
ParamMacros: Creating UI Automation Leveraging 
End-User Natural Language Parameterization 

Rebecca Krosnick 
Computer Science and Engineering 

University of Michigan 
Ann Arbor, MI USA 

rkros@umich.edu 

Steve Oney 
School of Information 
University of Michigan 
Ann Arbor, MI USA 

soney@umich.edu 

Abstract—Prior work in programming-by-demonstration 
(PBD) has explored ways to enable end-users to create custom 
automation without needing to write code. We propose a new 
end-user specification model – asking the end-user to explicitly 
identify parts of their natural language query that can be 
generalized. We built a PBD system, ParamMacros, where users 
first generalize a concrete natural language question – identifying 
parameters and their possible values – and then create a demon-
stration of how to answer the question on the website of interest. 
ParamMacros then infers a generalized program by using the 
user-provided parameter values to identify relevant patterns in 
the website’s structure. In a lab study we found that participants 
were able to meaningfully parameterize natural language queries 
and felt such a parameterization and demonstration process 
would be useful for creating custom automation. 

Index Terms—parameterization, natural language, 
programming-by-demonstration, automation, virtual assistants 

I. INTRODUCTION 

The Web is a rich source of information. Web automation 
makes it possible to programmatically access this information 
by mimicking user interactions, such as clicking on buttons 
and typing text into fields, on a web page. This can be 
beneficial in a variety of scenarios. For example, enabling 
voice-based access [1] to web content could make it more 
accessible, and macros could allow users to complete tasks 
that would be tedious when performed manually. However, the 
time, expertise, and effort required to write automation code 
makes it impractical to support the long tail of user needs. 

Prior research has shown that Programming-By-
Demonstration (PBD) [2], [3] is an effective way to allow 
users—including users without programming experience—to 
create user interface (UI) automation macros [4]–[8]. The 
user demonstrates how to perform the task that they want 
automated, and then the PBD system generates code capable 
of mimicking the user’s actions on a UI. However, a challenge 
of PBD systems is inferring how to generalize from one 
demonstration—inferring a domain of similar tasks and 
performing tasks within that domain. In this paper, we focus 
on improving parameterization of PBD-generated automation 
macros, in the context of natural language (NL)—specifying 
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the slots in NL queries and what values they might have. 
Parameterization is a key method for scaling the domain of 
tasks that automation can handle. 

We propose leveraging end-users to identify macro pa-
rameters and values that match their intent. We designed a 
novel PBD system, ParamMacros, that allows end-users to 
create custom macros that answer parameter-based questions 
about website content. End-users start with a concrete natural 
language question they have, then through a text annotation 
interface identify parts of their question that could change (i.e., 
parameters) and provide possible alternative values. Using 
this parameterized natural language question, the end-user 
now selects a question instance (i.e., a value per parameter) 
and demonstrates on the website the correct answer for that 
question and the necessary page interactions to find that 
answer. ParamMacros then infers a generalized program based 
on the user-provided parameters and demonstration. 

PBD systems Sugilite [4] and Appinite [5] also enable end-
users to create custom automation that supports their specific 
natural language requests. To identify related UI elements 
during program inference, Sugilite primarily considers sibling 
nodes, and Appinite uses its natural language understanding 
(NLU) to interpret user NL and accordingly identify relevant 
relationships from its UI knowledge graph. A key difference in 
our system ParamMacros is that it leverages user-provided pa-
rameters and values to identify relevant patterns as it traverses 
the Document Object Model (DOM) [9] hierarchy during pro-
gram inference. Complex relationships exist between elements 
at many levels in a UI hierarchy, and we offer a new approach 
to identifying those relationships. 

We focus on website content that has semantic entries 
and attributes (e.g., a list of movies and their metadata, a 
table of sports statistics). Through a user study we show that 
users can identify meaningful parameters and effectively create 
demonstrations, and that users think creating such generalized 
automation macros would be useful. 

We contribute the following: 

• The idea of having end-users identify parameters in their 
natural language questions as input to PBD systems. 

• A text annotation interface for identifying parameters and 
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alternative values. 
• ParamMacros, a PBD system for creating automation 

macros that answer parameterized questions about web-
site content. 

• An inference approach that leverages structural patterns in 
the website DOM to identify candidate parameter values. 

