Checkpoints panel (Fig.2) (DG1). The

process of creating checkpoints with nested tasks involves

three steps. First, Emily inputs the reference code answers

into the Reference Code board in the Reference panel, enters

the task description into the task box (Fig.2.a), and clicks the

Generate Test button (Fig.2.b) to use AI for generating testing

code based on the task description and the reference code.

Next, she could review the AI-generated testing code to ensure

it meets her expectations, making any necessary modifications.

Finally, to verify the accuracy of the testing code, Emily

clicks Verify Checkpoint (Fig.2.c) to check if the testing code

successfully passes against the reference code, displaying a

success message (Fig.2.e). If the test fails, the system allows

instructors to retrieve information through the return statement

(Fig.2.d), which aids in debugging and identifying the issue.

Throughout the editing and verification process, Emily could

continually use the Reference Page Preview, Reference Code,

and DOM Tree Reference boards to preview the expected

programming exercise outcome, assisting in the creation and

verification of checkpoints.

The testing code serves two primary functions: first, it

evaluates whether a student’s code meets the step requirements

by assessing the behavior of specific elements; second, it

simulates interactions before performing the evaluation. Addi-

tionally, the testing code is used in element inspections, as will

be explained in Section III-F, allowing instructors to observe

output variations with the required interactions simulated.

Implementation: SPARK uses the OpenAI API [63] to pro-

vide testing code suggestions1 and employs Puppeteer [64]

to simulate and evaluate code execution. The Reference Page
Preview is implemented using an iframe, and the DOM Tree
Reference is generated based on the Reference Code.

D. Real-time Monitoring of Students’ Progress

Once Emily creates the checkpoints, she simply shares a

folder with setup files and starter code. When students open

it in VS Code with the required extension, SPARK begins

receiving real-time programming data. This data is reorganized

and displayed in code boxes within the My Classroom panel

(Fig.3), similar to Codeopticon [14].

1More details could be found in the supplementary material: link.
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Fig. 2. Checkpoints panel. In the Checkpoints panel, instructors can freely create nested-task checkpoints. Each checkpoint consists of multiple tasks, and
each task (a) is made up of two parts: Task Description and Testing Code. Instructors can click the Generate Tests (b) button to view AI-suggested testing
code, which can be manually modified. They can then click the Verify Checkpoint (c) button to test the reference code to see if it passes (e) or fails (d).

Each code box (Fig.3.e) shows a student’s live code and task

completion status (Fig.3.a) across checkpoints. The Classroom
Statistics board (Fig.3.b) offers a high-level view of task

progress (DG2). The panel supports two modes: real-time

(live keystroke updates) and timestamp (minute-by-minute

snapshots), allowing Emily to review students’ code history

via a slider (Fig.3.c). A blue-highlighted file name indicates

the currently active file.

By default, code boxes are ordered by student ID. Emily

can rearrange them in the Progress Visualization or Com-
ponents Inspector panels, and reset the layout via the Reset
Order button (Fig.3.d). While students work, Emily monitors

progress using the Progress Visualization panel (auto-updated

every minute) and the Components Inspector panel for more

detailed inspection (Figs.4, 5).

Implementation: SPARK uses a custom VS Code extension

to capture and transmit keystroke-level data (edit content,

location, and timestamp). Only this lightweight edit data is

sent to SPARK, which organizes and displays it in real time

within the My Classroom panel (Fig.3).

E. Progress Visualization View

In the Progress Visualization panel (Fig.4), each student’s

progress within a checkpoint is represented by a dot (Fig.4.a),

placed left to right from 0% to 100% task completion (Fig.4.b).

A student’s overall progress is visualized as a shaded area;

overlapping areas indicate similar progress levels, with darker

shades showing higher student density (DG2).

Hovering over a dot highlights the student’s trajectory line

across checkpoints and changes their shaded area to a unique

color while hiding others (Fig.4.c) (DG1). Emily can also use

the brush tool to select and view groups of students (Fig.4.d)

(DG2) or use the slider (Fig.4.f) to explore progress over time.

