
Making End User Development More Natural

Brad A. Myers, Amy J. Ko, Chris Scaffidi, Stephen Oney, YoungSeok Yoon, Kerry 
Chang, Mary Beth Kery, and Toby Jia-Jun Li

Abstract When end users approach a development task, they bring with them a set 
of techniques, expressions, and knowledge, which can be leveraged in order to make 
the process easier. The Natural Programming Project has been working for over 
twenty years to better understand how end users think about their tasks, and to 
develop new ways for users to express those tasks that will be more “natural,” by 
which we mean closer to the way they think. Our chapter in the previous book cov-
ered the first 10 years of this research; and here we summarize the most recent 10 
years. This includes studies on barriers that impede EUD, and a new tool that helps 
with the understanding and debugging barriers by showing developers why their 
program has its current behavior. We also describe a tool that we created to

B.A. Myers (✉) · M.B. Kery · T.J.-J. Li
Carnegie Mellon University, Pittsburgh, PA, United States
e-mail: bam@cs.cmu.edu

M.B. Kery
e-mail: mkery@andrew.cmu.edu

T.J.-J. Li
e-mail: tobyli@cs.cmu.edu

A.J. Ko
University of Washington, Seattle, WA, United States
e-mail: ajko@uw.edu

C. Scaffidi
Oregon State University, Corvallis, OR, United States
e-mail: scaffidc@eecs.oregonstate.edu

S. Oney
University of Michigan, Ann Arbor, MI, United States
e-mail: soney@umich.edu

Y. Yoon
Google, Mountain View, CA, United States
e-mail: youngseokyoon@google.com

K. Chang
IBM, Armonk, NY, United States
e-mail: kerry.chang@ibm.com

1© Springer International Publishing AG 2017
F. Paternò, V. Wulf (eds.), New Perspectives in End-User Development,
DOI 10.1007/978-3-319-60291-2_1



help EUDs input, process, and transform data in the context of spreadsheets and
web pages. Interaction designers are a class of EUDs that may need to program
interactive behaviors, so we studied how they naturally express those behaviors, and
then built a spreadsheet-like tool to allow them to author new behaviors. Another
spreadsheet tool we created helps EUDs access web service data without writing
code, and extends the familiar spreadsheet to support analyzing the acquired
web-based hierarchical data and programming data-driven GUI applications. Finally,
EUDs often need to engage in exploratory programming, where the goals and tasks
are not well-formed in advance. We describe new tools to help users selectively
undo past actions, along with on-going research to help EUDs create more efficient
behaviors on smartphones and facilitate variations when performing data analysis.

Keywords Spreadsheets · exploratory programming · data analysis · the Natural
Programming Group

1 Introduction

The Natural Programming group at Carnegie Mellon University (CMU) has been work-
ing for nearly 20 years on applying methods from Human-Computer Interaction (HCI)
in order to make programming easier. We have applied this research to professional
developers (Myers, Ko, LaToza, & Yoon, 2016), to learners who are trying to become
professional developers, and to end-user developers (EUDs). Our key strategy is to
study the target developers to understand what their current problems are, and then try
to design new languages and tools that will address those problems.We try to make pro-
gramming be a more “natural” process for the developers, by which we mean closer to
the way the developers think about their tasks. The goal is to reduce the size of the gulfs
of execution and evaluation as articulated by Don Norman (1988) – to make it easier for
developers to implement what they have in mind and to understand the state of their
program. This is also motivated by the cognitive dimension of “Closeness of Mapping,”
which says: “The closer the programming world is to the problem world, the easier the
problem-solving ought to be” (Green & Petre, 1996). The Natural Programming metho-
dology helps us understand how to bring those worlds closer together.

In the early days of the Natural Programming project, as reported in our chapter
for the previous version of the End User Development book, we studied how non-
programmers think about programming tasks, and used that knowledge to develop
a more usable programming language for children (Pane & Myers, 2006). This
chapter summarizes our work since then that has been focused on EUDs:

• We studied learners and identified debugging as a key stumbling block, which
has been surprisingly ignored in many previous tools for EUDs (Ko, Myers, &
Aung, 2004). We developed a new tool called the “Whyline” which helps
EUDs answer a key question – why did or didn’t something happen with a pro-
gram (Ko & Myers, 2004).

• Most of the data on which EUDs’ code operates are richly structured, yet mostly
must be operated on as strings. The “Topes” system allows EUDs to express the
constraints and structure of their data (Scaffidi, Myers, & Shaw, 2008).

2 B.A. Myers et al.



• One class of EUDs that our group has addressed are interaction designers, who
often must now program in HTML/CSS/JavaScript in order to achieve their
desired behaviors. We first studied how interaction designers think about their
tasks (Myers, Park, Nakano, Mueller, & Ko, 2008; Ozenc, Kim, Zimmerman,
Oney, & Myers, 2010), and then designed a new tool, called InterState that
tries to enable a more natural way for interaction designers to express those
behaviors (Oney, Myers, & Brandt, 2014).

• Spreadsheets remain a key tool for EUDs to do data analyses, but much modern
data now comes from web services in hierarchical XML or JSON formats. We
developed the “Gneiss” tool to enable EUDs to create their own data analysis and
web applications using hierarchical data from web services using familiar spread-
sheet languages and interaction techniques (Chang & Myers, 2014a, 2014b, 2016).

• Much programming by EUDs and professionals is exploratory, in that the devel-
oper does not necessarily know the correct code to write before starting, and
therefore must try out different code, often by backtracking or reverting old code
(Yoon & Myers, 2014). However, there is surprisingly little support for this
exploration in programming environments. We are studying this problem as part
of a large, multi-institution project called “Variations to Support Exploratory
Programming” (http://www.exploratoryprogramming.org/). One approach is to
facilitate undoing of the unwanted edits. The “Azurite” tool supports selective
undo, to allow developers to go back and undo edits while retaining desired edits
that happened afterwards (Yoon, Koo, & Myers, 2013; Yoon & Myers, 2015).
One application of this is regional undo, where all the edits for a selected section
of code can be undone without affecting any other code.

• A current project is looking at better support for data scientists in their explora-
tory programming. Many data scientists are EUDs, using languages such as
Excel, R, or Python, and often need to try out different algorithms, libraries
and parameter values, for which there is little support. The “Variolite” tool pro-
vides many features, including light-weight variants, to support EUD explora-
tions (Kery, Horvath, & Myers, 2017).

• Finally, another new project, called “Sugilite,” supports EUD on mobile
phones, especially to help with complex and repetitive multi-app tasks. This
multimodal system can learn how to perform arbitrary tasks using third-party
Android apps from the user’s demonstration, and generalizes the automation by
finding parameters and their possible alternative values from the users’ verbal
commands and the third-party apps’ UI structures (Li, Azaria, & Myers, 2017).

The following sections discuss these projects in more detail.