• A user study suggesting the feasibility and usefulness of 
users generalizing their own natural language requests. 

II. RELATED WORK 

A. Virtual Assistants 

Virtual assistants like Siri [1], Alexa [10], Google Assis-
tant [11], and Cortana [12] have become commonplace, and 
are powerful because they enable hands-free interaction. Each 
virtual assistant has a built-in set of common skills it supports, 
but there are endless complex or obscure requests this does not 
include. Our system ParamMacros enables end-users to build 
question-answering programs, that potentially could be useful 
to virtual assistants, without needing to write program code. 

B. Writing UI Automation Scripts 

Developers can write custom automation scripts that pro-
grammatically mimic a user’s interactions on a user inter-
face (UI). Popular frameworks include Selenium [13], Pup-
peteer [14], Cypress [15], and Beautiful Soup [16] for the 
web, and Shortcuts [17] and App Actions [18] for mobile. 
However, writing such scripts is non-trivial – for example, 
it can be challenging to construct UI selectors [19] that are 
robust across different inputs [20]. Record and replay tools 
like Selenium IDE [21] and Cypress Studio [22] were designed 
for test automation and can generate code from a single user 
trace, but the code will not be generalized to work across 
scenarios. ParamMacros enables users to create generalized 
macros without writing code. 

C. Programming by Demonstration 

Programming by demonstration (PBD) [2], [3], enables end-
users to create computer programs without writing code – 
instead users just provide concrete demonstrations or examples 
of the desired behavior. A key challenge of PBD is inferring 
user intent and generalizing from demonstrations. PBD has a 
rich history, with systems that support UI creation [23], [24], 
text and code editing [25]–[27], data transformation [28], [29], 
constructing regular expressions [30], [31], and more. 

Prior work has explored using PBD for creating web scrap-
ing scripts. Rousillon [32] and WebRobot [33] can synthesize 
nested loop-based scraping logic from user demonstrations 
by leveraging patterns in the DOM [9]. Our work similarly 
leverages patterns in the DOM, but we focus on generating 
parameterized programs that use user-provided parameters. 

Task automation is another domain with a rich PBD history. 
CoScripter [34], [35] lets users record their actions on the web 
and generates a pseudo-natural language script. CoScripter 
users can create a personal data store containing personal 
information (e.g., name, email) so that the generated script 
uses parameters in their place, which is important when 

shared with colleagues. CoScripter focuses on form-filling and 
uses parameter values to fill in form fields. Our work uses 
parameters to generalize dynamic element selection. 

Most similar to our work is the Sugilite suite [4]–[6], 
which enables end-users to create custom automation for 
responding to speech requests and completing tasks on their 
mobile device. With Sugilite [4], users provide a Natural 
Language (NL) request and a demonstration of the actions 
to complete that request. Sugilite then infers parameters and 
a generalized program to work over the different parameter 
values. Sugilite infers parameters by searching for features 
of a given UI event (e.g., text typed into a text field, label 
of a clicked button) within the NL request. If a parameter 
is identified, our understanding is that Sugilite then searches 
for alternative parameter values by looking at the target UI 
element’s sibling nodes. Appinite [5] extends Sugilite using 
NL understanding (NLU) and an improved understanding of 
the UI. Ahead of inference, it traverses its app view hierarchy 
and builds a UI semantic and spatial relational knowledge 
graph, which it uses to better understand what elements in 
the UI the user’s NL request is referring to at inference time. 
Pumice [6] extends Sugilite to support conditional logic. A 
key difference between ParamMacros and the Sugilite suite is 
that our system leverages user-provided parameters and values 
to identify relevant patterns in the DOM, whereas Sugilite 
primarily considers sibling nodes, and Appinite uses NLU 
to identify relevant relationships in its UI knowledge graph. 
Complex relationships exist between elements at many levels 
in a UI hierarchy, and ParamMacros and the Sugilite suite take 
different approaches to identifying those relationships. 

AutoVCI [8] and VASTA [7] are two other single-
demonstration PBD systems for creating automation for 
speech requests. Similar to Sugilite, both automatically iden-
tify potential parameters by mapping text in a user’s natural 
language request to UI elements from the demonstration inter-
action sequence. Unlike Sugilite and ParamMacros, AutoVCI 
asks the user a sequence of strategic yes/no questions to help 
clarify the appropriate app, actions, and parameters. VASTA 
uses computer vision to identify from a UI screenshot the 
appropriate UI elements to interact with, instead of program-
matically interacting with the UI’s view implementation. 

