
Arboretum and Arbility: Improving Web Accessibility
Through a Shared Browsing Architecture

Steve Oney1,2, Alan Lundgard2, Rebecca Krosnick2, Michael Nebeling1,2, Walter S. Lasecki2,1

1School of Information, University of Michigan
2Computer Science & Engineering, University of Michigan

{soney, arlu, rkros, nebeling, wlasecki}@umich.edu

ABSTRACT
Many web pages developed today require navigation by vi-
sual interaction—seeing, hovering, pointing, clicking, and
dragging with the mouse over dynamic page content. These
forms of interaction are increasingly popular as developer
trends have moved from static, linearly structured pages to
dynamic, interactive pages. However, they are also often in-
accessible to blind web users who tend to rely on keyboard-
based screen readers to navigate the web. Despite exist-
ing web accessibility standards, engineering web pages to be
equally accessible via both keyboard and visuomotor mouse-
based interactions is often not a priority for developers. Im-
proving access to this kind of visual, interactive web content
has been a long-standing goal of HCI researchers, but the ob-
stacles have exceeded the many proposed solutions: promot-
ing developer best practices, automatically generating acces-
sible versions of existing web pages, and sighted-guides, such
as screen and cursor-sharing, which tend to diminish the end
user’s agency and privacy. In this paper, we present a collabo-
rative approach to helping blind web users overcome inacces-
sible parts of existing web pages. We introduce Arboretum,
a new architecture that enables any web user to seamlessly
hand off controlled parts of their browsing session to remote
users, while maintaining control over the interface via a “pro-
pose and accept/reject” mechanism. We illustrate the beneft
of Arboretum by using it to implement Arbility, a browser that
allows blind users to hand off targeted visual interaction tasks
to remote crowd workers without forfeiting agency. We eval-
uate the entire system in a study with nine blind web users,
showing that Arbility allows blind users to access web content
that was previously inaccessible via a screen reader alone.

Author Keywords
Accessibility; Web Accessibility; Non-visual Access; Blind;
Web Interfaces; Remote Collaboration; Crowdsourcing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full cita-
tion on the frst page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specifc permission
and/or a fee. Request permissions from permissions@acm.org.

UIST 2018, October 14–17, 2018, Berlin, Germany

© 2018 ACM. ISBN 978-1-4503-5948-1/18/10. . . $15.00

DOI: http://dx.doi.org/10.1145/3242587.3242649

ARBILITY

mirrored interfacechat browser

proposed input event

page state

event accepted

updated
page state

blind
end user

sighted
crowd worker

Figure 1. Arbility allows blind end users to interact with web page
elements that are otherwise inaccessible via a screen reader. Here a
blind end user would like to place a food order a day in advance, but
the restaurant’s calendar web page is not accessible because it requires
interacting with elements that are not keyboard-focusable and the inter-
action is listening for a mousedown event (rather than click), which
not every screen reader application fres. Arbility allows the end user to
hand off this targeted visual interaction task to a sighted crowd worker
via the chat panel. The crowd worker interacts with the calendar page to
select the end user’s desired order date, and Arbility sends the worker’s
proposed action to the end user, who optionally accepts or rejects it.
Throughout the task, the crowd worker interacts with a mirrored ver-
sion of the end user’s web page.

INTRODUCTION
The World Wide Web (web) is a crucial resource for connect-
ing people with services, information, and other people. For
more than 39 million [52] blind people worldwide, however,
many parts of the web are off-limits [15]. Most blind web
users rely on keyboard navigation and screen readers, which
convert textual web content into an accessible format (typi-
cally speech or Braille) [18]. However, many websites are
designed for visual interaction; performing a task requires
seeing, clicking, or dragging over dynamic visual content.
Seemingly innocuous design decisions, like conveying infor-
mation visually (e.g., color coding), not including Accessible
Rich Internet Application (ARIA) labels, and requiring certain
types of mouse-based interaction, can make sites diffcult or
even impossible for blind people to use [15, 44].

Engineering for accessibility is challenging, and improving
access to web content for blind users is a long-standing prob-

http://dx.doi.org/10.1145/3242587.3242649
mailto:permissions@acm.org
mailto:wlasecki}@umich.edu

lem in HCI. Researchers have proposed automated techniques
to help guide blind users, such as enabling Natural Language
(NL) control of browsing tasks [3] or automatically generating
text labels [32]. However, accessibility issues are too varied
to be fully solved by automated tools [15]. Similarly, sys-
tems that rely on user-created macros require them to be made
in advance, limiting their usefulness for new or personalized
tasks [14, 45]. The most reliable way to overcome accessi-
bility barriers is with help from a sighted user for targeted
portions of the task, but in-person help from sighted friends
or coworkers is neither always available nor desirable.

Seeking assistance from sighted users for such targeted web
tasks would normally be squarely in the realm of crowdsourc-
ing [59] and hybrid-intelligence [9, 40] tools, which have
both addressed similar accessibility problems [12, 20, 42,
65]. However, crowdsourcing is currently not feasible for
web tasks because it is diffcult to share browsing state and
safely give controlled access to remote crowd workers. For
example, sharing a link by copying and pasting does not cap-
ture the page state or personalized pages (such as tasks that
involve logging in at some stage), while remote access tools
like VNC require giving “all or nothing” screen or cursor con-
trol to the remote user.

In order to make controlled, stateful sharing possible, we
introduce Arboretum, a new shared web architecture that
makes it possible to seamlessly hand off controlled access to
nearly any web browsing session and state. This would, for
example, allow blind users to share their browsing context
with a remote sighted user to ask a question about a visual
element. Many accessibility barriers involve performing vi-
siomotor tasks on the problematic page. For example, some
information on a page might only be revealed after the end
user moves their mouse over an element.

Toward this end, we also introduce Arbility, a web browser
that builds on Arboretum to allow blind users to hand off tar-
geted visual interaction tasks (tasks that involve seeing or spa-
tial interaction) to crowd workers. When remote crowd work-
ers join an Arbility browsing session, they can see the end
user’s exact context and can communicate with them in natu-
ral language through a chat interface. Arbility allows crowd
workers to “propose” actions to the end user by demonstrat-
ing them, as Figure 1 illustrates. For example, a crowd worker
can propose to mouseover a menu element by simply mov-
ing their mouse over the element on the mirrored page. End
users can also request ARIA labels from crowd workers for
particular elements. Further, by storing past accepted actions,
Arbility allows end users to re-use the page labels and actions
proposed by crowd workers the next time they visit that page.

We make the following contributions with this work:

1. Arboretum, a shared web browser architecture for cre-
ating applications that can seamlessly hand off browsing
state to remote users.

2. Arbility, a web browser that uses the Arboretum architec-
ture to allow blind end users to request help from crowd
workers for targeted visual interaction tasks. Arbility con-
tains several novel features to enable effective communica-

tion between the blind end user and remote crowd workers.
These features include allowing crowd workers to propose
page actions, the ability to reference page content in chat
messages from crowd workers, a feature that allows crowd
workers to label unlabeled page elements, and allowing
blind end users to re-use labels and actions generated by
crowd workers.

3. An evaluation with nine blind participants on three inac-
cessible web pages showing that Arbility enables them to
leverage crowdsourcing to perform tasks on these pages
that would have otherwise been diffcult, if not impossi-
ble. This evaluation also shed light on important design
challenges for future work to address — most notably in
dealing with privacy concerns.

We distinguish between the Arboretum architecture and the
Arbility tool because Arboretum has many potential applica-
tions outside of accessibility, as we will describe. Arboretum
opens up many exciting opportunities for applying crowd-
sourcing techniques to web tasks. Arboretum is publicly
available as an extensible open source platform1.

RELATED WORK
Arbility and Arboretum build on research from three vibrant
areas: multi-user/multi-device web browsing, end-user web
scripting and automation, and crowdsourced control of in-
terfaces, with application to web accessibility for blind and
low-vision end users.