2 Whyline

One of the most difficult tasks in end user development is debugging, or trying to
find the code in a program that is causing an unwanted behavior. In our lab, we
wanted to discover novel ways of making debugging easier, faster, and more suc-
cessful. To begin, we asked how do EUDs think about debugging?

31 Making End User Development More Natural

http://www.exploratoryprogramming.org/


To find out, we observed many EUDs trying to fix bugs, and discovered many
slow, unproductive strategies (Ko & Myers, 2005; Ko, Myers, Coblenz, & Aung,
2006). Less experienced EUDs would just read their code and change things they
thought might be wrong. This often introduced new defects, rather than resolving
the original ones. More experienced EUDs used breakpoint debuggers to step
through a program’s execution, looking for where it deviated from the expected
behavior. For non-trivial programs, this involved inspecting thousands of lines of
code, which required so much vigilance that many EUDs skipped right over the
bug. The most experienced EUDs guessed what the defect might be and set break-
points to see if their guess was right. If it was, or if it was close, this was effective –
unfortunately, the space of possible defects was often so large, most guesses were
wrong, and these EUDs had to spend minutes, if not hours discovering that their
hypothesis was incorrect. When we compared these strategies to those of novices
and professionals, we found that even experienced professional developers guessed
wrong the first time (but were faster at investigating their hypotheses).

In all of these observations, we noticed one recurring trend: every search for a
defect began with a question about program output such as “Why didn’t that ani-
mation start?,” “Why did this error dialog appear?,” or “Why is this button dis-
abled?” We realized that EUDs were starting their search with something they
were certain about – the faulty output – and trying to retrieve information about
its causes. This led to a compelling idea: what if EUDs could ask these “why” and
“why not” questions directly and a tool could simply answer them by showing the
causes of the faulty output?

Our breakthrough insight was that programs specify the output they produce in
the form of API calls: programs have print statements, they call graphics rendering
libraries, they call audio libraries, and so on. What our tool had to do was identify
these output statements and then present a user interface for EUDs to select which
output they wanted to ask “why” and “why not” about.

We built our prototype for the Alice programming environment, which enables
EUDs to create interactive 3D virtual worlds (Ko & Myers, 2004). As Fig. 1
shows, our interface, which is called the Whyline, lets EUDs pause the program,
click on a “why” menu that contained all of the possible program’s output, and
then select a question. To answer “why” questions, the Whyline keeps a detailed
execution history that stores the data and control dependencies of every instruc-
tion executed in the program, allowing the Whyline to identify every upstream
cause of a selected program output, and display those causes to help EUDs find
the source of the unwanted output. To answer “why not” questions, the Whyline
analyzes the static control dependencies that prevented the desired output state-
ment from executing, showing all of the conditions that were not satisfied that
would have enabled the output to execute. Fig. 1 shows an example of a “why
not” explanation.

Did the Whyline actually help? Over the course of several studies (Ko &
Myers, 2004, 2009), the answer was clearly yes, showing that EUDs using the
Whyline could localize defects anywhere from 2 to 8 times faster than EUDs using
conventional breakpoint debuggers. Our results showed these increases in

4 B.A. Myers et al.



debugging speed were due to a change in the structure of an EUD’s debugging
task: rather than having to iteratively guess the defect and check if they were cor-
rect, EUDs could work backwards from something they were certain was wrong
directly to the source code that caused it. The Whyline prevented speculation, and
instead encouraged EUDs to focus on facts. Further, we found that the Whyline’s
benefits generalize beyond EUDs and can also be effective in helping more experi-
enced developers debug Java programs (Ko & Myers, 2010). Thus, our initial
observations of EUDs’ bug fixing strategies informed the design of a technique
that is useful for both EUDs and for traditional developers.

3 Topes

Much of the data that EUDs deal with must be represented in programming sys-
tems as strings, including names, job titles, part numbers, ID numbers, locations,
etc. In fact, according to one study, 40% of spreadsheet cells contained non-
numeric, non-formula textual data (Fisher & Rothermel, 2004). Software applica-
tions offer poor support for operating on these data, so EUDs must write their
own code for working with them. Parsing, categorizing, validating, and

Fig. 1 The Whyline for Alice, showing an EUD asking why a Pac Man character did not resize,
as expected. The Whyline explains that that it would have resized, but the condition that guarded
the behavior was false

51 Making End User Development More Natural



reformatting these data can be difficult for several reasons. First, each category
can be multi-format in that each of its instances can be written several different
ways. Second, many useful categories are probabilistic rather than binary – each
category can include questionable values that are unusual yet still valid. During
user tasks, such unusual strings often are worthy of double-checking, as they are
neither obviously valid nor obviously invalid. Third, each category is application-
agnostic in that its rules for validating and reformatting strings are not specific to
one software application – rather, its rules are agreed upon implicitly or explicitly
by members of an organization or society. For example, a web form might have a
field for entering Carnegie Mellon office phone numbers like “8-5150” or “412-
268-5150.” EUD tools offer no convenient way to create code for putting strings
into a consistent format, nor do they help users create code to detect inputs that
are unusual but possibly valid, such as “7-5150” (since CMU office phone num-
bers rarely start with “7”). The result is that end-users must often manually clean
up their data, or leave the data unchecked.

In order to help users with their tasks, we created a new kind of abstraction
called a “tope” and a supporting development environment (Scaffidi et al., 2008).
Each tope describes how to validate and reformat instances of a data category.
Topes are sufficiently expressive for creating useful, accurate rules for validating
and reformatting a wide range of data categories commonly encountered by
EUDs. By creating and applying topes, EUDs can validate and reformat strings
more quickly and effectively than they can with other techniques. Tope implemen-
tations are reusable across applications and by different people, highlighting the
leverage provided by EUD research aimed at developing new kinds of
application-agnostic abstractions. The topes model demonstrates that such abstrac-
tions can be successful if they model a shallow level of semantics, thereby retain-
ing usability without sacrificing usefulness for supporting users’ real-world goals.

The Topes system includes tools that allow EUDs to define their own cate-
gories, including checking whether a string is of the desired format, and ways to
convert strings into various valid formats. For example, in Fig. 2, the user is defi-
ning two variations of a “person name,” which share the same parts. The system
will use this definition to generate code for use in spreadsheets and web pages for
validating and transforming strings representing person names. For constraints that
are “almost always” true, the system will generate warnings instead of errors for
violations. In a small user study, EUDs were able to create such definitions and
the system proved highly effective at helping EUDs to create abstractions for vali-
dating strings.

4 InterState

Creating a good user interface requires more than carefully arranging the graphical
elements that define its appearance. It also requires defining the interface’s behavior –
how it reacts to user input and other events. Although sketches and drawing software

6 B.A. Myers et al.



make it relatively straightforward to define an interface’s appearance, correctly
implementing its behavior requires programming skill. The event-callback model,
which most user interface frameworks rely on to define interface behaviors, has sev-
eral drawbacks that make it inappropriate for EUDs (Meyerovich et al., 2009;
Myers, 1991; Oney, Myers, & Brandt, 2012). We explore how to enable interaction
designers who are EUDs to program behaviors themselves by extending the spread-
sheet model of programming.