Etna [36] collects user interaction traces on a website over 
time, essentially enabling it to work with multiple demonstra-
tions to identify common automation logic and parameters. 
ParamMacros instead uses only a single demonstration and 
relies on the user to explicitly specify parameters instead of 
trying to guess them. 

Savant [37] generates task shortcuts for user NL requests – it 
maps a user’s NL request to the best-matching app screen from 
the Rico dataset [38] and fills in textfields based on parameters 
in the NL. With Savant, the possible task shortcuts that can be 
created are based on the apps and interaction traces available in 
the Rico dataset, and the parameters the researchers manually 
defined. In contrast, ParamMacros can potentially support 
previously unseen UIs and automation tasks because it relies 
on the end-user to provide a demonstration and parameters. 



D. Data and Models for UI Automation 

Prior work has also explored natural language processing 
approaches for interpreting a user’s natural language requests 
and performing automation on a user interface. In [39], the au-
thors collect datasets of user natural language requests and the 
corresponding actions that should be performed on a mobile 
UI. They then train transformers to extract relevant language 
and UI properties and then ground the language in the UI. 
FLIN [40] explores a semantic parser approach to map a user’s 
natural language to the most relevant high-level conceptual 
action on the given website. ParamMacros leverages built-
in heuristics and user-provided custom demonstrations rather 
than models trained on large datasets. 

E. Question-Answering Systems 

Question-answering systems [41] take a user’s natural lan-
guage query as input, identify potentially relevant documents 
(e.g., websites on the web), and then search through those 
unstructured documents to find the best answer. Although these 
AI techniques are powerful, there will be situations where 
they do not produce the answer the user wants. ParamMacros 
allows users to create custom automation for their specific 
needs that are not met by an existing machine learning model. 

F. Natural Language and Data 

Natural language interfaces to databases (NLIDBs) [42] 
enable end-users to query databases without needing to under-
stand structured query languages like SQL. NLIDBs inherently 
only support answering questions about data that is already 
structured. Our work helps end-users create custom automation 
on-demand when there is no database already. 

Prior work also explores natural language interfaces for 
data visualizations [43]–[45]. DataTone [45] is an NLIDB that 
allows flexibility for ambiguious natural language queries. The 
system identifies tokens in the NL that it thinks are ambiguous 
and their possible interpretations in the context of the database. 
DataTone offers a parameter-based UI (a parameter per token) 
and allows the user to select parameter values to run their 
query on, similar to ParamMacros’s UI. 

CrossData [46] identifies relationships between a writer’s 
prose and embedded tables and charts – automatically ex-
tracting data values and allowing writers to explore alternative 
properties. CrossData identifies parameters and values in prose 
automatically using NLP techniques, whereas in our work we 
ask users to identify parameters themselves. 

III. SYSTEM USAGE SCENARIO 

ParamMacros enables end-users to create custom param-
eterized macros for answering questions about content on 
websites. In this section, we will use an example to illustrate 
the process of creating such macros. The process consists 
of two steps for end-users: 1) identifying the pieces of a 
concrete question that can generalize and expressing these 
through parameters and alternative values, and 2) creating the 
automation macro through programming-by-demonstration, by 

giving an example of the correct answer for a particular set of 
parameter values. 

Alice is a baseball fan and frequently asks questions about 
player statistics, for example, “How many home runs did 
Vladimir Guerrero Jr. have?”, “What was the most triples 
anyone had?”, and “For the player who had the most stolen 
bases, how many walks did they have?”. She decides to use 
ParamMacros to create automation macros to answer these 
kinds of questions from data on the Major League Baseball 
(MLB) statistics web page12 . 