To investigate a specific student who struggled with check-

point 2, Emily can click their dot or label to lock the highlight

(Fig.4.e), then use the slider to trace their progress over time

(Fig.4.g). The student’s code box is also brought to the top

for direct inspection.

Implementation: SPARK uses Puppeteer [64] to run prede-

fined test cases on students’ code, using the results to generate

visualizations of checkpoint completion.

F. Component Inspector View

With a general view of student progress, Emily turns to the

Components Inspector panel (Fig.5.a) for deeper analysis of

specific elements. This panel offers two customizable inspec-

tion features: DOM property inspection (Fig.5.d) and visual

previews (Fig.5.f), which can be used separately or together.

Emily selects the relevant task (Fig.5.b), enters the element

selector, and uses the Element Inspector to check property

variations via the Property Selector (Fig.5.d, g), with matching

student counts shown (DG3). Alternatively, she can preview

how elements render across students using the Element Pre-
viewer (Fig.5.e, f). Clicking Inspect runs the analysis, and she

can use the magnifier button to bring students with matching

issues to the top of the My Classroom panel for closer review.

The inspector panel mirrors the checkpoint structure, with

each task linked to an inspector board. Results reflect sim-

ulated interactions from the checkpoint’s testing code (e.g.,

Fig.5.h shows interaction with the “add todo item” element).
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Fig. 3. My Classroom panel. Each student working on the programming problem has a Student Code Box (e), which includes the student’s code and task
completion status (a) indicating whether they have passed the task. There is also a Classroom Statistics board (b) showing the class’s performance across
different tasks. The My Classroom panel can switch between two modes (c): Real-Time Mode, where instructors can view students’ code in real-time, and
Timestamp Mode, which records students’ code history every minute. In Timestamp Mode, Instructors can use the slider to review the students’ code history.
If instructors change the order of the student code boxes in the Progress Viz panel or Components Inspector panel, they can use the Reset Order button (d)
to revert the Code Boxes to their default order.

Fig. 4. Progress Visualization panel. The Progress Visualization panel includes a diagram (a) that displays students’ progress across checkpoints. Each dot
along the checkpoint line represents a student’s task completion rate for that checkpoint at a particular timestamp (b). Instructors can hover over a dot to
highlight a student (c), use the brush tool to select multiple students within that area (d), and click to select an individual student (e), with the selected student
remaining highlighted. Additionally, instructors can adjust the slider to view the visualization diagrams at different timestamps (f).

Implementation: SPARK sends students’ code to Pup-

peteer [64], which simulates test interactions before inspection.

For the Element Previewer, visual similarities are clustered

using Resemble.js [65].

G. Recording and Replaying

SPARK supports both real-time monitoring and replay via

keystroke recording. The replay feature helps address key

challenges: the cognitive load of real-time tracking, unequal

attention to students, and oversight during TA-led sessions.

For example, when instructors like Emily step away to assist

students, they may miss critical moments. With SPARK, they

can review class data afterward or merge asynchronous session

recordings (DG2), enabling retrospective analysis to identify

common struggles and provide targeted support. This ensures

no student progress is overlooked.

Implementation: SPARK logs keystroke data to a database

(e.g., InfluxDB). In replay mode, it retrieves and chronologi-

cally replays this time-series data for simulation.

H. Example Usage Contexts

SPARK supports both in-person and online classrooms,

including asynchronous settings like MOOCs, enabling real-

time progress monitoring and learning support. This flexibility

is especially valuable for reserved students who may hesitate
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Fig. 5. Components Inspector Panel. The Components Inspector (a) is structured according to checkpoints. Each task is linked to a corresponding inspector
board (b) that includes two key features: the Element Inspector (c) and the Element Previewer (e). Instructors can view the inspection results in (d) (a full
view of the results is shown in (g)) and preview the element in (f). The inspector automatically simulates interactions before performing the inspection. For
example, (h) displays clustered screenshots of the newly added .todoitem following the interaction ”Add new item after clicking the add button (Task 4)”.
Screenshots of identical elements are grouped together to facilitate easier analysis.

to seek help [66]–[68], allowing instructors to track and assist

learners regardless of when or how they engage.