In order to explore a more usable way for EUDs to define interactive
behaviors, we started with studies on how non-programmers naturally describe
interactive behaviors (Park, Myers, & Ko, 2008). We also conducted workshops
to better understand communication barriers between interaction designers and
developers (Ozenc et al., 2010). Based on the results of those studies, we itera-
tively designed a new framework for letting interaction designers define GUI
behaviors, called the state-constraint framework. This framework combines
constraints – which allow developers to define relationships among elements that
are maintained by the system – and state machines – which track the status of an
interface. In the state-constraint framework, developers write interactive beha-
viors by defining constraints that are enforced when the interface is in specific
states (Oney et al., 2012, 2014). We implemented the state-constraint framework

Fig. 2 Dragging and dropping a prototype’s icon from the Toolbox creates a new part, and the
editor also supports drag/drop rearrangement of parts as well as copy/paste. Users can click the
example in a part’s icon to edit it, while clicking other parts of the icon displays widgets for edit-
ing its constraints, which are shared by every instance of the part. Clicking the “+” icon adds a
constraint while clicking the “x” icon deletes the constraint

71 Making End User Development More Natural



in InterState (Oney et al., 2014), an interactive spreadsheet-like graphical envir-
onment for EUDs.

InterState reduces the number of control structures that new developers need to
learn in order to write UI behaviors. Developers can express UI behaviors using
simple expressions – which are like spreadsheet equations – that define constraints
and transitions among states. InterState’s visual notation concisely represents
interactive behaviors as a table whose rows are properties and whose columns are
states. This visual notation allows developers to see which events affect a property
by scanning the property’s row and which properties an event affects by looking
at that event’s column, as Fig. 3 illustrates.

InterState also includes a live editor that helps reduce the “gulf of evaluation”
in determining the effects of a change, which has been shown to be a significant
barrier for both EUDs and experienced developers. In InterState, edits are immedi-
ately reflected in the running application and changes in runtime state and property
values are highlighted in the editor, which enables quick experimentation and
parameter tuning. The live editor also allows the developer to always have a run-
ning application by “localizing” errors. This means that only the parts of the pro-
gram that depend on problematic expressions are not executed, which avoids
confronting EUDs with dozens of syntax and runtime errors.

A comparative laboratory study indicated that InterState can be effective in
helping users who do not have prior UI programming experience understand and
modify code. Even developers with JavaScript experience were significantly faster
at understanding and modifying UI code in InterState compared to using
JavaScript (Oney et al., 2014). Further, in order to test InterState’s scalability, we
implemented several complex user interfaces, finding that by many metrics (such
as number of control structures and amount of space), InterState’s implementation
is more concise than the alternative JavaScript implementation.

Fig. 3 An illustration of a basic InterState object, named drag_lock. Properties, which control
drag_lock’s display, are represented as rows (e.g. x, and y). States and transitions are repre-
sented as columns (e.g. no_drag, drag, and drag_lock). An entry in a property’s row for a parti-
cular state specifies a constraint that controls that property’s value in that state; while drag_lock
is in the drag state, x and y will be constrained to mouse.x and mouse.y respectively, meaning
drag_lock will follow the mouse while dragging. Note that in this example, when the user per-
forms a double click to initiate drag lock, the drag_lock object does enter and then leave the
drag state intermittently as a result of the mouse.down and mouse.up events that are fired during
a double click

8 B.A. Myers et al.



5 Gneiss

Today, more and more data are moving to the cloud, and many companies provide
web services that let people access web data programmatically. Web services
allow developers to make custom use of various kinds of online data. Many web
services also provide computational services that can analyze or transform the
user’s data. While web services are powerful tools that make the data and comput-
ing ability of the cloud available to people, using these web services currently
requires significant programming expertise and effort.

The creation of Gneiss1 was motivated by prior literature that shows that even
professional developers found it difficult to use web services and often required
learning new language features or libraries to complete their tasks (Zang, Rosson, &
Nasser, 2008). Prior literature also showed that some EUDs want efficient ways to
do custom data analysis that use multiple online data sources (Lin, Wong, Nichols,
Cypher, & Lau, 2009). In Gneiss, we explored extending the spreadsheet model to
support using web service data, since spreadsheet programming is popular among
users of all programming levels from EUDs to professional developers and data
analysts.

Gneiss makes contributions in extending spreadsheets to support new program-
ming tasks that help EUDs work with online data. First, Gneiss introduces new
UIs and interaction techniques to the familiar spreadsheet environment to enable
users to send data to and retrieve data from web services without writing conven-
tional code. Gneiss has a left pane (Fig. 4 at 1) that lets users load JSON data
from REST web services. The user can send data from arbitrary spreadsheet cells
by replacing any part of the web API with spreadsheet cell name (see Fig. 4 for
an example), and extract data from the returned document in the left pane to the
spreadsheet by selecting a field and dragging it to a spreadsheet column. Using the
returned document’s structure and the user’s selection as an example, Gneiss will
extract other similar fields in the document for the users, eliminating the need to
write queries in languages such as XPath to select the desired data. Leveraging the
spreadsheet’s live programming, changes in spreadsheet cells used in a web ser-
vice call will trigger Gneiss to immediately send a new API request using the
cell’s new value and in turn update the spreadsheet data. This makes a spreadsheet
into an interactive platform for querying cloud data (Chang & Myers, 2014b).

Gneiss further enables spreadsheet users to create interactive web applications
that can use and modify spreadsheet data (Chang & Myers, 2014a). Gneiss’s right
pane (Fig. 4 at 3) is a web interface builder where the user can create web pages
by dragging-and-dropping GUI elements from the right bar and editing the proper-
ties of an element in a table (Fig. 4 at 4 and 5). In Gneiss, each GUI element prop-
erty in the web application is treated as a spreadsheet cell, so it can reference other

1Gneiss is a type of rock, pronounced like “nice.” Here it stands for Gathering Novel End-user
Internet Services using Spreadsheets.

91 Making End User Development More Natural



F
ig
.4

G
ne
is
s’
s
us
er

in
te
rf
ac
e.

(1
)
is
th
e
so
ur
ce

pa
ne

w
he
re

th
e
us
er

ca
n
lo
ad

a
w
eb

A
P
I
in

th
e
U
R
L
bo
x
an
d
vi
ew

th
e
re
tu
rn
ed

JS
O
N

do
cu
m
en
t.
T
he

us
er

ca
n
se
nd

sp
re
ad
sh
ee
t
da
ta

to
a
w
eb

se
rv
ic
e
by

re
pl
ac
in
g
pa
rt
s
of

th
e
w
eb

A
P
I
w
ith

sp
re
ad
sh
ee
t
ce
ll
na
m
es
.
H
er
e
th
e
us
er

se
nd
s
sp
re
ad
sh
ee
t
ce
ll
A
1
to

th
e

w
eb

se
rv
ic
e
as

th
e
va
lu
e
of

th
e
qu
er
y
pa
ra
m
et
er

us
in
g
th
e
sy
nt
ax

{{
A
1}
}.