A. Generalizing a question 

Alice starts by creating an automation macro to answer 
a specific question: “How many home runs did Vladimir 
Guerrero Jr. have?”. She knows she might want to ask similar 
questions in the future about other players, too. She expresses 
this question variation in the system interface by highlighting 
“Vladimir Guerrero Jr.” with her cursor to create a parameter 
(Figure 1A). This parameter (which she names “player”) 
replaces “Vladimir Guerrero Jr.” and serves as a slot to rep-
resent any MLB player’s name. She now needs to express the 
possible MLB player names. ParamMacros proposes potential 
parameter values (Figure 1B), which it extracted from the 
MLB website. Alice reviews the different options, sees that the 
first two radio buttons list the player names she was expecting, 
and chooses the first one (e.g., V Guerrero, S Perez, J Abreu). 
This identifies the possible values for the player parameter. 

Alice knows that she also might want to ask this kind of 
question not only about home runs, but about any baseball 
statistic. She therefore also parameterizes “home runs” to a 
parameter named statistic and selects an appropriate auto-
extracted parameter value list (e.g., “Home Runs”, “Hits”, 
“Doubles”) (Figure 1C). Alice now has the generalized ques-
tion “How many <statistic> did <player> have?” that rep-
resents all the questions she might ask about any statistic for 
any player. 

B. Creating an automation macro 

Alice can now create an automation macro for her gen-
eralized question. To do this, Alice needs to provide a 
demonstration of how to answer a particular instance of the 
question. ParamMacros’s inference engine will then infer a 
generalized automation macro from that single demonstration, 
through a process described later in this paper (section IV). 
Alice demonstrates how to answer her original question “How 
many Home Runs did V Guerrero have?” through Param-
Macros’s demonstration interface (not shown, but similar to 
the execution interface in Figure 2). She provides the context 
for the demonstration by selecting Home Runs from the 
<statistic> parameter dropdown menu and V Guerrero from 
the <player> parameter dropdown menu. She then clicks 
the “Start recording” button. Now she searches the page 

1Using a replica of https://web.archive.org/web/20220201043626/https:// 
www.mlb.com/stats/ 

2Although data in this scenario is tabular, our system also works with 
websites containing other kinds of hierarchically structured data. 
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How many did have? home runs 
statistic 

Vladimir Guerrero Jr. 
player 

Choose a set of parameter values: 

V Guerrero, S Perez, J Abreu, R Devers, … 

Guerrero, Perez, Abreu, Devers, … 

Vladimir, Salvador, Jose, Rafael, … 

Vladimir, V Guerrero, Guerrero 

Vladimir 

None of these 

Home Runs 
Hits 
Doubles 

Batting Average 
Walks 

Strikeouts 
… Select 

A 

B 

C 

Triples 

Stolen Bases 
Caught Stealing 

Fig. 1. An illustration of ParamMacros’s UI for parameterizing natural language queries. The user has chosen to (A) generalize “Vladimir Guerrero Jr.” to 
make the parameter player and (C) generalize “home runs” to parameter statistic. The system proposes possible alternative values (B) for each parameter for 
the user to select from. 

for the correct answer (the “HR”—short for Home Runs3— 
column value for Vladimir Guerrero), selects the text (48—the 
correct value), and clicks “Extract”. She stops recording the 
demonstration and ParamMacros generates the macro. 

How many did have? 

statistic player 

Hits R Devers 

Program output: 165 

PLAYER H 2B 3B HR 

Salvador Perez C 169 24 0 48 

Jose Abreu 1B 148 30 2 30 

Rafael Devers 3B 165 37 1 38 

Vladimir Guerrero 1B 188 29 1 48 

Major League Baseball Statistics 

Fig. 2. An illustration of ParamMacros’s execution interface and the Major 
League Baseball statistics website. When the user runs the generated macro 
with the inputs <statistic>=Hits and <player>=R Devers, it returns and 
highlights the correct answer, 165. 

Alice now tests the macro to make sure it behaves as she 
intended. She starts by running the macro with the parameter 
values <statistic>=Home Runs and <player>=V Guerrero 
that she used in her demonstration and sees that the output, 
48, is correct. She also sees that the macro highlighted the 
answer location on the page in yellow. She then tries running 
the macro on different sets of parameter values to make sure it 
generalized correctly. For example, she runs the macro using 

3Our inference algorithm discovers that “HR” corresponds to “Home Runs” 
because the “HR” UI element contains a visually hidden UI element with the 
text “Home Runs”. 

<statistic>=Hits and <player>=R Devers and is pleased to 
see that the macro returns the correct answer, 165 (the “H” 
column value for Rafael Devers) (Figure 2). 