Multi-User/Multi-Device Web Browsing
Early work by Greenberg and Roseman [24] explored ways of
extending web browsers with groupware features to support
co-browsing based on synchronized document views and tele-
pointers. Researchers have also studied specifc co-browsing
interfaces for common web activities, including web search
in both co-located [4] and remote [49] settings. A com-
mon approach is to implement “master-slave” functionality
in which all interactions of one user who controls a ses-
sion are mirrored for other users who are forced to follow
along. Surfy [63] is a modern implementation of this in
the form of a co-browsing web service combined with a dis-
cussion interface. Heinrich et al. also showed how elements
of generic single-user web pages can be automatically con-
verted to shared applications [28], with a focus on making
editable text boxes sharable. Another common approach is
to allow users to use a divide-and-conquer strategy by split-
ting up web pages and focusing their work on parts of the
collaborative web activity. WebSplitter [26] was an early sys-
tem that could split a web page among multiple users and de-
vices. Research has then extensively studied sequential and
parallel web browsing on multiple devices via multibrowsing
support [33] and migratory interfaces [8] that allow users to
easily switch and transfer (parts of) web tasks between de-
vices. Apple’s Continuity features, such as Handoff [6], are
modern implementations of this on Mac OS and iOS devices.
More recent systems such as MultiMasher [30] and Web-
strates [36] provide architectural support and visual tools for
“mashing up” and re-authoring existing web applications for
1https://github.com/soney/arboretum

https://github.com/soney/arboretum

a wide variety of multi-user/multi-device shared web brows-
ing scenarios. Finally, Subspace [61], PolyChrome [7], XD-
Browser [50], and others [54, 51] can distribute web pages
between devices while keeping the view and input states syn-
chronized between multiple browser nodes. However, previ-
ous work does not enable controlled hand-offs of third-party
content, as Arboretum does.

Synchronous interaction can greatly improve user satisfac-
tion during customer service interactions as well. As For-
rester fnds in a 2011 study [34], “Live-assist communica-
tion channels (phone, chat, cobrowse) have much higher
satisfaction ratings than asynchronous electronic channels
(email, web self-service).” They found satisfaction rat-
ings of: “phone (74%), chat (69%), cobrowse (78%),
email (54%), and web self-service (47%).” Their high-
est satisfaction ratings were seen with “cobrowsing” (e.g.,
https://www.olark.com/help/cobrowsing), which is conceptu-
ally similar to our approach, but highly specialized to individ-
ual web sites, requiring that web developers use proprietary
frameworks in their implementation. In contrast, Arboretum
works on any website without any special accommodations
from site developers. Users simply access the web using Ar-
boretum as they would through their regular web browser.

Web Accessibility Standards and Solutions
People with disabilities, such as motor or visual impairments,
face signifcant diffculties accessing the web when compared
to most other users because of the web’s reliance on visual
layout and small interaction targets (e.g., in-text URLs and
drop-down menus). Existing access technology does not pro-
vide an equivalent web browsing experience. Screen read-
ers convert textual content to speech for visually impaired
users [11], but are tedious to use because users are often-
times forced to traverse the Document Object Model (DOM)
linearly, one element at a time. Blind end users might use nav-
igational shortcuts (such as locating content on a web page
using Ctrl+F or quickly scrolling through the heading levels
of the DOM), but such strategies must be variously deployed,
since no single strategy has any guarantee of success.

Given the diversity of web development paradigms and the
Web 2.0 trend toward dynamic and interactive content, a web-
site’s DOM is by no means structured to be parsed linearly
by end users. In response to these trends toward visually
dynamic—and hence, inaccessible—content, the World Wide
Web Consortium (W3C) has developed and encouraged the
use of standards for an accessible web, known as Web Con-
tent Accessibility Guidelines (WCAG), as well as standards for
making rich, dynamic page content more easily parsed by a
screen reader, ARIA. However, these guidelines have yet to
be adopted as standard practice among many developer com-
munities, and they are not retroactively applicable to websites
that no longer have active developers, such as those of local
stores, restaurants, or community centers [19].

Furthermore, even if a website does comply with WCAG stan-
dards, it is not guaranteed to deliver a satisfying user expe-
rience, and may still contain obstacles if certain expected in-
formation is missing [2]. In such cases, it may not be clear to
end users whether they should try searching linearly through

the entire page, or look for the information on a different
page. Recently, Bigham, et al. have called this the prob-
lem of “Not Knowing What You Don’t Know” for blind web
users [15]. Essentially, not knowing if a particular piece of
information is inaccessible via a screen reader, merely chal-
lenging to access, or not present on the page at all can lead
to time draining searches through the DOM. Perhaps most
prominently, Bigham, et al. have proposed a variety of solu-
tions to the problem of web accessibility for blind end users,
including a scripting frameworks for developers and users
to collaborating improve accessibility [10, 14], real-time on-
demand captions of images by remote crowd workers [13, 12,
66, 41], and screen readers designed to be accessible on-the-
go [25, 16]. These solutions target important accessibility
problems—lack of developer expertise in building accessible
websites, lack of ways to get around barriers caused by visual
information, and lack of access to keyboard-navigable screen
readers—and inform our design goals for Arbility.

Crowdsourced User Interface Control
Arbility expands on previous research investigating the use of
crowds to control existing user interfaces, often as solutions
to accessibility challenges currently beyond the state-of-the-
art of automated methods. Using a remote desktop access
tool like VNC provides full access to and control of the target
machine, meaning that it requires having access to a fully-
trusted party as the remote user — a signifcant limiting factor
in the availability of any such system.

Legion [40] mitigates this problem by fltering out potentially
bad actors by requiring consensus between multiple crowd
workers who click to control an interface. Legion makes
aggregated control possible, but only captures mouse clicks
and key presses, which limits the kinds of actions that crowd
workers can take. For example, it is not possible to propose
mouseover events or to scroll to a different part of the page.
By letting the end user be the leader, Legion was success-
fully used for Programming by Demonstration (PBD) appli-
cations creating macros for Google spreadsheets and creating
mash-ups and controlling existing desktop applications with
the crowd. Further, it is not possible to replay crowd work-
ers’ previous interactions using only pixel/coordinate infor-
mation without any semantic information, unless subsequent
browsing sessions have the exact same page state and window
confguration (location and dimensions, scroll position, etc.).

Salisbury et al. [60] and Loparev et al. [47] explored alterna-
tive real-time mediation strategies for integrating the input of
multiple crowd workers on a control task. Researchers have
experimented with asking crowd workers to recognize inter-
action patterns from the users’ completion of a range of dif-
ferent web browsing tasks [39]. Arbility builds on this re-
search by enabling the hand-off of web browsing tasks so
workers can complete these tasks on the end user’s behalf.

Web Automation and Scripting
Arbility includes a PBD component that records and can re-
play actions that remote crowd workers take. Arbility is
one of several PBD web activity recording and automation
tools, such as WebVCR [5], ActionShot [46], PLOW [3],

https://www.olark.com/help/cobrowsing

and CoCo [43]. Extensive reviews of existing PBD systems
can be found in [21, 58]. There are also several non-PBD
web automation tools. Chickenfoot [17] allows users to
script browser automation using a high-level programming
language. Smart Bookmarks [29] can be generated that are
essentially replay scripts of web browsing sessions to restore
an entire bookmarked session state. Inky [48] allows users to
interact with the web via a relaxed command-line interface.
However, prior web automation systems require that macros
be created (either through programming or by demonstration)
before the end user can perform the task, meaning they cannot
be used when users encounter new accessibility barriers.

SYSTEM DESIGN & FEATURES
We divide our discussion of Arbility into two sections: our
design goals and the resulting design.

Design Goals
The design of Arbility was infuenced by prior studies on the
types of challenges that blind web users face, a set of guiding
principles grounded in user-centered design, and feedback
from pilot studies.

Challenges Blind Users Face when Using the Web
Researchers have studied and categorized the types of ac-
cessibility barriers that blind users face on inaccessible web
sites [56, 18, 57, 15]. Broadly, there are three primary types
of accessibility barriers that we designed Arbility to address:

• Barriers caused by visual information. Many websites
lack ARIA labels, convey information in images, or embed
information in visual style. These types of mistakes can
occur even on websites that are otherwise usable and ac-
cessible [56]. For example, a restaurant might use red text
to identify spicy items on their menu, [15] or a program
guide for an HCI conference might use background images
to indicate best paper awards. Both conventions are invisi-
ble to screen readers.

• Known unknowns. Blind web users who are unable to
fnd a given piece of content on a page cannot be sure if
they are unable to fnd it because the page is inaccessible,
or because the content does not exist on the page [15]. This
applies even to sites that are completely accessible, as there
is no way for users to be certain they have complete infor-
mation, short of navigating the page’s source code.

• Lacking keyboard navigability. Blind users typically rely
on keyboard navigation to interact with a page. However,
some pages might not be keyboard navigable for three pri-
mary reasons. Some sites require mouse interaction be-
cause they were programmed to listen to mouse events
(press, release, move, etc.) Other sites (including the latest
versions of the UIST and CHI program guides) might require
interaction on elements that are not typically keyboard-
selectable or clickable, such as a generic <div/> or head-
ing, respectively. Alternatively, a site might lack keyboard
navigability because the information is not structured in a
way that is easy to digest (e.g., misleading tab ordering) or
from web developers confusing structure with content.