T
he

us
er

ca
n
ex
tr
ac
t
fi
el
ds

fr
om

th
e
re
tu
rn
ed

JS
O
N
do
cu
m
en
t
to

th
e
ce
nt
er

sp
re
ad
-

sh
ee
t
(2
)
by

dr
ag
-a
nd
-d
ro
p.

H
er
e,

sp
re
ad
sh
ee
t
co
lu
m
n
B
-E

ho
ld

fo
ur

di
ff
er
en
t
fi
el
ds

ex
tr
ac
te
d
fr
om

th
e
re
tu
rn
ed

do
cu
m
en
t
in

(1
).
(3
)
is

th
e
w
eb

in
te
rf
ac
e

bu
ild

er
w
he
re

th
e
us
er

ca
n
cr
ea
te
a
w
eb

ap
pl
ic
at
io
n
by

dr
ag
gi
ng
-a
nd
-d
ro
pp
in
g
G
U
I
el
em

en
ts
fr
om

th
e
ri
gh
t
to
ol
ba
r
(4
)
to

th
e
ou
tp
ut

pa
ge
.T

he
us
er

ca
n
vi
ew

an
d
ed
it
a
se
le
ct
ed

G
U
I
el
em

en
t’
s
pr
op
er
tie
s
in

(5
).
H
er
e,

(5
)
sh
ow

s
th
e
pr
op
er
tie
s
of

T
ex
tB
ox
1
w
hi
ch

is
th
e
se
ar
ch

bo
x
in

th
e
ou
tp
ut

pa
ge
.
T
he

te
xt
bo
x’
s

V
al
ue

pr
op
er
ty

ch
an
ge
s
dy
na
m
ic
al
ly

ba
se
d
on

w
ha
t
th
e
us
er

en
te
rs

in
it
(c
ur
re
nt
ly

“
Ja
zz

ba
r
N
ew

Y
or
k
C
ity

”
).
In

th
e
sp
re
ad
sh
ee
t,
ce
ll
A
1
is

se
t
to

be
th
e

va
lu
e
of

th
e
se
ar
ch

bo
x
us
in
g
th
e
fo
rm

ul
a
=
T
ex
tB
ox
1!
V
al
ue
,w

hi
ch

is
th
en

se
nt

to
th
e
w
eb

se
rv
ic
e
in

(1
)
as

th
e
qu
er
y
te
rm

to
re
tr
ie
ve

ne
w
da
ta
.G

U
I
el
em

en
t

pr
op
er
tie
s
in

(3
)
ca
n
al
so

us
e
sp
re
ad
sh
ee
t
da
ta
as

th
ei
r
va
lu
es
.F

or
ex
am

pl
e,
he
re

th
e
bo
ld

te
xt

in
th
e
gr
id

lis
t
is
se
t
to

sh
ow

th
e
da
ta
in

sp
re
ad
sh
ee
t
co
lu
m
n
B

us
in
g
a
sp
re
ad
sh
ee
t
fo
rm

ul
a

10 B.A. Myers et al.



spreadsheet cells and use functions to compute its value, and also be referenced
in spreadsheet cells and functions to compute new values. This allows the use of
spreadsheet languages to construct two-way data flow between a web page and
a spreadsheet whose data can be local or from web services. Gneiss further intro-
duces interactive properties in web GUI elements whose values change live based
on how the user interacts with the elements. This enables the user to program
many kinds of interactive behaviors in a web application, such as to search, sort,
filter and visualize data using GUI controls, using spreadsheet languages without
needing to write conventional event handler code (Chang & Myers, 2014a).

Finally, since most modern web services return hierarchical data such as JSON
and XML data, we also extend spreadsheets to support hierarchical data, with con-
trol over how they are shown and manipulated in the spreadsheet (Chang &
Myers, 2016). Gneiss introduces a new method to visualize hierarchical data as a
spreadsheet using the relative hierarchical relationships among data in adjacent
columns. Under this new visualization method, reshaping, regrouping, and joining
hierarchical objects in a spreadsheet can be done using simple interaction techni-
ques (see Fig. 5). This model also extends spreadsheet languages, sorting and fil-
tering to support selecting and manipulating data by its hierarchies, allowing the
user to calculate summaries of data using spreadsheet formulas without the need
of pivot tables. In our user study, Gneiss helped spreadsheet users who were
EUDs complete data exploration tasks that involve restructuring and joining two
hierarchical JSON documents almost two times faster than Excel, and they even
outperformed experienced programmers writing JavaScript or Python code doing
the same tasks (Chang & Myers, 2016).

Fig. 5 Gneiss visualizes hierarchies in data using nested spreadsheet cells, and lets users
restructure the data by any field by drag-and-dropping a column to a different location. Here, (1)
shows a structured document of restaurant data grouped by restaurant names. The user can
restructure this document to instead view the data by restaurant categories by dragging the cate-
gories column to the front of the names column (2 and 3)

111 Making End User Development More Natural



6 Azurite

Since developers are human, they often make mistakes while writing code. In
other cases, developers intentionally make temporary changes to the code, either
as an experiment or to help with debugging. As a consequence, developers often
need to backtrack while coding, meaning that they revert their code back to an
earlier state at least partially. For example, developers try out different values for
various parameters. When developers try to learn an unfamiliar API, they might
try writing some code and running it to see if the code works as expected, and if it
does not, they backtrack and try something else. Backtracking support is much
needed in exploratory programming (Sheil, 1983), where the correct solution to
the given problem is not well known or when there are multiple potential solutions
with their own strengths and weaknesses. Moreover, recent studies show that
EUDs need easy access to past versions of their code as reference when rewriting
parts of their code (Henley & Fleming, 2016; Kuttal, Sarma, & Rothermel, 2011).

However, we noticed that modern development tools for EUDs and profes-
sional programmers alike do not provide enough support for backtracking. The
linear undo model used in development tools is not suitable for all situations.
Notably, users can only undo the most recent edits, which can be very inconveni-
ent when they realize their mistake after making some other changes that they
want to keep. Another option is to use version control systems such as Subversion
or Git, but backtracking is supported in these tools only if the desired code is
already committed to the system, and version control is rarely used by EUDs
(Grigoreanu, Fernandez, Inkpen, & Robertson, 2009).