SPARK can also scale beyond intermediate web program-

ming by adjusting checkpoint granularity—for example, sup-

porting finer-grained steps in beginner machine learning tasks

like building a digit recognition pipeline. With shared rubrics

and replay features, SPARK promotes consistent evaluation and

coordinated instruction across teaching teams.

IV. EVALUATION

A. Dataset of Real-Time Programming Data

To simulate a real-time classroom environment for web

programming exercises, we conducted a data collection session

prior to the user study [69]. We recruited 22 students with

programming experience, including 10 beginners, 11 interme-

diate, and 1 advanced in web programming.

Sessions were held via Zoom, with each participant com-

pleting two same 20-minute introductory web programming

tasks. A research team member collected data using a cus-

tomized VS Code extension. Participants could use resources

like Google and Copilot [70], but not LLMs to generate code,

balancing realistic usage with data reliability.

Keystroke-level data—averaging 810 keystrokes per student

per task—was stored in InfluxDB with timestamps, edit loca-

tions, and anonymized IDs. SPARK then replayed this data

chronologically to simulate real-time progress. This dataset

offers a fine-grained view of coding behavior, addressing the

lack of real-time detail in traditional datasets and providing

a valuable benchmark for future research on programming

learning and problem-solving.

B. User Study

To evaluate SPARK’s effectiveness, we conducted a within-

subjects study with 16 participants experienced in teaching

and web programming. Using the dataset from Section IV-A,

participants simulated real-time classroom monitoring by ob-

serving replays and answering quiz questions about student

progress and challenges.

1) Recruitment: We recruited 16 participants (9F, 6M)

from Computer Science and Information Science departments

based on their teaching background and web programming

experience. Participants included instructors, tutors, TAs, and

experienced graduate students. Fifteen had prior teaching ex-

perience, with 1 to 6+ years of web programming experience.

2) Study Protocol: The user study used a within-subjects

design with three sessions. In S1 and S2, participants used the

Baseline and SPARK systems to monitor student progress. And

in S3, participants evaluated the preparation phase by creating

checkpoints and test code using SPARK.

• Baseline: A simplified version of SPARK with Reference
and My Classroom panels; real-time and timestamped

code views only, without performance metrics.

• SPARK: Full version of SPARK with all the features.

Tasks were consistent across S1 and S2, with the order

counterbalanced. S3 was always used as the final activity. Each

session included a 5-minute tutorial. Four participants joined

in person, while 12 participated remotely.

In S1 and S2, participants observed replays of 22 students’

progress and answered quiz questions during and after the

session. The quiz questions included nine questions com-

bining fact-based queries, diagnostic tasks, and open-ended

reflections. Each session included with a questionnaire (5-

point Likert scale) and a brief interview. S1 and S2 were
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limited to 25 minutes for comparability. In S3, after a tutorial,

participants created a checkpoint and generated corresponding

test code, then completed a usability questionnaire.

3) Data Collection and Analysis: During screening, we

collected participants’ teaching and web programming expe-

rience. In each session, a researcher took observation notes

and graded quiz responses. S1 and S2 used nearly identical

quizzes tailored to their respective exercises, each containing 5

multiple-choice and 4 open-ended questions. We recorded quiz

accuracy and time spent per question using screen recordings.

Data analysis included questionnaire ratings, quiz perfor-

mance, and self-reported confidence. A mixed-effects linear

regression model revealed significant effects of system type

(SPARK vs. Baseline). The order in which tools were used

also had a significant effect in most cases, with lower ratings

observed when SPARK was used first—likely due to compar-

ison effects. In contrast, problem type showed no consistent

influence. Full results are shown in Table I and Fig. 6.