Arbility helps users overcome all three types of barriers.

Guiding Principles
Broadly speaking, the goal of access technology is to increase
its users’ independence and agency. Blind users generally
place a high value on autonomy [1]. Thus, the frst guiding
principle of Arbility was to ensure that the end user retains
control of their browsing session even as remote crowd work-
ers provide assistance. Interactions with Arbility should re-
fect the fact that the blind end user is the task expert, whose
goal is to guide remote helpers through a rote task.

We also wanted to try to ensure that end users could trust the
actions proposed by remote users. As we will discuss in the
future work section, we treat trust as a different design goal
than ensuring privacy, which is a feature that Arbility leaves
to future work. This means that when an end user receives
a proposed action from a crowd worker, they can trust that it
will not be nefarious. We address the issue of trust by allow-
ing end users to examine crowd workers’ proposed actions —
being able to see what elements they affect and how.

Finally, we wanted Arboretum to ft users’ existing workfows
— to allow them use their preferred screen reader and nav-
igation methods. We designed Arboretum to allow users to
interact with it like any other browser, except that they can
also easily toggle a shared browsing session as needed.

Guidance from Pilot Studies
In addition to the above considerations, there were several
practical interface design guidelines from pilots of Arbility
with a blind web user. These pilots helped ensure that Arbility
itself is accessible and usable.

Arbility and Arboretum Features
The resulting design of Arbility is illustrated in Figure 1. Ar-
bility consists of two windows: a browser window and an
administrative panel. The browser window mostly behaves
like a standard web browser. End users interact with web
content as normal, through a third-party screen reader like
JAWS, NVDA, or VoiceOver. When the end user wants to
seek help from crowd workers, they use the administrative
panel, where they can toggle web session sharing, communi-
cate with crowd workers, remove specifc workers from the
shared browsing session, or mark a task as completed.

Arbility also embeds a web server as part of the browser. This
server serves a page that mirrors the DOM state of the end
user’s browser, without sharing the underlying code. When
remote users visit the served page, it appears to be exactly
the same as the page the end user is using, augmented with a
chat window panel, where they can interact with the end user.
This page mirroring is done through Arboretum, which we
will describe in more detail below.

Mirroring Web Pages with Arboretum
Everything that is rendered by a web browser (what end users
interact with and see) is specifed by the page’s Document
Object Model (DOM), a tree structure where every node is an
element on the page. Developers write web pages by writ-
ing code that creates and manipulates the DOM, using the
three fundamental web languages. The HyperText Markup
Language (HTML) specifes the initial content and structure

http:nefarious.We

of the page’s DOM. Cascading Style Sheets (CSS) control the
visual appearance of the DOM, such as colors and positions.
JavaScript defnes the page’s behavior by specifying how the
DOM should change in reaction to user input and other events.

When a page is shared with a remote user through Arboretum,
the page’s DOM and appearance are shared2. Unlike the naïve
approach of sending a link to remote helpers, sharing the cur-
rent page’s DOM allows browsing sessions to be shared even
if they involve password-protected pages. Another naïve ap-
proach to page sharing would be to share the page’s source
(HTML, CSS, and JavaScript). However, this would lead to
diverging DOM states as the end user and remote helper per-
form different actions on the page. Instead, Arboretum strips
the page’s JavaScript code and propagates DOM changes to
remote clients dynamically.

However, in testing Arboretum with external websites, we
found that simply sharing the DOM with the JavaScript
stripped from it can lead to access issues with some types
of external resources, such as images or style sheets, at the
original web server’s discretion. Thus, in addition to sharing
the DOM, Arboretum also re-routes references to external re-
sources so that they are served directly from the Arboretum
server. This ensures that remote workers will be able to see
the same content as the end user.

Finally, in order to allow remote users to interact with the
page content and with the end user, Arboretum’s web server
attaches extra snippets of JavaScript to the pages that it serves
up. These extra snippets of JavaScript: 1) add a chat widget to
the side of the served webpage that lets workers interact with
the end user, 2) modify the remote worker’s DOM to always
refect the DOM content of the end user, and 3) capture the
remote worker’s input events and send them back to the end
user’s browser, where they can decide how to act on them.

In sum, Arboretum creates a “mirror” DOM tree that is mod-
ifed to strip out JavaScript that would keep its DOM out of
sync with the end user’s, adds code to allow remote work-
ers to communicate back with end users, keeps the DOM of
remote users and the end user in sync, and re-routes any ex-
ternal resources to ensure the remote workers see the same
content as end users.

Chatting with Remote Crowd Workers
In order to allow end users to effectively convey their goals
to remote crowd workers, Arbility includes a text-based chat
channel connecting the end user and remote crowd workers.
This chat channel remains open throughout the shared brows-
ing session, which makes it easy for crowd workers to ask
clarifcation questions for poorly worded requests. Whenever
crowd workers post a new message or join the channel (after
choosing a username), Arbility uses audio notifcations to no-
tify the end user. End users can also remove crowd workers
from the browsing session (by typing /boot <user>) or
mark a task as successfully completed (/done).
2This explanation is slightly simplifed — Arboretum can also share
important variables that are not technically part of the DOM, such
as the value of an <input/> element or the visual contents of a
<canvas/> element.

Figure 2. When a remote client worker proposes a page action, a de-
scription of that action is sent to the end user for approval. The end user
can perform one of four actions: 1) accept the action, which will perform
it on their browser; 2) reject the action; 3) focus which will direct their
keyboard focus and screen reader to the target element; or 4) request
a label, which will ask a crowd worker to replace the ARIA label of the
target element.

Proposing Page Actions
For information seeking tasks, such as asking a question
about the content of an image or whether the page contains a
piece of information, the Arbility chat feature combined with
Arboretum’s session sharing is suffcient for end users to ask
and answer questions. However, many kinds of tasks also
require users to interact with page elements (e.g., when in-
formation is hidden behind collapsible panels or only appears
when the cursor is hovering on a page element. Thus, Arbil-
ity allows remote users to propose actions for the end user to
perform. These actions can include any user interaction (e.g.,
mouseover, touchstart, etc.).

Retaining Control and Trust for End Users
One of the design goals of Arbility is to give the end user ul-
timate control over their browser. Thus, rather than allowing
crowd workers to directly interact with the end user’s page,
any action that a crowd worker proposes must be approved
by the end user, as Figure 2 shows. If the end user approves
that action, then Arbility emulates the action proposed by the
crowd worker on the end user’s browser.

In order to allow the end user to make an informed decision
about whether they should accept a proposed action, Arbil-
ity automatically generates a textual description of the pro-
posed action. This description includes the type of event (e.g.,
mousedown, mouseover, etc.), the event target, and any
other relevant information. In order to describe the event tar-
get, Arbility uses (in order of precedence): ARIA labels, text
content, or tag names. If the end user needs more information
about a given element, they can also quickly give the target
element keyboard focus in their screen reader via a “focus”
shortcut in the chat interface or request a label from remote
workers. All of these features are designed to allow the end
user to trust that any actions they approve will not have any
unintended consequences.

Minimizing the Learning Curve for Crowd Workers
In order to minimize the learning curve for crowd workers,
we designed Arbility to allow them to propose page actions
in as natural a way as possible — by interacting directly with
the mirrored page. Thus, when a crowd worker clicks a but-
ton or moves their mouse over a relevant element, Arbility
automatically sends an action proposal to the end user.

However, if implemented naïvely, when a crowd worker
clicked a button on the page, this feature would fre a se-
ries of mousemove and mouseover events (as the worker

moves their mouse to the target element) and mousedown,
mouseup, and click events as the worker is clicking the
element. Assuming the end user only cared about the click
event, there would be many false positives and erroneous in-
termediate events. To address this issue, Arbility only pro-
poses events for elements and events that are associated with
at least one JavaScript event listener. Workers do not need
to understand different event types; when they demonstrate
an action on the page, Arbility’s event hooks only listen for
events that have associated callbacks. Although this does not
fully solve the issue of false positives (web pages might have
erroneous event listeners or listeners that could be triggered
when the remote user intended to perform another action),
it does mitigate it greatly. Remote crowd workers can also
delete actions that they did not intend to propose.