To provide better backtracking support for developers, we first asked, when
and how do developers backtrack? To answer this, we observed developers com-
pleting simple programming tasks in our lab, interviewed and surveyed developers
about their backtracking experience, and finally collected and analyzed developers’
coding logs while they are working on their own projects. Developers felt that back-
tracking happens quite frequently, and they had problems while backtracking, such
as failing to locate the right code to be backtracked (Yoon & Myers, 2012). Our log
analysis detected about 10 backtracking instances per hour, and for 34% of those
backtracking situations, developers performed them manually by deleting or retyping
code, confirming that there are backtracking situations not very well supported by
existing tools (Yoon & Myers, 2014).

So how could we support backtracking better? One insight we had was that a
selective undo in editors could help solve these backtracking problems. Users
could use selective undo to revert only specific edits from the past, without affect-
ing the following, more recent edits. Inspired by prior research in selective undo
in the area of drawing editors (Berlage, 1994; Myers, 1998), we developed our
tool Azurite2, which is a selective undo tool that works in the Eclipse code editor.

2Azurite is a blue mineral, and here stands for Adding Zest to Undoing and Restoring Improves
Textual Exploration.

12 B.A. Myers et al.



Although Eclipse is a tool mostly used by professional developers, the ideas
explored in Azurite are relevant to EUD environments as well, since EUDs per-
form exploratory programming (Henley & Fleming, 2016; Kuttal et al., 2011), and
must enter and edit their code.

Fig. 6 shows an example screenshot of the Azurite tool. The timeline visualiza-
tion, shown at the bottom of Fig. 6, is the most basic user interface of Azurite,
where the users can see the code change history by scrolling through it, select
some past edits, and use the selective undo command (Yoon et al., 2013). All the
fine-grained code changes are automatically tracked by the Azurite system, with-
out users needing to manually commit their code. However, an important question
still remains: how can users effectively and accurately find and select the desired
edits which are to be undone?

The observations from our lab study showed that developers remember
certain aspects about the code edits that they want to undo. Our goal was to
provide a more natural way for users to express what they remember about the
code changes. To this end, Azurite supports a rich set of user interfaces for
selective undo besides the timeline visualization. One of the most popular form
of selective undo Azurite provides is regional undo, where users can select
some region of code in the editor and use a keyboard shortcut to perform

Fig. 6 An example screenshot of Azurite running in the Eclipse IDE. At the bottom, a timeline
visualization of recent code changes is provided. The user is currently using the “Interactive
Selective Undo” dialog, which is one of the more sophisticated selective undo features of Azurite

131 Making End User Development More Natural



selective undo directly on only that region. This feature was driven by our
observation that users often remember the location of the code changes they
want to undo (Yoon & Myers, 2015). With these selective undo features imple-
mented, we evaluated whether Azurite actually helps developers perform
backtracking better. Through a controlled lab study with 12 developers, we
confirmed that the users could quickly learn and use the features during the
study, and the Azurite users completed the given backtracking tasks twice as
fast compared to when not using Azurite (Yoon & Myers, 2015).

7 Variolite

In a current project, we are looking at exploratory programming in the context of
data scientists. The term “data scientist” is open-ended (and often disputed who
exactly it includes), but here we use it simply to encompass a broad range of peo-
ple who write programs to work with data. Analyzing data and using techniques
such as machine learning is increasingly important to many professions, including,
for example, engineering, medicine, marketing, and research. Individuals in these
diverse fields are very often EUDs.

Current tools for data science include GUI-based tools like SPSS or WEKA for
relatively straightforward analyses. For more complex data manipulation, individuals
often turn to programming, using languages such as Excel, MatLab, R, or Python.
While much recent research has gone into making GUI-based tools (mostly for
machine learning) more accessible to EUDs (Amershi, Cakmak, Knox, & Kulesza,
2014; Yang et al., 2013), the act of coding in this context is less studied. A few
recent studies of professional programmers (Hill, Bellamy, Erickson, & Burnett,
2016) and machine learning experts (Patel, 2013) working in data science tasks have
pointed to real struggles that experts faces with exploratory programming.

When “what code should I implement?” or “what is the precise goal of my
code?” are questions that cannot be answered at the start of a project, exploratory
programming is a way of understanding the problem better through a trial-and-
error approach with code. In a concrete sense, this means changing code,
parameters, and data to test out new ideas until something works. With data
science in particular, this process is unfortunately not always straightforward code
development. Non-linear iteration (Patel, 2013) where an attempt that failed in the
past may be fruitful in the future is quite common. For this reason, data scientists
often try, and struggle, to keep track of their experiments (Hill et al., 2016).
Experimentation can cause code to be more and more unstable, as new chunks of
code are added, tested, discarded, and run on different sets of input files. As deve-
lopers try to answer complex questions with their data, ideas tried so far can be
difficult to keep track of and confusion and logic errors are very real threats (Hill
et al., 2016; Patel, 2013). Understanding these coding practices and developing
new kinds of supports for exploration are crucial to making this kind of work
more accessible to EUDs.

14 B.A. Myers et al.



To investigate this problem more closely, we approached 10 data scientists and
interviewed them about their recent projects (Kery et al., 2017). We grounded
these discussions by viewing and discussing artifacts that went with their projects,
such as their code, data, file folders, and notes. We followed this with a survey of
an additional 60 data scientists.

What does it mean to develop exploratory code? We found that developers
currently use ad-hoc strategies for keeping track of their experiments’ code and
data. For example, developers in our study often rely on commenting and
copying code, as well as keeping around old code to facilitate “versioning” of
different ideas within the same file. For instance, in order to try different varia-
tions of an algorithm, one participant used copy-and-paste to create functions
such as “analyis1,” “analysis2” and alternated which one was run. Another parti-
cipant used code comments to alternate their code’s execution, sometimes in
complex sets of code switched “on” or “off” using a code comment symbol.
Through the survey, we found that informal versioning techniques such as these
are widely used. Furthermore, we found that even among data scientist who
actively use version control software (VCS) systems such as Git or SVN for
other kinds of work, they predominantly chose to rely on informal techniques,
rather than a VCS, for exploratory code.

Finding ways to support data scientists’ needs with versioning and experiment-
tracking may help make their explorations more robust. Informal versioning that
data scientists currently rely on allows them to perform interactions which typical
VCSs currently do not support. For example, a data scientist using simple copy/
paste and text commands can create versions of any size chunk of code, whereas
standard VCS only support versions at the file level. Furthermore, with informal
techniques, there is a far lower learning curve for EUDs who do not know VCS,
since they can simply leverage their text editing skills to explore variants, rather
than learning a new tool.

We created Variolite,3 an extension to the Atom editor, to investigate new
kinds of support for data science versioning (Kery et al., 2017). In Variolite
(Fig. 7), a developer can select any size piece of code and issue the command
“wrap in variant.” This wraps the code chunk in a box, which can be tabbed,
similar to a web browser, to keep different local versions of that code on differ-
ent tabs. We used participatory design for Variolite by showing initial sketches
of potential design ideas to data scientists and getting their feedback. In a
preliminary usability test of an implemented version of Variolite with 10 parti-
cipants, who were a mix of novice and advanced developers, the majority
found this interaction usable and desirable. We are continuing work on
Variolite, and are investigating new ways to support data scientists in their
exploratory code.

