
Studying the Benefits and Challenges of Immersive
Dataflow Programming

Lei Zhang
School of Information

The University of Michigan
Ann Arbor, MI USA
raynez@umich.edu

Steve Oney
School of Information

The University of Michigan
Ann Arbor, MI USA

soney@umich.edu

Abstract—Creating Virtual Reality (VR) applications normally
requires advanced knowledge of imperative programming, 3D
modeling, reactive programming, and geometry. Immersive au-
thoring tools propose to reduce the learning curve of VR
programming by allowing users to create VR content while
immersed in VR. Immersive authoring can take advantage of
many of the features that make VR applications intuitive and
natural to use—users can manipulate programming primitives
through direct manipulation, immediately see the output of their
code, and use their innate spatial reasoning capabilities when
viewing a program. In this paper, we investigate the benefits and
challenges of immersive dataflow authoring. We implemented an
immersive authoring tool that enables dataflow programming in
VR and conducted a series of retrospective interviews. We also
describe design implications for future immersive authoring tools.

Index Terms—dataflow, immersive authoring, virtual reality

I. INTRODUCTION

Virtual Reality (VR) applications can enable more natural
human-computer interactions by matching the computer’s rep-
resentation of an environment with the spatial processing capa-
bilities that humans have evolved over thousands of years [1].
By giving users a sense of presence and immersion, VR
applications can nearly eliminate the gulfs of execution (how
users translate intent into action) and evaluation (how users
understand the state of a system) [2]. Although using VR ap-
plications can be natural and intuitive, creating VR applications
requires specialized knowledge including advanced knowledge
of imperative programming languages, three-dimensional (3D)
modeling, reactive programming, and geometry.

One possible solution to the challenges of authoring VR
content is to create Visual Programming Langauges (VPLs) for
immersive 3D environments—to allow programmers to create
content directly while immersed in VR. This paradigm is called
immersive authoring [3], [4]. Immersive authoring tools have
several potential advantages over traditional tools for creating
VR content. First, immersive authoring environments can be
intuitive, as they allow users to manipulate programming
primitives through direct manipulation [5]—reducing the gulf
of execution. Second, immersive authoring environments allow
users to evaluate their code as they write it in the VR environ-
ment [4]—reducing the gulf of evaluation. Finally, by situating
programs in an easily navigable 3D world, immersive authoring
tools can leverage our natural spatial reasoning capabilities [1].

Fig. 1: A screenshot of our immersive dataflow programming
tool. The directed arrows specify edges that determine the
direction of data propagation. Operators accept any nunber of
inputs and produce one or more outputs. The operator shown
subtracts the position of the light from the position of the
sphere, producing a direction from the light to the sphere.
The result of the operator goes to the direction attribute of the
light. This program thus creates a scene where the light always
shoots at the sphere, even as the sphere and light move.

In this paper, we evaluate the challenges and benefits of im-
mersive dataflow programming tools. Specifically, we created
and evaluated an immersive dataflow programming language1.
The results of our evaluation provide design insights that have
implications for future immersive authoring tools.

II. RELATED WORK

Our study builds on prior work in immersive authoring tools,
3D programming environments, and dataflow programming.

A. Immersive Authoring Tools

Immersive authoring allows users to create dynamic virtual
scenes while immersed in a virtual environment. One of the
earliest attempts to achieve this was Steed et al.’s dataflow
representation for customizing behaviors [6]. Researchers have
since built several immersive authoring systems, including
iaTAR for creating AR scenes [3], [7], Ivy [8] for program-
ming IoT devices, and Soundstage for creating music [9].
Each of these systems uses dataflow to represent behaviors.
However, none of this prior work has studied the usability
of dataflow in their immersive authoring tool, which is the

1Our immersive authoring tool is open source and publicly available:
http://raynezhang.me/files/ImmersiveAuthoring.zip978-1-7281-0810-0/19/$31.00 © 2019 IEEE

http://raynezhang.me/files/ImmersiveAuthoring.zip

focus of this paper. Of prior immersive authoring systems,
only two (Ivy and Soundstage) run on modern VR hardware
and only one (Soundstage) is publicly available. However,
Soundstage was designed for authoring music. Thus, we built
a new VR immersive authoring tool to use in our evaluation.
However, our findings are generalizable to other immersive
dataflow authoring systems, which use similar paradigms and
interactions.