Storing and Recalling Previous Actions
After a shared browsing session is complete, Arbility stores
the actions that were approved. The next time that user loads
the same page, Arbility will offer to repeat these actions on
the newly loaded page. As the implementation section below
discusses, these new events are re-aligned to be robust with
respect to page changes. A list of suggested commands is
displayed above the chat panel, as Figure 4.4 shows.

IMPLEMENTATION
Arbility is built as an Electron [31] application that builds
on Arboretum, a Node.JS [22] application. Both systems are
implemented with the TypeScript programming language and
ReactJS (in the case of Arboretum, the ReactJS code imple-
ments in the worker-side pages).

As Figure 3 illustrates, Arbility has two components:

• 3A: A chat interface for interacting with crowd workers

• 3B: a chromium browser that the end user interacts with
through their preferred screen reader.

Arbility interfaces with Arboretum, which itself has two sep-
arate components:

• 3C: A Web Server that serves a dynamic page for remote
crowd workers. The page is a transformed version of the
contents of the end user’s Chromium browser.

• 3D: A DOM state tracker that interacts with the Arbility
Chromium browser through the DevTools Protocol to track
and update the DOM state and updates, pull any necessary
external resources, and simulate input events from remote
workers. This component handles many complexities of
document mirroring, including dealing with nested frames,
retargeting resources, removing JavaScript, and more.

Communicating via the DevTools Protocol
Arboretum uses the Chrome DevTools Protocol [23] (for-
merly known as the Remote Debugger Protocol). This pro-
tocol gives Arboretum access to the internal state of every
DOM element on the end user’s browser. Because it uses the
DevTools protocol, Arboretum is robust with respect to in-
ternal browser changes and can work with any browser that
implements this protocol.

Arbility also uses the DevTools protocol to determine which
parts of a page listen to user input events (which in turn de-
termines whether an action from a remote user is ignored
or should propose an action on the end user’s page). When
the end user “accepts” an action proposed by a remote crowd
worker, Arboretum emulates that event on the end user’s ma-
chine by injecting the end user’s page with code that simulates
the event on their client.

Synchronizing Distributed Clients
Arboretum uses WebSockets to communicate between the
end user and remote clients. These WebSockets communi-
cate both chat messages and DOM state changes dynamically.
Arboretum also uses ShareDB [62] to synchronize the DOM
between the end user and remote crowd workers.

Remembering and Retargeting Prior Page Actions
Whenever an end user accepts a proposed action from a crowd
worker, Arbility stores the details of that action (the event
type, target, and other necessary details) and a snapshot of the
DOM tree when that action was performed in a JSON fle on the
end user’s browser. However, pages change over time, which
can invalidate the stored actions if implemented naïvely.

For example, suppose the end user visits a page that has the
following DOM tree, which is shortened and labeled for the
sake of simplicity:

A

B C

D E

and the remote crowd worker proposes an action on node B.
The next time that user visits the same page, the DOM tree has
been modifed and now has the following DOM tree:

A

B C

X

Y

Arbility—which does not have the beneft of clear labels like
those in these diagrams and must work with DOM trees that
are signifcantly larger—must then determine what node is
equivalent to node B in this new DOM tree. In order to do so,
it frst fattens both trees using a depth frst traversal.

It then computes a “similarity” score between pairs of DOM
nodes in the different trees. In our current implementation,
nodes that have the same tag name are considered the most
similar (+100 in the similarity score). Nodes with similar
DOM attribute names and values are also scored highly (+7
per matching name/value pair and −7 for every non-matching
name/value pair). Arbility then uses the Needleman-Wunsch
sequence alignment algorithm (most frequently used to match
DNA sequences) to determine the best mapping between DOM
nodes in the new and old trees, with a gap penalty of −2.

ARBORETUM

ARBILITY

remote
debugger

chromium browser

 <…>
 <…/>
 </…>
DOM & resource

mirrorweb server

resources

chat interface

DOM state
chat messages

messages

sighted
crowd workers

blind
end user

DOM
transformers

DOM clone
proposed input events

resources

BA

C D

proposed
input events

<…>
 <…/>
</…>

<…>
 <…/>
</…>

accepted
input events

interaction via
screen reader

messages

DOM clone
proposed input events
messages

Figure 3. A system diagram of Arbility, Arboretum, and their interactions. Arbility bundles a chat interface (A) and web browser (B). Arboretum
includes a web server (C) and module for mirroring pages for remote users (D). The end user can interact with the browser as normal or by accepting
input events that are proposed by remote crowd workers. The end user can also discuss task specifcs with remote workers through the chat interface.

We tuned these constants based on preliminary experiments
using Arbility on several frequently-changing webpages. For
the two trees described earlier, assuming that nodes that are
in both trees (A, B, and C) have high similarity scores, we
would end up with the following alignment:

A B CD

A B X CY

E

We chose to use sequence matching, rather than a global sim-
ilarity computation, to ensure that the DOM structure and the
order is accounted for in the matching process.

EVALUATION
In order to test Arboretum’s ability to seamlessly share web
page content and interactions between end users and groups
of remote workers, and to test the usability and beneft of Ar-
bility for blind participants, we performed a laboratory evalu-
ation with 9 blind participants consisting of 3 interactive web
tasks followed by a post-study survey.

Participants
We recruited 10 blind participants by posting on Twit-
ter and through mutual connections in the blind commu-
nity. We omitted one participant who—unbeknownst to the
study coordinator—completed the user study on their mobile
phone. Because both Arbility and our study were designed

for desktop browsers, this participant faced navigational chal-
lenges that other participants did not—specifcally, the partic-
ipant accidentally closed a relevant tab during the task. How-
ever, this participant did successfully complete all of the study
tasks using Arbility through their phone.

Of the remaining 9 participants, 8 of them had 16 or more
years of experience using a screen reader. Participants were
compensated $35.00 for an hour-long remote study. This rate
of pay is commensurate with participants’ specialized skill in
using a screen reader, a necessary and hard-to-fulfll prereq-
uisite for our study. Additionally, we recruited crowd work-
ers from Amazon Mechanical Turk (MTurk). Crowd workers
were required to have a 95% approval rate and be located in
the United States. We recruited these workers using the re-
tainer model [9, 12] via LegionTools [38]. The retainer model
automatically posts tasks to MTurk as needed, and contin-
uously adjusts worker compensation based on demand (i.e.
if the retainer is empty then compensation will be higher, if
the retainer is full then compensation will be lower). Workers
were compensated 50–100 cents for a task taking 300 seconds
on average for an effective pay rate of $6–12 per hour.

Setup
Every instance of the study was conducted with remote par-
ticipants, each of whom interacted with a version of Arbility
that was slightly modifed to work within the browser. Using
a browser-based version of Arbility allowed our participants
to use the tool without needing to install it. All of the in-
teractions with this browser-based were the same as those in
the desktop version. The study asked the blind participants to

Task Web Page
(1) Calorie Counter

(2) Gary Turk Video

(3) Noodlehead Menu

Task Question
How many calories are needed to lose 1
pound?

Name the person who did sound
engineering for the video.

Name one $8 noodle dish that is
indicated as spicy.

Reason for Inaccessible Content
Uses inaccessible <canvas> elements to
display information.

Requires mousedown event whereas
screen readers simulate click events.

Spiciness is indicated by red text
styling only.

Figure 4. The web pages (1) Calorie Counter, (2) Gary Turk Video, and (3) Noodlehead Menu were selected from Bigham, et al. to provide a represen-
tative sample of inaccessible web content. Page interactions proposed by crowd workers, such as clicking the ‘Show More’ <div/> in (2), are recorded
and replay-able from the Arbility chat panel upon visiting the same page later on. This allows blind end users to overcome the same obstacles in the
future without having to call on crowd workers again, reducing cost and increasing indepdendence in the long term.

complete three information fnding tasks. Each task consisted
of a page with task instructions, a link to the Arbility shared
browser page, and a task question whose answer was located
on the shared browser page. To avoid biasing participants in
favor of using Arbility, the task instructions explicitly stated
that the answer might not be inaccessible (i.e., participants
did not know ahead of time if a given task posed an acces-
sibility challenge or not). The Arbility shared browser page
contained two panels: a chat panel for communicating with
remote workers and a content panel containing the original
content of the in-the-wild web page. From the task instruc-
tions page, participants were asked to click a link to launch
the shared web page in another browser tab.