3Variolite, which is a kind of rock structure, here stands for Variations Augment Real Iterative
Outcomes Letting Information Transcend Exploration.

151 Making End User Development More Natural



8 Sugilite

In recent years, mobile phones have evolved from being solely communication
devices into ubiquitous tools that support a wide range of computing tasks,
including information seeking, game playing, entertainment, and navigating.
Mobile devices have exceeded PCs in internet usage (O’Toole, 2014) and have
become the main computing device for many users (Smith, 2015). Thus, it is
increasingly important to study how end-user development can be applied to
enable end-users to create automations to help perform personalized computing
tasks on mobile devices. In this section, we report on our ongoing project to cre-
ate a new EUD tool named SUGILITE

4 (Li et al., 2017) to enable EUDs to auto-
mate mobile tasks using a Programming by Demonstration (PbD) approach

Fig. 7 A screenshot of Variolite. Here are two variant boxes. An outer box wraps the distance
and computeAngle functions, and has three versions “Distance1,” “Distance2,” “Distance3” that the
user can flip among with tabs. The inner variant box has two versions “dot,” and “dot with norm.”
Versioning that is visible within the text editor is meant to be more accessible to novices and EUDs

4Sugilite is named after a purple gemstone, and here stands for Smartphone Users Generating
Intelligent Likable Interfaces Through Examples.

16 B.A. Myers et al.



(Cypher et al., 1993; Myers, McDaniel, & Wolber, 2000) combined with a
conversational agent.

Tasks on mobile devices are often performed using mobile apps. Each app usually
has limited functionality within a single domain. As a result, complex tasks often
require the use of multiple apps (Sun, Chen, & Rudnicky, 2016). For example, plan-
ning a dinner event may require steps like searching for a restaurant, viewing the
transportation options, determining scheduling information, making the actual reser-
vation, and entering information into a calendar, where each step is performed with a
different app. However, coordinating multiple apps is particularly challenging on
mobile compared to on a computer due to the small screen size and limited support
for multi-tasking and cross-app data sharing. For the most common scenarios of
cross-app usage, the developers of the apps may implement features to support a few
built-in data sharing mechanisms (e.g. the “Share To” button to share data from Photo
Gallery to Messenger or Social Media Apps) or the API of services (e.g. Google
Maps showing Uber fare estimates in the results). Nevertheless, the “long tail” of per-
sonalized mobile computing tasks are mostly not supported directly. This is where
EUD can play an important role in enabling the users to create their own automations
for repetitive mobile tasks in order to improve their efficiencies in mobile computing.

The SUGILITE system uses the Programming by Demonstration (PbD) approach.
It has a multi-modal interface where the user can give a verbal command to execute
an automation through a voice conversational interface (Fig. 8a), while making
demonstrations (Fig. 8b, c) and editing existing scripts (Fig. 8c, d) using direct
manipulation. In the background, SUGILITE detects the apps’ user interface hierarchi-
cal structures, such as the menu tree, for all the activities that users visit. Then,
SUGILITE combines the voice command, the actions recorded, and an analysis of the
app’s structures to infer generalizations of the script. This allows SUGILITE to learn a

a b c d

Fig. 8 Screenshots of SUGILITE: (a) the conversational interface; (b) the recording confirma-
tion popup; (c) the recording disambiguation/operation editing panel; and (d) the viewing/editing
script window

171 Making End User Development More Natural



generalized script for the task from a single demonstration. SUGILITE also provides
error handling and checking mechanisms that allow the user to demonstrate new
steps to enable the script to handle new situations at runtime.

A major advantage of SUGILITE and the PbD approach compared to other
Mobile EUD systems is that SUGILITE can automate tasks using any third-party
Android app (with a few exceptions noted in the paper (Li et al., 2017)). It also
enables the users to demonstrate directly in the interfaces of the third-party apps
that they are already familiar with, which is particularly useful for EUDs.

In a lab study, 19 participants with various levels of programming experience
(including seven non-programmers) were able to use SUGILITE to create automations
for four tasks derived from common real-world smartphone usage scenarios with an
85.5% completion rate. No significant difference in either completion rate or com-
pletion time was found between participant groups with different levels of program-
ming experience. The result also showed that for our four example tasks, using
SUGILITE to automate tasks is more efficient timewise than using direct manipulation
if a repetitive task is to be performed for more than 3 to 6 times (Li et al., 2017).

9 Lessons Learned and Implications for the Future

Here we collect some observations on EUD from our over twenty years of
research in this area.

• Studying the target group of EUDs to investigate their natural ways to describe
their tasks and procedures can reveal novel ways that the development system
might operate. For example InterState’s design was motivated by research into
non-programmers’ natural language descriptions of interface behaviors. Other
design and evaluation methods from the human-computer interaction (HCI)
area also have proven useful in improving our systems (Myers et al., 2016).

• Many of the problems that end user developers face are problems that profes-
sional developers face as well (Ko & Myers, 2005; Ko et al., 2006). The differ-
ence is that EUDs face them at a smaller scale and often with less experience,
less effective strategies, and different motivation (Ko et al., 2011). Because of
this overlap, our work has shown that it is often possible to make break-
throughs in professional developer tools by first starting with smaller scale
EUD tools. For example, the ideas behind Gneiss, the Whyline, and InterState
have been shown to benefit both EUDs and professional developers.

• Although debugging is just as important for EUDs as it is for professional
developers, many EUD tools do not provide adequate debugging support. Even
for the EUD tools that provide some debugging support, they often use the
same techniques and metaphors as professional debugging tools. While teach-
ing EUDs appropriate strategies is a great idea (Loksa et al., 2016), tools for
EUDs can do a lot more to help with debugging, as shown by the Whyline.

18 B.A. Myers et al.



• Although spreadsheets are an old tool, they are still a favorite EUD platform,
and can be extended to support EUDs in several areas. We have presented three
enhancements of spreadsheets – Topes, InterState and Gneiss, which extend
what spreadsheets can process to more expressive strings, stateful formulas,
web services and hierarchical data.

• Most EUDs use exploratory programming and write code that they may know
they do not intend to keep, or which they plan to edit frequently, but this pro-
cess is not supported by today’s tools. Ideas such as visualizing edit history,
selective undo, and light-weight variants have been shown to help.

10 Conclusions and Future Work

The Natural Programming Project has been studying end-user development and
creating novel ways for end-users to create and debug their programs for many
years, with much exciting research in progress. The “natural programming”
approach has proven to be a useful way to understand the target users’ real needs
and what might be the appropriate ways to solve them. Across this work, we have
found that supporting EUDs in all of these settings has required the same basic
process: (1) understand what is difficult about a task, and then (2) identify ways of
changing that task through new kinds of analyses and data.