B. 3D Programming Environments

Game engines based on the entity-component architecture
such as Unity [10] and Unreal [11] have been the most
popular tools for programming 3D interactive applications. In
recent years, the advances of WebVR have also given rise
to libraries and frameworks such as Three.js [12] and A-
FRAME [13], which enable developers to build VR scenes
as web applications. However all these tools require expertise
in imperative programming languages and do not allow users
to prototype scenes while immersed.

C. Dataflow Programming Languages

Dataflow programming languages have a long history, be-
ginning with Bert Sutherland’s Ph.D. thesis [14]. The dataflow
model is represented by a directed graph, consisting of data
sources, data sinks and nodes. The nodes are program objects
or primitive operations. The direction of each edge represents
the direction of the data propagation across different nodes.
The dataflow programming paradigm has been the basis of
many visual programming languages and used by successful
commercial software such as LabView [15] and Max [16].
While being easy to operate and understand, dataflow pro-
gramming languages also have several open problems [17],
[18]. For example, complex dataflow programs can be visually
cluttered and difficult to interpret. Further, few tools exist to
help users effectively debug dataflow programs.

III. IMMERSIVE AUTHORING SYSTEM

In our immersive authoring system, each operator is rep-
resented as a translucent box that takes inputs and produces
outputs (Fig. 2d, 2e, 2f). Each input has a connector on the
left side of the box and each output has a connector on the
right side. For example, the Subtract operator (Fig. 2d) has
two connectors on the left: + (plus) and - (minus), where data
inputted through the + connector will be added to the result
and data inputted through the - connector will be subtracted
from the result. The final result will be propagated through
the output connector on the right.

Users can also create behaviors that depend on the position
of their headset and controllers through avatars, which are
proxies of their headset and controllers (Fig. 2c). Avatars
contain output nodes for the position, rotation, and each button
on these devices. Each avatar can be viewed as a node and
by drawing edges between the avatar and other virtual object
in the scene, users can create interactive scenes where the
attributes of the virtual objects will depend on the the user’s
tracked devices (i.e. the headset and the controllers).

(a) Object: Light (b) Object: Cube

(c) Avatar: Headset (d) Operator: Subtract

(e) Operator: Vector2Number (f) Operator: Condition A > B

Fig. 2: Examples of objects, avatars, and operators. Objects
(a&b) have several attributes listed next to them that can be
modified. Avatars (c) represent virtual proxies of users’ inputs.
Operators (d, e, f) are computational units that take inputs
produce the results as outputs.

Users use two controllers to interact with the immersive
authoring tool. Users can create objects, avatars, and operators
through a palette tool menu, which is “attached” to the user’s
left hand controller and whose items can be selected by
pointing (via raycast) and pressing a trigger on the right
hand controller. The application employs a drag-and-drop
interaction for drawing edges using the raycast and provides
straight arrows as intermediate feedback (Fig. 3 C).

IV. STUDY

To better understand the benefits and challenges of immer-
sive dataflow programming, we conducted a user study with
our immersive authoring tool. Although this user study was
only conducted with our tool, we believe our findings are rep-
resentative of other immersive authoring systems [3], [6]–[9],
which also employ similar dataflow metaphor, visualizations,
and node placement features in VR.

We recruited 7 participants (2 male, 4 female, and 1 prefer
not to say), ages 20–27 (µ = 24.1), from the authors’
university. All participants had at least basic programming
experience (having completed at least one programming class).
Two participants also had experience creating VR applications.
We compensated every participant with $25 in cash for their
participation. Our application was run on the Oculus Rift on

a Windows 10 system with an Nvidia GTX 1080 GPU, Core i7
CPU and 16 GB RAM.