Tasks
In order to choose a representative set of tasks, we frst asked
our pilot participants for examples of inaccessible page el-
ements they typically encountered. We found that the sites
they found to be most problematic included pages with con-
tent embedded in untagged images/canvases, encoded using
CSS styling, or hidden behind improperly formatted page ele-
ments. These types of problems were represented in the tasks
used by a study from Bigham et al. [15], so we chose a sub-
set of the tasks from that study that were deemed inacces-
sible by WCAG 2.0 standards. The specifc inaccessible el-
ements were (1) important information contained in images
lacking alternative text, (2) poorly constructed forms and but-
tons, and (3) conveying information through the visual styling
of text. The specifc pages corresponding to these inaccessi-
ble elements were (1) a Calorie Counter page, (2) a video
page for the musician Gary Turk, and (3) a menu page for the

Noodlehead restaurant (Figure 4). Blind participants were in-
structed to retrieve a specifc piece of information from each
web page (i.e., the answer to the task question). In all cases,
the requested information was inaccessible based on WCAG
2.0 standards (Figure 4), which meant that blind participants
would most likely need to collaborate with remote sighted
workers in order to retrieve the piece of information.

In running our study, we closely followed the methodology
of Bigham et al. [15]:

• Tasks were run remotely, allowing participants to use their
preferred screen reader and environment, which prior work
has considered more ecologically valid [11, 55].

• All widely-used screen readers (Jaws, NVDA, VoiceOver)
were represented in our group of recruited participants.

• Task instructions were identical to those in [15] except for
added instructions about requesting crowd assistance via
the Arbility shared browser page.

Collaboration
In order to retrieve the inaccessible information, blind end
users collaborated with sighted remote workers, primarily
through two interaction types: natural language text-based
chat and proposed page interactions (i.e., clicking, scrolling,
hovering on particular page elements). Interactions had to be
proposed by crowd workers via the chat panel and were op-
tionally accepted, rejected, or ignored by end users. For ex-
ample, in the Gary Turk Video task, the requested information
could only be retrieved by clicking an incorrectly specifed
DOM element that was listening for the mousedown event—
specifcally, a “Show More” <div/> element that was styled

Accuracy (%) Counter Video Menu
Blind (Solo) 0 63 14

Sighted (Solo) 100 90 86
Blind+Sighted (Arbility) 100 89 89

Average Time to Success (s) Counter Video Menu
Blind (Solo) n/a 108 133

Sighted (Solo) 62 93 82
Blind+Sighted (Arbility) 418 240 304

Figure 5. When blind users collaborate with sighted workers via Ar-
bility, their information fnding accuracy becomes comparable with that
of solo sighted workers (Upper Table). However, these accuracy gains
come at a cost in speed, taking on average 3–4 times as long as sighted
workers acting alone (Lower Table).

as if it were a <button/> element (Figure 4). Activating
this element would not usually require a click interaction
via the keyboard (but merely a keypress), and so execut-
ing a click may have been unintuitive when navigating via
a screen reader. However, since the element visually resem-
bled a button, clicking would have been an intuitive interac-
tion when navigating via visual-motor skills and the mouse.
Hence, crowd workers were able to propose the mousedown
event for blind end users to accept and retrieve the requested
piece of the information.

Results
In comparison with the baseline performance of solo blind
and sighted participants from Bigham, et al., blind partici-
pants who used Arbility were dramatically more accurate on
every task when compared with those who did not [15]. In
particular, Arbility allowed blind participants to come very
close to matching the performance of their sighted counter-
parts (Figure 5). This is most evident on the Calorie Counter
task, for which solo blind participants never reported the cor-
rect answer (0% accuracy), solo sighted participants always
reported the correct answer (100% accuracy), and blind par-
ticipants collaborating with sighted participants via Arbility
also always reported the correct answer (100% accuracy).
Effectively, Arbility removed the barriers to information ac-
cess by transferring web navigation capability from sighted
to blind users, at a cost of time and money. Although Arbil-
ity allows blind end users to successfully complete informa-
tion fnding and navigation tasks previously impossible via a
screen reader, this transference of web browsing capability—
from remote workers to end users—is by no means instan-
taneous. On average, blind participants using Arbility took
3–4 times longer than their sighted counterparts on the same
tasks (Figure 5), most likely because collaboration takes time.
Blind participants needed to give directions to crowd workers
via the chat panel, and to accept or reject any of their pro-
posed actions. However, if the information is valuable enough
to the end user, this cost could be worth paying, as it is in the
case of remote video assistance systems like Aira [20]. In the
next section, we report blind participants’ subjective assess-
ments of Arbility’s usability and discuss their recommenda-
tions for improvements.

FEEDBACK AND DISCUSSION
In a post-study survey, we asked participants to rate their
agreement with a set of statements based on the Technology
Acceptance Model (TAM). TAM is a popular information sys-
tems acceptance model intended to predict and explain why
end users end up adopting tools, based on two primary cri-
teria: ease of use and perceived usefulness [53, 27]. Partic-
ipants rate aspects of the tool’s usability on a scale of 1–7
where 1 is “strongly disagree” and 7 is “strongly agree”. In
addition to the TAM survey, we also asked participants to give
open-ended feedback about the positive and negative aspects
of Arbility. The following sections summarize the key quan-
titative and qualitative trends that emerged from these two
different forms of feedback.

Practical and Real-World Applicability
Responding to Arbility’s perceived usefulness (specifcally,
the statement: “Using a shared web browser could make it
easier to navigate the web”), participants expressed a mean
level of agreement of 5.67 (SD=0.87), indicating a positive
view of the tool’s practical applicability to real-world sce-
narios, which participants felt were well-represented by our
selection of tasks from [15]. Indeed, participants had the fol-
lowing to say:

“It offers a practical way to get sighted help, when that
help may not be available or desirable in person.” (P4)

“The problems posed in the tasks were very realistic. I
have either encountered similar issues on web pages, or
could easily imagine them happening. The assistants
were able to provide answers that the screen reading
software had no way to fnd.” (P5)

“It is great to get quick answers to questions that can’t
be answered on an inaccessible page. A lot of time could
be saved, and it could save me a lot of frustration.” (P6)

These comments touch on our guiding principles in develop-
ing Arbility: preserving independence and agency for blind
end users who may not want to request in-person assistance
from friends or family, overcoming frequently-occurring web
navigation obstacles, and saving blind end users time (in
comparison with the time required to request and receive in-
person assistance). Additionally, participants were enthusi-
astic enough about the idea to make suggestions for future
applications:

“This is a good idea, especially for use on-the-fy, pos-
sibly in travel or other business settings. . . Another way
I could see it being really useful is for people needing to
access government services that have been moved to an
online-only model but they don’t have the access and/or
skills. This could be a really cool part of any ‘assisted
digital’ model! Having a real person helping instead of
a chatbot would be a big draw!” (P3)

“Could this concept be expanded to things such as help
with flling out problematic forms, or perhaps Captchas
that don’t have an audio alternative?” (P7)

Protecting End User Privacy
In considering their behavioral intent to use a shared web
browsing tool like Arbility (specifcally, the statement: “I
would be a frequent user of a shared web browser”), par-
ticipants expressed a mean level of agreement of 3.89
(SD=1.17), indicating a slightly negative view of how fre-
quently they might need to—or want to—rely on such a tool.
This is somewhat contrary to their positive-leaning attitude
toward the idea of shared browsing (specifcally, “Web nav-
igation through shared browsing is a good idea”; µ=4.56,
SD=1.33) as well as the tool’s ease-of-use (specifcally, “I
fnd the shared web browser easy to use”; µ=4.89, SD=0.78).
Although positive-leaning, one common reason for hesitation
is that Arbility is not entirely privacy preserving. Of the 9
participants, 4 expressed reservations about the implications
for web browsing privacy:

“Privacy is a concern. Although the mechanism itself
ensures that no personal data is shared, the content of
the website may do so (as was the case with the calorie
counter).” (P4)

“I’m strange, but I feel under pressure when being ob-
served while someone waits helpfully. It isn’t a problem
for someone else to see many of sites that I browse, but
I fnd I tend to have the most trouble when I am on sites
that I would hesitate to share because of privacy con-
cerns.” (P6)

Deprioritizing Accessible Web Development
In considering the extent to which using a tool like Arbil-
ity aligns with their values (specifcally, the statement: “I
like the idea of shared web browsing based on the similar-
ity of my values and the societal values underlying its use”),
participants expressed a mean level of agreement of 4.67
(SD=1.58), suggesting some ambivalence about the society-
wide implications of the development and use of a shared
browser for overcoming accessibility obstacles. Of the 9 par-
ticipants, 3 expressed concerns that a shared web browsing
system like Arbility—if widely deployed—would discourage
or demotivate the development of web content that is acces-
sible from the start.