We also conducted a thematic analysis of 16 semi-structured

interviews. Transcripts were coded and iteratively clustered

into themes to extract key insights.

C. Results

1) SPARK helps instructors identify students’ challenges
more accurately: In the quiz, participants assessed students’

performance, identified issues, and recognized shared chal-

lenges. We counted the number of correct answers participants

provided in each session, and there was a significant difference

between SPARK and Baseline (p < .001), with SPARK showing

a marked improvement in answer accuracy.

We observed that in the Baseline session, when asked

to assess students’ programming performance, 11 out of 16

participants only glanced at the top half of the student code

box, making observations based on this limited view. In

contrast, 15 out of 16 participants in the SPARK session

used the Component Inspector to gain insights into students’

code behavior. Several participants noted that SPARK has a

learning curve, but once they became familiar with the system

and the checkpoints, it significantly improved the quality of

monitoring, making the effort worthwhile (P1, P5, P9-P10). P9

mentioned that “..., it is kind of hard (to learn)...but it gives
good overview of students’ states.”.

2) SPARK improves instructors’ confidence in understand-
ing students’ programming progress: We found that partici-

pants gained significantly more confidence in the monitoring

results with SPARK, as shown in Fig.6. There was a notable

difference in the number of unsure answers in the quiz between

SPARK and the Baseline system (p < .001). In the Baseline

system, many participants made incorrect assessments of stu-

dents’ performance (P1, P4-6, P11-14), often misinterpreting

syntax they believed to be correct but that was actually incor-

rect. Additionally, some participants (P4, P12) were confident

in their observations and assessments while using the Baseline

system, yet still made inaccurate assessments.

When comparing SPARK to the Baseline system, many

participants highlighted the value of test cases for evaluating

specific tasks. As P8 noted, “Using test cases to show inter-
student progress...that’s a really good idea.” P10 added, “They
provide a more intimate understanding...showing real-time
progress and highlighting issues.”

In post-session interviews (S1 and S2), all 16 participants

expressed interest in using SPARK in real classrooms, while

only 7 were open to using the Baseline system—2 of whom

would do so only in small classes. As P12 commented, “It’s
better than nothing...but with many students, I won’t have
time.” P7 remarked, “Looking at too many students’ code is
exhausting. I’d rather see nothing.”

D. System Usability and Study Insights

1) SPARK enables more detailed programming progress
monitoring: In the post-session questionnaire, 15 of 16 par-

ticipants agreed that SPARK provided detailed insights into

student progress. Compared to the Baseline, SPARK enabled

faster, more accurate checkpoint assessments—14 of 16 an-

swered correctly in a quiz using SPARK, versus 7 with the

Baseline. Baseline users also took twice as long on average.

Participants (P2–6, P11–15) praised the Progress Visualiza-
tion for its clarity and intuitive interactions (e.g., hover and

brush), with P2 noting, “Grouping tasks into checkpoints saves
unnecessary effort reviewing similar code.”

All participants used the visualization to identify struggling

students and reviewed code histories via the timestamp fea-

ture. Several (e.g., P13, P16) noted students followed varied

workflow paths to reach correct solutions.

SPARK offered deeper insights beyond task progress. P6

pointed out that abrupt code trajectory changes could indicate

copying. In an open-ended quiz, 12 participants used SPARK to

decide which topics to revisit, and 9 used classroom statistics

to identify difficult concepts. P2 noted, “Seeing how long
students struggled helps decide what to emphasize next time.”

2) SPARK enables a better understanding of variations
among students’ code output: In the post-session question-

naire, participants rated SPARK significantly higher than the

Baseline system for inspecting variations in students’ output

(p < .001). Many found the Component Inspector helpful for

understanding performance, with P6 and P8 noting it “provides
a direct way to understand students’ performance”, and P2

highlighting its value for visualizing layout and properties.