A. Procedure

Every study lasted 90 minutes. Participants spent the first
30 minutes in a tutorial that walked them through a series
of small tasks including creating and manipulating objects,
drawing edges between nodes, and using different operators.
The tutorial also gave participants a chance to ask questions
and experiment on their own.

We then asked participants to perform two tasks:
• Task 1: Create three spotlights and make them shoot at

and follow the user. The three spot lights should emit
light of random colors.

• Task 2: Create a scene where a spot light will shoot at a
cube when the user’s left hand is higher than the user’s
right hand, and the spot light will shoot at a sphere when
the user’s left hand is lower than the user’s right hand.

We gave participants 15 minutes for each task and did not
give them further instructions on how to complete the tasks
unless they specifically requested help. We then conducted a
one-on-one retrospective interview with each participant.

B. Results

Most participants expressed that the application is fun to
play with:

P3: “I really like to play with (it). I think it’s really
good to explore. It was just really fun.”

Participants also generally enjoyed the immersive feeling of
being able to place things freely and naturally in the 3D virtual
space as if they were manipulating them in the real world:

P2: “I really enjoyed having stuff in a three-
dimensional space... it just feels so real. ”

When being asked about any confusion about the applica-
tion, all participants commented that drawing edges between
nodes is difficult and annoying since they often missed the
target connector when it became too small and hard to aim at
in the scene:

P1: “The aiming of putting a line on a circle was
annoying. I messed up five times or something...”

Another difficulty from most participants is the struggle
to follow the execution of the program when it gets more
complicated and the lines get cluttered. Based on that, some
participants expressed desire for adding secondary notations
(e.g. comments, annotations, etc.) or grouping nodes into sub
programs:

P4: “I think it will be helpful to let the user to group
things together. For example, for all the condition
patch(es), I can group them together and have a
note like ‘this is gonna compare positions’ ”

When being asked to compare the application with their
previous experiences in text-based programming, most partic-
ipants commented positively on this application and all par-
ticipants expressed that the application is easier for beginners
and is therefore suitable for educational use:

P2: “This tool reminds me of this thing called Alice.
I can definitely see it being a potential educational
tool. I think it can make things so much easier.”

V. DISCUSSION

In this section, we discuss several challenges and benefits
of immersive dataflow programming based on the aggregated
results above. For each challenge, we provide our insights and
design implications based the study.

1) Layout Management: From the results, users were not
strategic about where they placed the nodes in their dataflow
programs. However, they typically placed related nodes next
to each other, either horizontally or vertically. They normally
placed nodes in a from-left-to-right order based on the direc-
tion of the data propagation. At the same time, users indicated
that lines became clustered and hard to follow when the
program became more complicated. This is also a challenge in
general dataflow programming languages but a compounding
problem was that edges could be occluded and hidden because
of the wealth of depth information. One design implication for
managing the dataflow program layout is to automatically sort
and place the nodes and edges, according to some participants.
Another implication is to support objects customization for the
users. Specifically, participants commented that being able to
group related nodes and edges together is helpful for keeping
track of the dataflow program. They also expressed that being
able to add annotations or comments would be helpful for
understanding each part of the dataflow program.

2) Drawing Edges: During the retrospective interviews,
most participants preferred drawing edges through direct ma-
nipulation (Fig. 3 A), as opposed to using raycast to aim
at target connectors (Fig. 3 C). There are two reasons for
this. One reason is that through direct manipulation users can
feel more immersed—as if the wire is in their hands. The
other reason is that it is easier to aim and connect when the
connector is close to the users. This is a challenge that is
specific to 3D immersive environments since users draw edges
in a 3D space using the controllers held in their hands as
opposed using the two-dimensional (2D) Window Icon Menus
Pointer (WIMP) interfaces.