For the future, we will continue to strive to produce a “gentle-slope system”

where getting started with programming will be easy for EUDs, and there will be
no walls that prevent them from learning what is needed to expand the kinds of
programs they can build (Myers, Hudson, & Pausch, 2000). While we have made
progress, research is still needed across all the topics mentioned above. In addi-
tion, the recent rise in computing power has made more powerful machine learn-
ing techniques such as deep learning possible, which computer scientists have
leveraged to create artificial intelligence capable of complex tasks including driv-
ing automobiles, categorizing videos (Clark, 2012), learning games (Muncy,
2016), and doing science (Buchen, 2009). End-user programmers, each with their
own unique and diverse needs and context, could potentially benefit from new sys-
tems enabling them to create artificial intelligences of their own. As the computing
power of machines grows ever closer to that of animals, programming could some
become as “natural” as training a dog.

Acknowledgements This article grows out of over 20 years of work by the Natural
Programming group by more than 50 students, staff and postdocs in addition to the authors, and
we thank them all for their contributions. The work summarized here has been funded at least by
SAP, Adobe, IBM, Microsoft, Yahoo! and multiple NSF grants including CNS-1423054, IIS-
1314356, IIS-1116724, IIS-0329090, CCF-0811610, IIS-0757511, and CCR-0324770. Any opi-
nions, findings and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect those of any of the sponsors.

191 Making End User Development More Natural



References

Amershi, S., Cakmak, M., Knox, W. B., Kulesza, T. (2014). Power to the people: the role of
humans in interactive machine learning. AI Magazine, 35(4), 105–120.

Berlage, T. (1994). A selective undo mechanism for graphical user interfaces based on command
objects. ACM Transactions on Computer Human Interaction. ACM Transactions on
Computer Human Interaction, 1(3), 269–294.

Buchen, L. (2009). Robot makes scientific discovery all by itself. Wired UK Online. https://
www.wired.com/2009/04/robotscientist/.

Chang, K., & Myers, B.A. (2014a, October 5–8). Creating interactive web data applications with
spreadsheets. In UIST’14: ACM Symposium on User Interface Software and Technology
(pp. 87–96). Honolulu, Hawaii.

Chang, K., & Myers, B.A. (2014b, July 28–August 1). A spreadsheet model for using web ser-
vice data. In VL/HCC’14: IEEE Symposium on Visual Languages and Human-Centric
Computing (pp. 169–176). Melbourne, Australia.

Chang, K., & Myers, B.A. (2016, May 7–12). Using and exploring hierarchical data in spread-
sheets. In Proceedings CHI’2016: Human Factors in Computing Systems (pp. 2497–2507).
San Jose, CA.

Clark, L. (2012). Google’s artificial brain learns to find cat videos. Wired UK Online. https://
www.wired.com/2012/06/google-x-neural-network/.

Cypher, A., Halbert, D. C., Kurlander, D., Lieberman, H., Maulsby, D., Myers, B. A., Turransky, A.
(1993).Watch what I do: programming by demonstration. Cambridge, MA: MIT Press.

Fisher, II, M., & Rothermel, G. (2004). The EUSES spreadsheet corpus: a shared re-source for
supporting experimentation with spreadsheet dependability mechanisms. Lincoln: University
of Nebraska. Technical Report 04-12-03.

Green, T. R. G., & Petre, M. (1996). Usability analysis of visual programming environments:
a ‘cognitive dimensions’ framework. Journal of Visual Languages and Computing, 7(2), 131–174.

Grigoreanu, V., Fernandez, R., Inkpen, K., Robertson, G. (2009, September 20–24). What
designers want: needs of interactive application designers. In IEEE Symposium on Visual
Languages and Human-Centric Computing, VL/HCC’09 (pp. 139–146). Corvallis, Oregon.

Henley, A.Z., & Fleming, S.D. (2016, September 4–8). Yestercode: improving code-change sup-
port in visual dataflow programming environments. In: VL/HCC’16: IEEE Symposium on
Visual Languages and Human-Centric Computing. Cambridge.

Hill, C., Bellamy, R., Erickson, T., Burnett, M. (2016). Trials and tribula-tions of developers of
intelligent systems: a field study. In VL/HCC’2016: IEEE Symposium on Visual Lan-guages
and Human-Centric Computing (pp. 162–170). Denver, CO.

Kery, M.B., Horvath, A., Myers, B.A. (2017, May 6–11). Variolite: supporting exploratory pro-
gramming by data scientists. In Proceedings CHI’2017: Human Factors in Computing
Systems (pp. 1265–1276). Denver, CO.

Ko, A. J., Abraham, R., Beckwith, L., Blackwell, A., Burnett, M., Erwig, M., et al. (April,
2011). The state of the art in end-user software engineering. ACM Computing Surveys, 43(3),
Article 21 44 pages.

Ko, A.J., & Myers, B.A. (2004, April 24–29). Designing the whyline, a debugging interface for
asking why and why not questions about runtime failures. In Proceedings CHI’2004: Human
Factors in Computing Systems (pp. 151–158). Vienna, Austria.

Ko, A. J., & Myers, B. A. (2005, February). A framework and methodology for studying the
causes of software errors in programming systems. Journal of Visual Languages and
Computing, 16(1), 41–84.

Ko, A.J., & Myers, B.A. (2009, April 4–9). Finding causes of program output with the java why-
line. In CHI’2009: Human Factors in Computing Systems (pp. 1569–1578). Boston, MA.

Ko, A. J., & Myers, B. A. (2010, August). Extracting and answering why and why not questions
about java program output. ACM Transactions on Software Engineering and Methodology
(TOSEM), 20(2), Article 4 36 pages.

20 B.A. Myers et al.

https://www.wired.com/2009/04/robotscientist/
https://www.wired.com/2009/04/robotscientist/
https://www.wired.com/2012/06/google-x-neural-network/
https://www.wired.com/2012/06/google-x-neural-network/


Ko, A.J., Myers, B.A., Aung, H.H. (2004, September 26–29). Six learning barriers in end-user
programming systems. In IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC) (pp. 199–206). Rome, Italy.

Ko, A. J., Myers, B. A., Coblenz, M., Aung, H. H. (2006, December). An exploratory study of
how developers seek, relate, and collect relevant information during software maintenance
tasks. IEEE Transactions on Software Engineering, 33(12), 971–987.

Kuttal, S.K., Sarma, A., Rothermel, G. (2011). History repeats itself more easily when you log it:
versioning for mashup. In IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC) (pp. 69–72). Pittsburgh, PA.

Li, T., Azaria, A., Myers, B. (2017, May 6–11). SUGILITE: creating multimodal smartphone
automation by demonstration. In Proceedings CHI’2017: Human Factors in Computing
Systems (pp. 6038–6049). Denver, CO.