The checkpoint structure also reduced cognitive load and

made tracking progress more intuitive. P15 noted, “Organizing
tasks into checkpoints is intuitive and allows for more detailed
insights.” While Baseline users struggled to recall common is-

sues, 15 of 16 participants using SPARK successfully identified

at least one issue faced by over half the class.

3) SPARK enables instructors to active engage with the
monitoring process: During the SPARK condition, participants

used the Components Inspector an average of 3.4 times during

the 20-minute session. Many appreciated its customization,

with P2 noting, “It’s great that I could inspect only one
element—much easier to compare.” In exploring issues in

checkpoint 2, 15 of 16 participants used the inspector, most

selecting multiple task boards. As P12 observed, “...the add
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TABLE I
MIXED-EFFECTS LINEAR REGRESSION MODEL RESULTS FOR TOOL EFFECT (SPARK VS. BASELINE)

Statement b SE z p 95% CI Low 95% CI High
Monitor all students’ programming progress comprehensively. 2.44 0.31 7.94 <.001 1.84 3.04
Gain detailed insights into students’ programming trajectories. 2.00 0.29 6.80 <.001 1.42 2.58
Identify students who are falling behind. 2.06 0.33 6.35 <.001 1.43 2.70
Identify challenges faced by students. 2.06 0.35 5.87 <.001 1.37 2.75
Assess the element functionality among students. 2.75 0.27 10.37 <.001 2.23 3.27
Inspect variations in element behavior output among students. 3.00 0.27 10.93 <.001 2.46 3.54
Number of correct answers in the quiz (5 in total) 2.19 0.26 8.35 <.001 1.67 2.70
Number of unsure answers in the quiz (5 in total) -2.25 0.38 -5.93 <.001 -2.99 -1.51

Fig. 6. Perceptions of the Baseline and SPARK system. Participant rated on a 5-point scale. (M: mean. SD: standard deviation).

Fig. 7. Results from the questionnaire of the Likert-scale responses to “usefulness”, “easy to use”, and “easy to learn” after each session.

button interactivity is more difficult, so I’d take a look at
this.” SPARK’s flexible inspection tools enabled participants

to focus on specific problem areas, boosting their confidence

in identifying issues and offering targeted feedback.

4) SPARK makes creating step-nested checkpoints as well
as their test cases easy: In the third session (S3), participants

used SPARK to create a checkpoint with one task. Features

were highly rated for usefulness, ease of use, and ease of

learning (Fig.7). Most participants strongly agreed that AI
Generate Test (12/16), Verify Checkpoint (14/16), and Ref-
erence Panel (13/16) supported easy test case creation and

clarified assessment goals.

Participants found the AI-generated tests “super convenient
and time-saving (P10, P11)”, while the verification and refer-

ence features gave them “confidence [they] could use these in
real classrooms (P13)”. All 16 participants expressed willing-

ness to use these features for creating step-nested checkpoints.

User Challenges and Feedback. Participants identified sev-

eral challenges when using SPARK. First, they raised con-

cerns about the scalability of the scatter plot, which be-

came increasingly cluttered and difficult to interpret as the

number of students grew. Second, some participants noted

that the system’s rich features and modular interface, while

powerful, occasionally introduced additional visual and cog-
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Fig. 8. How the shaded areas in the visualization diagram change over time
in the Image Carousel example.

nitive load—particularly during real-time monitoring. These

observations suggest the need for systems that can better

support large-scale classrooms while maintaining usability and

minimizing cognitive effort.

V. DISCUSSION

A. Visualizing Multi-facet Programming at Scale

The expansion of programming education has led to larger

class sizes, making it difficult for instructors to monitor student

progress—especially in multi-faceted tasks with loosely struc-

tured workflows, such as data analysis pipelines, GUI applica-

tions, or hardware programming. These tasks involve complex

codebases and exploratory coding behaviors that traditional

clustering techniques struggle to capture. For instance, in data

analysis, students may experiment with features that don’t

impact final outputs, which runtime- or AST-based clustering

may overlook or misrepresent.