“Such a system, in general, would possibly allow de-
velopers to avoid making creating accessible content a
priority.” (P2)

“I think this type of system sends the wrong message to
the non-disabled web developer community. It suggests
that they don’t have to solve accessibility problems, be-
cause someone else will do it. The real solution is to put
more effort into accessible and inclusive design across
the web industry.” (P5)

In principle, the authors agree that it is preferable to develop
standards and best practices to guarantee that newly devel-
oped web content prioritizes accessibility. We do not propose
Arbility as a universal solution to the problem of web acces-
sibility, but rather as an ad-hoc solution to a problem that un-
deniably exists today. In the next section, we discuss some
of the future improvements and design challenges opened by
Arbility and Arboretum.

FUTURE WORK
Arbility and the underlying Arboretum architecture open up
many opportunities for future research, both inside and out-
side the domain of accessibility. Much of the feedback re-
ceived from blind participants during this study would be
equally applicable to sighted users of a shared browser tool,
especially with respect to privacy concerns and workfow in-
tegration and automation.

Addressing Privacy Concerns
The most common response from user study participants was
that they would like to see privacy concerns addressed to en-
sure that remote users would not be able to see sensitive in-
formation that might be on the page. While privacy was not
the focus of this iteration of Arbility, there are several non-
technical solutions that could work with Arbility’s existing
architecture: using an organized set of trusted crowd work-
ers specifcally for accessibility tasks, like Aira’s professional
agents [20] or encouraging users to share content with fam-
ily and friends in situations where they are concerned about
privacy. Privacy concerns are highly subjective, and it is un-
likely that 100% of privacy issues can be solved with tech-
nology alone, but we plan to explore how automated tech-
niques might alleviate privacy concerns, as has been explored
in other crowdsourcing applications [35, 64]. In particular,
we plan to explore ways to give end users fne-grained con-
trol over which elements remote users can and cannot see.

Better Automation via Hybrid Intelligence
Arboretum could also be used to create hybrid intelligence
workfows that coordinate actions between AI agents, crowd
workers, and end users when trying to complete a task. In this
model, crowd workers and the end users would fll in where
automated techniques fall short, allowing both maximum ro-
bustness while requiring minimum human effort [37].

CONCLUSION
In this paper, we introduced Arboretum, a novel shared web
browsing architecture for seamlessly transferring web brows-
ing tasks and Arbility, a web accessibility tool that allows
blind end users to hand off targeted visual interaction tasks
to remote crowd workers. Our evaluation of Arbility showed
that it allows blind users to perform web tasks that would have
otherwise been diffcult or impossible. This demonstrates Ar-
boretum as an open source platform capable of making fu-
ture progress on real-world problems via interactive, hybrid-
intelligent systems and general web automation.

ACKNOWLEDGEMENTS
The design of Arboretum and Arbility benefted greatly from
the valuable feedback provided by Emilie Gossiaux. Addi-
tionally, we thank Maximilian Speicher for his work on an
earlier iteration of this project, Stephanie O’Keefe for her
help in drafting this paper, the LightHouse for the Blind and
Visually Impaired for assisting with participant recruitment.
We also thank our participants (both the blind and low-vision
end users, and Mechanical Turk crowd workers) for their time
and feedback during our user studies. This work was sup-
ported in part by IBM and the University of Michigan.

REFERENCES
1. Tânia Medeiros Aciem and Marcos José da Silveira

Mazzotta. 2013. Personal and social autonomy of
visually impaired people who were assisted by
rehabilitation services. Revista Brasileira de
Oftalmologia 72, 4 (2013), 261–267.

2. Amaia Aizpurua, Myriam Arrue, and Markel Vigo.
2013. Uncovering the Role of Expectations on Perceived
Web Accessibility. In Proceedings of the 15th
International ACM SIGACCESS Conference on
Computers and Accessibility. ACM, 74:1–74:2.

3. James Allen, Nathanael Chambers, George Ferguson,
Lucian Galescu, Hyuckchul Jung, Mary Swift, and
William Taysom. 2007. Plow: A Collaborative Task
Learning Agent. In Proceedings of the National
Conference on Artifcial Intelligence, Vol. 2. Menlo
Park, CA; Cambridge, MA; London; AAAI Press; MIT
Press; 1999, 1514.

4. Saleema Amershi and Meredith Ringel Morris. 2008.
CoSearch: a system for co-located collaborative web
search. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. ACM,
1647–1656.

5. Vinod Anupam, Juliana Freire, Bharat Kumar, and
Daniel Lieuwen. 2000. Automating Web navigation with
the WebVCR. Computer Networks 33, 1 (2000),
503–517.

6. Apple, Inc. 2015. iOS Handoff Programming Guide.
(2015). https://developer.apple.com/library/ios/
documentation/UserExperience/Conceptual/
Handoff/HandoffFundamentals/
HandoffFundamentals.html Accessed: April 2018.

7. Sriram Karthik Badam and Niklas Elmqvist. 2014.
PolyChrome: A cross-device framework for
collaborative web visualization. In Proceedings of the
Ninth ACM International Conference on Interactive
Tabletops and Surfaces. ACM, 109–118.

8. Renata Bandelloni and Fabio Paternò. 2004. Flexible
interface migration. In Proceedings of the 9th
international conference on Intelligent user interfaces.
ACM, 148–155.

9. Michael S Bernstein, Joel Brandt, Robert C Miller, and
David R Karger. 2011. Crowds in two seconds:
Enabling realtime crowd-powered interfaces. In
Proceedings of the 24th annual ACM symposium on
User interface software and technology. ACM, 33–42.

10. Jeffrey P Bigham, Jeremy T Brudvik, and Bernie Zhang.
2010. Accessibility by demonstration: enabling end
users to guide developers to web accessibility solutions.
In Proceedings of the 12th international ACM
SIGACCESS conference on Computers and
accessibility. ACM, 35–42.

11. Jeffrey P Bigham, Anna C Cavender, Jeremy T Brudvik,
Jacob O Wobbrock, and Richard E Ladner. 2007.

WebinSitu: a comparative analysis of blind and sighted
browsing behavior. In Proceedings of the 9th
international ACM SIGACCESS conference on
Computers and accessibility. ACM, 51–58.

12. Jeffrey P. Bigham, Chandrika Jayant, Hanjie Ji, Greg
Little, Andrew Miller, Robert C. Miller, Robin Miller,
Aubrey Tatarowicz, Brandyn White, Samual White, and
Tom Yeh. 2010. VizWiz: Nearly Real-time Answers to
Visual Questions. In Proceedings of the 23rd Annual
ACM Symposium on User Interface Software and
Technology (UIST ’10). ACM, New York, NY, USA,
333–342. DOI:
http://dx.doi.org/10.1145/1866029.1866080

13. Jeffrey P. Bigham, Ryan S. Kaminsky, Richard E.
Ladner, Oscar M. Danielsson, and Gordon L. Hempton.
2006. WebInSight:: Making Web Images Accessible. In
Proceedings of the 8th International ACM SIGACCESS
Conference on Computers and Accessibility. ACM,
181–188.

14. Jeffrey P Bigham, Tessa Lau, and Jeffrey Nichols. 2010.
Trailblazer: enabling blind users to blaze trails through
the web. In No Code Required. Elsevier, 367–386.

15. Jeffrey P. Bigham, Irene Lin, and Saiph Savage. 2017.
The Effects of "Not Knowing What You Don’T Know"
on Web Accessibility for Blind Web Users. In
Proceedings of the 19th International ACM SIGACCESS
Conference on Computers and Accessibility (ASSETS
’17). ACM, New York, NY, USA, 101–109. DOI:
http://dx.doi.org/10.1145/3132525.3132533

16. Jeffrey P. Bigham, Craig M. Prince, and Richard E.
Ladner. 2008. WebAnywhere: A Screen Reader
On-the-go. In Proceedings of the 2008 International
Cross-disciplinary Conference on Web Accessibility
(W4A). ACM, 73–82.

17. Michael Bolin, Matthew Webber, Philip Rha, Tom
Wilson, and Robert C Miller. 2005. Automation and
Customization of Rendered Web Pages. In Proceedings
of the 18th annual ACM symposium on User interface
software and technology. ACM, 163–172.

18. Yevgen Borodin, Jeffrey P Bigham, Glenn Dausch, and
IV Ramakrishnan. 2010. More than meets the eye: a
survey of screen-reader browsing strategies. In
Proceedings of the 2010 International Cross
Disciplinary Conference on Web Accessibility (W4A).
ACM, 13.