We therefore propose four mechanisms for drawing edges,
as shown in Fig. 3. Each mechanism has its own tradeoffs.
Users can draw edges through direct manipulation as if they
are holding the wires. The first method (Fig. 3 A) allows
users to draw edges through direct manipulation as if they
are holding the wires. One benefit of this method is that it
is intuitive by allowing users to connect edges in the same
way that they do in the physical environment. Another benefit
is that it allows customized shapes of the edges, which is
helpful in avoiding occluding edges with each other. The
drawback of this method is that it is hard to draw an edge
between two objects that are far away from each other without
moving in the virtual world. The second method (Fig. 3
B) allows users to draw edges using a proxy at the fixed
distance to the controller. This method offers custom edges
but also requires them to move around the scene to connect

Selected Connector
Unselected Connector

(B)

Raycast
Edge

(A)

(C) (D)

Fig. 3: An illustration of four alternative techniques for speci-
fying edges between nodes in VR using a controller. Edges can
either be drawn as custom shapes (A&B) or as a straight line
between nodes (C&D). Users could draw edges directly with
their controller (A); along two dimensions with a depth that the
system computes (B); as straight edges between nodes while
showing intermediate feedback (C); or by selecting source and
target nodes with no intermediate feedback (D).

distant nodes. The third method (Fig. 3 C) allows users to
draw straight edges using the raycast and shows the straight
edge as intermediate feedback. The benefit of this approach
is allowing users to draw lines beyond their reach without
moving in the virtual world. However, it is hard to aim at
the connector that is too far away and appears very small in
the scene. The last method (Fig. 3 D) is similar to mouse-
clicking, where users will click at the first connector and then
the second connector in order to draw an edge. This method
produces no intermediate feedback and avoids the drag-and-
drop interaction. However, the drawback of this approach is
the lack of direct manipulation.

3) Navigation: Changing the user’s viewpoint of the
dataflow program is also challenging when the whole program
is embedded in an immersive 3D space. This is also different
from dataflow programming languages on 2D WIMP interfaces
where users can pan and zoom with the mouse. Instead, in the
immersive virtual environments, users have to move around
in the virtual world in order to navigate through the program.
This usually causes the feeling of lack of control of their own
bodies when the locomotion of self affects the viewpoint of
the dataflow program. To cope with this challenge, we propose
a 2D map-like dataflow representation design, where users can
zoom in, zoom out, and move the whole diagram without
changing their positions in the world.

4) Immersion and Natural Interaction: Immersive dataflow
programming tools allow users to manipulate and place things
freely in the 3D space in the same way that they interact with
the physical world. Multiple users expressed that being able to
create and place objects (such as cubes and lights) wherever

they want is the most enjoyable part of the immersive dataflow
programming tool. Participants’ sense of immersion was also
enhanced by the immediate feedback they received. Users can
see the changes instantly after drawing an edge between two
nodes, which makes it faster to prototype VR scenes and faster
to make changes to the existing program.

5) Potential for Educational Use: Most participants agree
that this tool is easier for beginners and has the potential for
educational use. This may be due to that existing imperative
programming tools have steeper learning curve than immersive
dataflow programming tools. Some participants also expressed
that they found the immersive tool to be fun and engaging to
interact with.

Based on the results of our study, we do not see an advan-
tage in allowing users to place dataflow objects themselves in
3D space. Users in our study did not tend to spend the time
to organize their dataflow nodes and occlusion could make it
difficult for them to follow the edges. However, we do see
advantages in including dataflow languages inside of immer-
sive authoring environments. Participants specifically liked the
quick feedback loop and the ability to connect dataflow outputs
and inputs directly to objects in their environment and objects
that represented the user.

Thus, we feel that dataflow is still an effective option for
immersive authoring. However, there is little benefit to giving
users complete 3D freedom in dataflow authoring. Instead, we
propose dataflow interactions that happen in 2D—where all of
the nodes and operators are visible on a 2D plane but can be
connected to objects in the 3D space. For example, one could
imagine a “breadboard” metaphor where users can see their
dataflow program on a 2D plane but they can connect the output
of their dataflow diagrams to objects in the virtual world.

VI. LIMITATIONS & CONCLUSION

There are several limitations of the presented study. First,
we only recruited participants who were willing and able to
use VR, which may bias the kinds of feedback that participants
give. Second, we performed a short-term study and received
only the first impression of the immersive dataflow program-
ming tool on the participants. Despite having the training
session, some participants expressed that it was difficult to get
familiar with all the features in a short time. A longitudinal
study would be necessary to better understand participants’
learning curve.