Lin, J., Wong, J., Nichols, J., Cypher, A., Lau, T. A. (2009). End-user programming of mashups
with vegemite. Proceedings of the 14th International Conference on Intelligent User
Interfaces (pp. 97–106). Sanibel Island, FL: ACM.

Loksa, D., Ko, A. J., Jernigan, W., Oleson, A., Mendez, C. J., Burnett, M. M. (2016).
Programming, problem solving, and self-awareness: effects of explicit guidance. Proceedings
of the 2016 CHI Conference on Human Factors in Computing Systems (pp. 1449–1461).
Santa Clara, CA: ACM.

Meyerovich, L. A., Guha, A., Baskin, J., Cooper, G. H., Greenberg, M., Bromfield, A., et al.
(2009). Flapjax: a programming language for Ajax applications. SIGPLAN Notices (Proc.
OOPSLA’2009), 44(10), pp. 1–20. 1640091.

Muncy, J. (2016). Making AI play lots of videogames could be huge (No, Seriously). Wired UK
Online. https://www.wired.com/2016/04/videogames-ai-learning/.

Myers, B.A. (1991, November). Separating application code from toolkits: eliminating the spa-
ghetti of call-backs. In UIST’91: ACM SIGGRAPH Symposium on User Interface Software
and Technology (pp. 211–220). Hilton Head, SC.

Myers, B.A. (1998, April). Scripting graphical applications by demonstration. In SIGCHI’98:
Human Factors in Computing Systems (pp. 534–541). Los Angeles, CA.

Myers, B. A., Hudson, S. E., Pausch, R. (2000, March). Past, present and future of user interface
software tools. ACM Transactions on Computer Human Interaction, 7(1), 3–28.

Myers, B. A., Ko, A. J., LaToza, T. D., Yoon, Y. S. (2016, July). Programmer are users too:
human centered methods to improve software development. IEEE Computer, 49(7), 44–52.

Myers, B., McDaniel, R., Wolber, D. (2000, March). Programming by example: intelligence in
demonstrational interfaces. Communications of the ACM, 43(3), pp. 82–89.

Myers, B.A., Park, S.Y., Nakano, Y., Mueller, G., Ko, A. (2008, September 15–18). How
designers design and program interactive behaviors. In 2008 IEEE Symposium on Visual
Languages and Human-Centric Computing, VL/HCC’08 (pp. 185–188). Herrsching am
Ammersee, Germany.

Norman, D. A. (1988). The design of everyday things. New York: Doubleday.
Oney, S., Myers, B.A., Brandt, J. (2012, October 7–10). ConstraintJS: programming interactive

behaviors for the web by integrating constraints and states. In UIST’2012: ACM Symposium
on User Interface Software and Technology (pp. 229–238). Cambridge, MA.

Oney, S., Myers, B.A., Brandt, J. (2014, October 5–8). InterState: a language and environment
for expressing interface behavior. In ACM Symposium on User Interface Software and
Technology, UIST’14 (pp. 263–272). Honolulu, Hawaii.

O’Toole, J. (2014, February 28). Mobile apps overtake PC Internet usage in U.S. CNN Money.
http://money.cnn.com/2014/02/28/technology/mobile/mobile-apps-internet/.

Ozenc, K., Kim, M., Zimmerman, J., Oney, S., Myers, B. (2010, April 10–15). How to support
designers in getting hold of the immaterial material of software. In CHI’2010: Human
Factors in Computing Systems (pp. 2513–2522). Atlanta, GA.

Pane, J. F., & Myers, B. A. (2006). More natural programming languages and environments.
H. Lieberman, F. Paterno, V. Wulf (Eds.). End-User development (pp. 31–50). Dordrecht: Springer.

211 Making End User Development More Natural

https://www.wired.com/2016/04/videogames-ai-learning/
http://money.cnn.com/2014/02/28/technology/mobile/mobile-apps-internet/


Park, S., Myers, B., Ko, A. (2008, September 15–18). Designers’ natural descriptions of interac-
tive behaviors. In 2008 IEEE Symposium on Visual Languages and Human-Centric
Computing, VL/HCC’08 (pp. 185–188). Herrsching am Ammersee, Germany.

Patel, K. D. (2013). Lowering the barrier to applying machine learning. Seattle, WA: University
of Washington. PhD Dissertation.

Scaffidi, C., Myers, B., Shaw, M. (2008, May 10–18). Topes: reusable abstractions for validating
data. In ICSE’08: International Conference on Software Engineering (pp. 1–10). Leipzig,
Germany.

Sheil, B. (1983, February). Environments for exploratory programming. In Datamation.
Reprinted in in “Papers on Interlisp-D,” Sheil, B.A. and Masinter, L.M., eds., Xerox PARC
Tech Report CIS-5.

Smith, A. (2015, April 1). U.S. smartphone use in 2015. Pew Research Center. http://www.
pewinternet.org/2015/04/01/us-smartphone-use-in-2015/.

Sun, M., Chen, Y.N., Rudnicky, A.I. (2016, March 10). Learning user intentions spanning multi-
ple domains. In Proceedings of IUI 2016 Workshop on Interacting with Smart Objects
(SmartObjects 2016). Sonoma, California.

Yang, H., Pupons-Wickham, D., Chiticariu, L., Li, Y., Nguyen, B., Carreno-Fuentes, A. (2013).
I can do text analytics!: designing development tools for novice developers. In CHI’2013:
Human Factors in Computing Systems (pp. 1599–1608). Paris, France.

Yoon, Y.S., Koo, S., Myers, B.A. (2013, September 15–19). Visualization of fine-grained code
change history. In IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC’13) (pp. 119–126). San Jose, CA.

Yoon, Y.S., & Myers, B.A. (2012, June 2). An exploratory study of backtracking strategies used
by developers. In Cooperative and Human Aspects of Software Engineering (CHASE’2012),
An ICSE 2012 Workshop (pp. 138–144). Zurich, Switzerland.

Yoon, Y.S., & Myers, B.A. (2014, 28 July–1 August). A longitudinal study of programmers’
backtracking. In IEEE Symposium on Visual Languages and Human-Centric Computing (VL/
HCC’14) (pp. 101–108). Melbourne, Australia.

Yoon, Y.S., & Myers, B.A. (2015, May 16–24). Supporting selective undo in a code editor. In
37th International Conference on Software Engineering, ICSE 2015 (vol. 1; pp. 223–233).
Florence, Italy.

Zang, N., Rosson, M.B., Nasser, V. (2008). Mashups: who? what? why? In CHI’08 Extended
Abstracts on Human Factors in Computing Systems (pp. 3171–3176). New York, NY.

22 B.A. Myers et al.

http://www.pewinternet.org/2015/04/01/us-smartphone-use-in-2015/
http://www.pewinternet.org/2015/04/01/us-smartphone-use-in-2015/