19. Andy Brown and Simon Harper. 2013. Dynamic
Injection of WAI-ARIA into Web Content. In
Proceedings of the 10th International
Cross-Disciplinary Conference on Web Accessibility
(W4A ’13). ACM, New York, NY, USA, Article 14, 4
pages. DOI:
http://dx.doi.org/10.1145/2461121.2461141

20. Aira Tech Corp. 2014. Aira. (2014). https://aira.io/
Accessed: July 2018.

https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/Handoff/HandoffFundamentals/HandoffFundamentals.html
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/Handoff/HandoffFundamentals/HandoffFundamentals.html
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/Handoff/HandoffFundamentals/HandoffFundamentals.html
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/Handoff/HandoffFundamentals/HandoffFundamentals.html
http://dx.doi.org/10.1145/1866029.1866080
http://dx.doi.org/10.1145/3132525.3132533
http://dx.doi.org/10.1145/2461121.2461141
https://aira.io/
http:Content.In
http:RenderedWebPages.In
http:Users.In
http:Accessible.In

21. Allen Cypher, Mira Dontcheva, Tessa Lau, and Jeffrey
Nichols. 2010. No Code Required: Giving Users Tools
to Transform the Web. Morgan Kaufmann.

22. Ryan Dahl. 2009. Node.js. (2009). http://nodejs.org
Accessed: April, 2018.

23. Google, Inc. 2018. Chrome DevTools Protocol. (2018).
https:
//chromedevtools.github.io/devtools-protocol/
Accessed: April, 2018.

24. Saul Greenberg and Mark Roseman. 1996. GroupWeb:
A WWW Browser As Real Time Groupware. In
Conference Companion on Human Factors in
Computing Systems (CHI ’96). ACM, 271–272. DOI:
http://dx.doi.org/10.1145/257089.257317

25. Anhong Guo, Xiang ’Anthony’ Chen, Haoran Qi,
Samuel White, Suman Ghosh, Chieko Asakawa, and
Jeffrey P. Bigham. 2016. VizLens: A Robust and
Interactive Screen Reader for Interfaces in the Real
World. In Proceedings of the 29th Annual Symposium on
User Interface Software and Technology. ACM,
651–664.

26. Richard Han, Veronique Perret, and Mahmoud
Naghshineh. 2000. WebSplitter: a unifed XML
framework for multi-device collaborative Web browsing.
In Proceedings of the 2000 ACM conference on
Computer supported cooperative work. ACM, 221–230.

27. Hans Heijden. 2004. User Acceptance of Hedonic
Information Systems. MIS Q. 28, 4 (2004), 695–704.

28. Matthias Heinrich, Franz Lehmann, Thomas Springer,
and Martin Gaedke. 2012. Exploiting single-user web
applications for shared editing: a generic transformation
approach. In Proceedings of the 21st international
conference on World Wide Web. ACM, 1057–1066.

29. Darris Hupp and Robert C. Miller. 2007. Smart
bookmarks: automatic retroactive macro recording on
the web. In Proceedings of the 20th Annual ACM
Symposium on User Interface Software and Technology,
Newport, Rhode Island, USA, October 7-10, 2007.
81–90. DOI:
http://dx.doi.org/10.1145/1294211.1294226

30. Maria Husmann, Michael Nebeling, Stefano Pongelli,
and Moira C Norrie. 2014. MultiMasher: providing
architectural support and visual tools for multi-device
mashups. In Web Information Systems
Engineering–WISE 2014. Springer, 199–214.

31. Github Inc. 2003. Electron. (2003).
http://www.electron.atom.io/ Accessed: April 2018.

32. Muhammad Asiful Islam, Yevgen Borodin, and IV
Ramakrishnan. 2010. Mixture model based label
association techniques for web accessibility. In
Proceedings of the 23nd annual ACM symposium on
User interface software and technology. ACM, 67–76.

33. Brad Johanson, Shankar Ponnekanti, Caesar Sengupta,
and Armando Fox. 2001. Multibrowsing: Moving web
content across multiple displays. In Ubicomp 2001:
Ubiquitous Computing. Springer, 346–353.

34. Forrester Research Kate Leggett. 2011. Forrester
Technographics Data Points To Increased
Communication Channel Usage With Inconsistent
Satisfaction Ratings. (2011). Accessed: April, 2017.

35. Harmanpreet Kaur, Mitchell Gordon, Yi Wei Yang,
Jeffrey P. Bigham, Jaime Teevan, Ece Kamar, and
Walter S. Lasecki. 2017. CrowdMask: Using Crowds to
Preserve Privacy in Crowd-Powered Systems via
Progressive Filtering. In Proceedings of the Fifth AAAI
Conference on Human Computation and
Crowdsourcing, HCOMP 2017, 23-26 October 2017,
Québec City, Quebec, Canada. 89–97.

36. Clemens N Klokmose, James R Eagan, Siemen Baader,
Wendy Mackay, and Michel Beaudouin-Lafon. 2015.
Webstrates: Shareable Dynamic Media. In Proceedings
of the 28th Annual ACM Symposium on User Interface
Software & Technology. ACM, 280–290.

37. Walter S Lasecki and Jeffrey P Bigham. 2013.
Interactive crowds: Real-time crowdsourcing and crowd
agents. In Handbook of human computation. Springer,
509–521.

38. Walter S Lasecki, Mitchell Gordon, Danai Koutra,
Malte F Jung, Steven P Dow, and Jeffrey P Bigham.
2014. Glance: Rapidly coding behavioral video with the
crowd. In Proceedings of the 27th annual ACM
symposium on User interface software and technology.
ACM, 551–562.

39. Walter S Lasecki, Tessa Lau, Grant He, and Jeffrey P
Bigham. 2012. Crowd-based recognition of web
interaction patterns. In Adjunct proceedings of the 25th
annual ACM symposium on User interface software and
technology. ACM, 99–100.

40. Walter S Lasecki, Kyle I Murray, Samuel White,
Robert C Miller, and Jeffrey P Bigham. 2011. Real-time
crowd control of existing interfaces. In Proceedings of
the 24th annual ACM symposium on User interface
software and technology. ACM, 23–32.

41. Walter S Lasecki, Phyo Thiha, Yu Zhong, Erin Brady,
and Jeffrey P Bigham. 2013a. Answering visual
questions with conversational crowd assistants. In
Proceedings of the 15th International ACM SIGACCESS
Conference on Computers and Accessibility. ACM, 18.
DOI:http://dx.doi.org/10.1145/2513383.2517033

42. Walter S Lasecki, Rachel Wesley, Jeffrey Nichols,
Anand Kulkarni, James F Allen, and Jeffrey P Bigham.
2013b. Chorus: a crowd-powered conversational
assistant. In Proceedings of the 26th annual ACM
symposium on User interface software and technology.
ACM, 151–162.

43. Tessa Lau, Julian Cerruti, Guillermo Manzato, Mateo
Bengualid, Jeffrey P Bigham, and Jeffrey Nichols. 2010.
A Conversational Interface to Web Automation. In
Proceedings of the 23nd annual ACM symposium on
User interface software and technology. ACM, 229–238.

http://nodejs.org
https://chromedevtools.github.io/devtools-protocol/
https://chromedevtools.github.io/devtools-protocol/
http://dx.doi.org/10.1145/257089.257317
http://dx.doi.org/10.1145/1294211.1294226
http://www.electron.atom.io/
http://dx.doi.org/10.1145/2513383.2517033
http:Automation.In
http:Groupware.In

44. Jonathan Lazar, Aaron Allen, Jason Kleinman, and
Chris Malarkey. 2007. What frustrates screen reader
users on the web: A study of 100 blind users.
International Journal of human-computer interaction
22, 3 (2007), 247–269.

45. Gilly Leshed, Eben M Haber, Tara Matthews, and Tessa
Lau. 2008. CoScripter: Automating & Sharing HowTo
Knowledge in the Enterprise. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems. ACM, 1719–1728.

46. Ian Li, Jeffrey Nichols, Tessa Lau, Clemens Drews, and
Allen Cypher. 2010. Here’s What I Did: Sharing and
Reusing Web Activity with ActionShot. In Proceedings
of the SIGCHI Conference on Human Factors in
Computing Systems. ACM, 723–732.