Our study shows that checkpoint-based visualizations pro-

vide a more effective solution. By allowing instructors to

define key stages of the task, they can track how students

iteratively approach each checkpoint over time. This design

accommodates non-linear workflows and highlights meaning-

ful progress. Future work may explore expanding checkpoint

mechanisms using AI-assisted techniques [46] or peer assess-

ment [15] to provide richer insights into student performance.

Our user study confirms that SPARK performs well in small-

to-medium-sized classrooms. In testing with 22 students, a sin-

gle Puppeteer server maintained sub-30-second computation

times. These benchmarks suggest the system can scale further

for low-latency, real-time tracking in larger classrooms.

B. Visualizing Student Code with Spatial Meanings

By visualizing test case results across checkpoints, SPARK

provides a reliable way to track student progress in multi-

faceted programming exercises. This approach reveals stu-

dents’ workflow sequences and clarifies task interdependen-

cies, enabling instructors to quickly assess progress across

different code sections. For example, in the Image Carousel
exercise (Fig.8), some students completed Checkpoint 2 first,

while most followed the expected sequence. At timestamp
18, performance was highest on Checkpoint 2 and lowest on

Checkpoint 3. The spatial layout helps instructors understand

both overall progress and specific challenges at each stage.

While VizProg [13] uses absolute code positions for

progress, SPARK aligns progress with individual workflow se-

quences and using shaded spatial regions to signal differences

in progress. This enhances instructors’ situational awareness

and offers a more intuitive understanding of student behavior.

Although this method scales well to large classes, it may lead

to information overload in very large cohorts. Future work

could explore adaptive filtering and summary views to surface

key trends and outliers.
Engagement with Instructors
Our findings show that participants actively engaged with

SPARK’s interactive features, finding them effective for man-

aging information and retrieving key details. Unlike prior

systems [11], [13], [14] that support mostly passive monitor-

ing, SPARK enables a hands-on approach, allowing instructors

to create custom checkpoints and inspect student work in-

session—reducing cognitive load and boosting confidence in

instructional decisions.
As AI tools become more common, it’s essential to balance

automation with human oversight. While AI can assist with

predictions or evaluations, meaningful instruction relies on ac-

tive engagement. Effective learning analytics should go beyond

correctness metrics to offer insights into student reasoning and

strategies. SPARK supports this by combining AI-generated

test suggestions with instructor-led exploration.
Future work could incorporate features like automated feed-

back [57], predictive analytics, and inactivity tracking, while

ensuring instructors remain central to the monitoring process.

C. Limitations
A current limitation of SPARK is the preparation effort.

While it is currently tailored for intermediate web program-

ming, future work could explore AI-assisted preparation work-

flows to balance customization with efficiency, and extend

SPARK to advanced domains such as machine learning.
The user study also has two main limitations. First, the ini-

tial sessions focused on using pre-generated checkpoints and

test code, with only the third session evaluating their creation.

This offers limited insight into how instructors might generate

and use custom tests in authentic teaching contexts. Future

studies could examine instructor interactions when designing

their own tests to better understand SPARK’s support for real-

time monitoring. Second, since SPARK can inform teaching

pace and concept review, future research could explore its

long-term classroom use to understand how instructors adapt

and integrate its features into everyday teaching.

VI. CONCLUSION

This paper presents a real-time visualization approach for

multi-faceted programming exercises in classroom settings.

We developed SPARK, a dashboard that lets instructors de-

fine checkpoints, suggest automated tests, and visualize stu-

dent progress across varied workflow sequences. SPARK also

supports inspection of intermediate outputs, offering deeper

insight into students’ code states. Our evaluation shows that

SPARK facilitates easy checkpoint creation, detailed progress

monitoring, and active, customizable engagement. By visual-

izing progress and variables, SPARK helps instructors better

understand students’ mental models, reduce cognitive load,

and deliver more effective, personalized feedback at scale.
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