In this paper we presented an exploratory study analyzing
the benefits and challenges of immersive dataflow program-
ming tools. We also proposed several design implications
based on the results. We believe that dataflow programming is
an effective approach for immersive authoring and that there
is ample room for future improvement to address the design
challenges brought by the freedom of 3D space.

VII. ACKNOWLEDGEMENTS

We thank Hariharan Subramonyam, Michael Nebeling,
Minje Choi, Jane Im, and Zhuofeng Wu for their feedback
on the immersive authoring application. We also thank our
study participants and reviewers for their time and effort.

REFERENCES

[1] R. S. Kalawsky, The science of virtual reality and virtual environments:
a technical, scientific and engineering reference on virtual environments.
Addison-wesley Workingham, 1993.

[2] D. A. Norman and S. W. Draper, User centered system design: New
perspectives on human-computer interaction. CRC Press, 1986.

[3] G. A. Lee, C. Nelles, M. Billinghurst, and G. J. Kim, “Immersive
authoring of tangible augmented reality applications,” in Proceedings of
the 3rd IEEE/ACM international Symposium on Mixed and Augmented
Reality. IEEE Computer Society, 2004, pp. 172–181.

[4] G. A. Lee, G. J. Kim, and M. Billinghurst, “Immersive authoring: What
you experience is what you get (wyxiwyg),” Communications of the
ACM, vol. 48, no. 7, pp. 76–81, 2005.

[5] B. Shneiderman, “Direct manipulation: A step beyond programming
languages,” in ACM SIGSOC Bulletin, vol. 13, no. 2-3. ACM, 1981,
p. 143.

[6] A. Steed and M. Slater, “A dataflow representation for defining be-
haviours within virtual environments,” in Proceedings of the IEEE 1996
Virtual Reality Annual International Symposium. IEEE, 1996, pp. 163–
167.

[7] G. A. Lee and G. J. Kim, “Immersive authoring of tangible augmented
reality content: A user study,” Journal of Visual Languages & Comput-
ing, vol. 20, no. 2, pp. 61–79, 2009.

[8] B. Ens, F. Anderson, T. Grossman, M. Annett, P. Irani, and G. Fitz-
maurice, “Ivy: Exploring spatially situated visual programming for
authoring and understanding intelligent environments,” in Proceedings
of the 43rd Graphics Interface Conference. Canadian Human-Computer
Communications Society, 2017, pp. 156–162.

[9] Soundstage vr. [Online]. Available: https://github.com/googlearchive/
soundstagevr/

[10] Unity. [Online]. Available: https://unity.com/
[11] Unreal. [Online]. Available: https://www.unrealengine.com/
[12] three.js. [Online]. Available: https://threejs.org/
[13] A-frame. [Online]. Available: https://aframe.io/
[14] W. R. Sutherland, “The on-line graphical specification of computer

procedures.” Ph.D. dissertation, Massachusetts Institute of Technology,
1966.

[15] Labview. [Online]. Available: http://www.ni.com/labview/
[16] Max. [Online]. Available: https://cycling74.com/products/max/
[17] W. M. Johnston, J. Hanna, and R. J. Millar, “Advances in dataflow

programming languages,” ACM computing surveys (CSUR), vol. 36,
no. 1, pp. 1–34, 2004.

[18] T. B. Sousa, “Dataflow programming concept, languages and applica-
tions,” in Doctoral Symposium on Informatics Engineering, vol. 130,
2012.

https://github.com/googlearchive/soundstagevr/
https://github.com/googlearchive/soundstagevr/
https://unity.com/
https://www.unrealengine.com/
https://threejs.org/
https://aframe.io/
http://www.ni.com/labview/
https://cycling74.com/products/max/

	Introduction
	Related Work
	Immersive Authoring Tools
	3D Programming Environments
	Dataflow Programming Languages

	Immersive Authoring System
	Study
	Procedure
	Results

	Discussion
	Limitations & Conclusion
	Acknowledgements
	References