47. Anna Loparev, Walter S Lasecki, Kyle I Murray, and
Jeffrey P Bigham. 2014. Introducing shared character
control to existing video games. In Proceedings of the
International Conferences on the Foundations of Digital
Games.

48. Robert C Miller, Victoria H Chou, Michael Bernstein,
Greg Little, Max Van Kleek, David Karger, and others.
2008. Inky: A Sloppy Command Line for the Web with
Rich Visual Feedback. In Proceedings of the 21st annual
ACM symposium on User interface software and
technology. ACM, 131–140.

49. Meredith Ringel Morris and Eric Horvitz. 2007.
SearchTogether: an interface for collaborative web
search. In Proceedings of the 20th annual ACM
symposium on User interface software and technology.
ACM, 3–12.

50. Michael Nebeling and Anind K Dey. 2016. XDBrowser:
User-Defned Cross-Device Web Page Designs. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. ACM.

51. Michael Nebeling, Fabio Paternò, Frank Maurer, and
Jeffrey Nichols. 2015. Systems and tools for
cross-device user interfaces. In Proceedings of the 7th
ACM SIGCHI Symposium on Engineering Interactive
Computing Systems. ACM, 300–301.

52. World Health Organization and others. 2012. Global
data on visual impairments 2010. Geneva: World Health
Organization Organization (2012).

53. Sung Youl Park. 2009. An Analysis of the Technology
Acceptance Model in Understanding University
Students’ Behavioral Intention to Use e-Learning.
Journal of Educational Technology & Society 12, 3
(2009), 150–162. http:
//www.jstor.org/stable/jeductechsoci.12.3.150

54. Fabio Paternò, Carmen Santoro, and Antonio Scorcia.
2008. Preserving Rich User Interface State in Web
Applications across Various Platforms. In Engineering
Interactive Systems. Springer, 255–262.

55. Helen Petrie, Fraser Hamilton, Neil King, and Pete
Pavan. 2006. Remote usability evaluations with disabled
people. In Proceedings of the SIGCHI conference on

Human Factors in computing systems. ACM,
1133–1141.

56. Helen Petrie and Omar Kheir. 2007. The relationship
between accessibility and usability of websites. In
Proceedings of the SIGCHI conference on Human
factors in computing systems. ACM, 397–406.

57. Christopher Power, André Freire, Helen Petrie, and
David Swallow. 2012. Guidelines are only half of the
story: accessibility problems encountered by blind users
on the web. In Proceedings of the SIGCHI conference on
human factors in computing systems. ACM, 433–442.

58. Yury Puzis, Yevgen Borodin, and IV Ramakrishnan.
2015. Complexities of practical web automation. In
Proceedings of the 12th Web for All Conference. ACM,
11.

59. Alexander J Quinn and Benjamin B Bederson. 2011.
Human computation: a survey and taxonomy of a
growing feld. In Proceedings of the SIGCHI conference
on human factors in computing systems. ACM,
1403–1412.

60. Elliot Salisbury, Sebastian Stein, and Sarvapali
Ramchurn. 2015. Real-time opinion aggregation
methods for crowd robotics. In Proceedings of the 2015
International Conference on Autonomous Agents and
Multiagent Systems. International Foundation for
Autonomous Agents and Multiagent Systems, 841–849.

61. Yasushi Shinjo, Fei Guo, Naoya Kaneko, Takejiro
Matsuyama, Tatsuya Taniuchi, and Akira Sato. 2011. A
distributed web browser as a platform for running
collaborative applications. In Collaborative Computing:
Networking, Applications and Worksharing
(CollaborateCom), 2011 7th International Conference
on. IEEE, 278–286.

62. Nate Smith. 2012. ShareDB. (2012).
https://github.com/share/sharedb Accessed: April,
2018.

63. Surfy. 2012. https://www.surfy.com. (2012). Accessed:
January 2, 2016.

64. Saiganesh Swaminathan, Raymond Fok, Fanglin Chen,
Ting-Hao Kenneth Huang, Irene Lin, Rohan Jadvani,
Walter S Lasecki, and Jeffrey P Bigham. 2017.
WearMail: On-the-Go Access to Information in Your
Email with a Privacy-Preserving Human Computation
Workfow. In Proceedings of the 30th Annual ACM
Symposium on User Interface Software and Technology.
ACM, 807–815.

65. Luis Von Ahn, Manuel Blum, Nicholas J Hopper, and
John Langford. 2003. CAPTCHA: Using hard AI
problems for security. In Advances in Cryptology
(EUROCRYPT) 2003. Springer, 294–311.

66. Yu Zhong, Walter S Lasecki, Erin Brady, and Jeffrey P
Bigham. 2015. Regionspeak: Quick comprehensive
spatial descriptions of complex images for blind users.
In Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems. ACM,
2353–2362.

http://www.jstor.org/stable/jeductechsoci.12.3.150
http://www.jstor.org/stable/jeductechsoci.12.3.150
https://github.com/share/sharedb
http:https://www.surfly.com
http:Platforms.In
http:Designs.In
http:Feedback.In
http:videogames.In
http:ActionShot.In

	UIST_Arboretum_8-9-18_non-accessible_1page
	Introduction
	Related Work
	Multi-User/Multi-Device Web Browsing
	Web Accessibility Standards and Solutions
	Crowdsourced User Interface Control
	Web Automation and Scripting

	System Design & Features
	Design Goals
	Challenges Blind Users Face when Using the Web
	Guiding Principles
	Guidance from Pilot Studies

	Arbility and Arboretum Features
	Mirroring Web Pages with Arboretum
	Chatting with Remote Crowd Workers
	Proposing Page Actions
	Retaining Control and Trust for End Users
	Minimizing the Learning Curve for Crowd Workers

	Storing and Recalling Previous Actions

	Implementation
	Communicating via the DevTools Protocol
	Synchronizing Distributed Clients
	Remembering and Retargeting Prior Page Actions

	Evaluation
	Participants
	Setup
	Tasks
	Collaboration
	Results

	Feedback and Discussion
	Practical and Real-World Applicability
	Protecting End User Privacy
	Deprioritizing Accessible Web Development

	Future Work
	Addressing Privacy Concerns
	Better Automation via Hybrid Intelligence

	Conclusion
	Acknowledgements
	References

	UIST_Arboretum_8-8-18_accessible
	UIST_Arboretum_8-8-18_two_pages_only
	Introduction
	Related Work
	Multi-User/Multi-Device Web Browsing
	Web Accessibility Standards and Solutions
	Crowdsourced User Interface Control
	Web Automation and Scripting

	System Design & Features
	Design Goals
	Challenges Blind Users Face when Using the Web
	Guiding Principles
	Guidance from Pilot Studies

	Arbility and Arboretum Features
	Mirroring Web Pages with Arboretum
	Chatting with Remote Crowd Workers
	Proposing Page Actions
	Retaining Control and Trust for End Users
	Minimizing the Learning Curve for Crowd Workers

	Storing and Recalling Previous Actions

	Implementation
	Communicating via the DevTools Protocol
	Synchronizing Distributed Clients
	Remembering and Retargeting Prior Page Actions

	Evaluation
	Participants
	Setup
	Tasks
	Collaboration
	Results

	Feedback and Discussion
	Practical and Real-World Applicability
	Protecting End User Privacy
	Deprioritizing Accessible Web Development

	Future Work
	Addressing Privacy Concerns
	Better Automation via Hybrid Intelligence

	Conclusion
	Acknowledgements
	References

	UIST_Arboretum_accessible
	Introduction
	Related Work
	Multi-User/Multi-Device Web Browsing
	Web Accessibility Standards and Solutions
	Crowdsourced User Interface Control
	Web Automation and Scripting

	System Design & Features
	Design Goals
	Challenges Blind Users Face when Using the Web
	Guiding Principles
	Guidance from Pilot Studies

	Arbility and Arboretum Features
	Mirroring Web Pages with Arboretum
	Chatting with Remote Crowd Workers
	Proposing Page Actions
	Retaining Control and Trust for End Users
	Minimizing the Learning Curve for Crowd Workers

	Storing and Recalling Previous Actions

	Implementation
	Communicating via the DevTools Protocol
	Synchronizing Distributed Clients
	Remembering and Retargeting Prior Page Actions

	Evaluation
	Participants
	Setup
	Tasks
	Collaboration
	Results

	Feedback and Discussion
	Practical and Real-World Applicability
	Protecting End User Privacy
	Deprioritizing Accessible Web Development

	Future Work
	Addressing Privacy Concerns
	Better Automation via Hybrid Intelligence

	Conclusion
	Acknowledgements
	References