C. Program description 

Although the inferences in the above example were correct, 
it is important to consider how users can recover from incorrect 
inferences. ParamMacros supports this through an interface 
that represents a high-level description for each macro. Each 
description explains the logic for which element is selected for 
each program step, and whether it depends on any parameter 
values. For example, the program description for “For the 
player who had the <most/least> <stat1>, what was their 
<stat2>?” (Figure 3A), explains that the entry (e.g., row) to 
select is determined by the entry whose <stat1> parameter 
value is the <most/least>, and that the <stat2> parameter 
specifies which attribute (e.g., column) value to print out. We 
show a comparable kind description for “filter” rules, where 
the entry to select is determined by a particular parameter. 

Radio buttons show alternative selection rules (e.g., in 
Figure 3A to ignore the <stat2> parameter and always just 
print out from the Batting Average column) if Alice believes 
the default logic is wrong. The ability to adjust selection rules 
could be useful if there were ambiguity in the demonstration 
(e.g., if Alice had selected “Hits” for both <stat1> and 
<stat2>, the inference engine would not know if the value 
to print out should be <stat1> or <stat2>). 

D. Refining an automation macro to support edge cases 

As Alice creates her macro to answer the query “For 
the player who had the <most/least> <stat1>, what was 
their <stat2>?”, she decides that in addition to the list of 
auto-extracted statistics for <stat2> (e.g., Home Runs and 
Strikeouts), she would also like to ask about the player’s 
“position” (i.e., their role on the team, such as pitcher, second 
base, outfield). However, when she runs her macro, she realizes 



Main Program 

Click 

Influenced by: 

stat1 
None 

Print 

Entry determined by: 
Superlative: most / least 

over stat1 Doubles None 

Take attribute: stat2 Batting Average 

Refinement Program 1 (Specifically for stat2 = Position) 

Click 

Influenced by: 

stat1 
None 

Print 

Entry determined by: 
Superlative: most / least 

over stat1 Triples Walks Strikeouts Caught Stealing None 

1 

2 

1 2 

A 

B 

Fig. 3. Program description for “For the player who had the <most/least> <stat1>, what was their <stat2>?” The program (1) first clicks a header in the 
statistics table to sort the data, and then (2) prints out a value from the table. (A) General program logic used for all parameter input values except <stat2> 
= Position. (B) Logic generated from the user’s refinement demonstration; used only when the user runs the program with <stat2> = Position. 

it only returns the correct answer for the original statistic 
values and not for <stat2 = position> (the word “position” 
does not appear as text on the page, so our algorithm does not 
know where to find the answer; explained more in section IV). 

To work around this problem, Alice creates a refine-
ment demonstration to create entirely separate program logic 
specifically for when the parameter <stat2> equals “position”. 
Alice first specifies the single parameter and value pair that she 
wants to create the refinement demonstration for when <stat2 
= position>. She then records the demonstration, using the 
same process as she has in the past. The updated macro is 
now comprised of two subprograms (Figure 3). Now when 
Alice runs the macro, it will run “Refinement Program 1” if 
Alice has set <stat2> to “position”; otherwise it will run the 
original “Main Program”. The macro now correctly outputs the 
position for questions of the form “For the player who had the 
<most/least> <stat1>, what was their <stat2 = position>?”. 

IV. INFERENCE ALGORITHM 

ParamMacros’s inference algorithm takes advantage of com-
mon patterns in the Document Object Model (DOM)—a tree 
that represents the webpage content. ParamMacros identifies 
potential parameter values within the website DOM and infers 
how users’ actions may generalize to new parameter values. 

A. Parameter values 

1) Proposing candidate parameter values: When the user 
selects text from their question to parameterize, ParamMacros 
tries to identify other possible values for this parameter. Our 
algorithm first uses fuzzy string matching to find the best on-
page match for the selected text above a minimum threshold. 

If an on-page match for the user’s sample parameter value 
is found, ParamMacros begins to search for other possible 

The Food Store 
FRUITS 

Apple 
Banana 
Pineapple 

VEGGIES 
Broccoli 
Carrot Common Prefix XPath: 
html>…>.section>.fruit 

The user selected “Apple” as a 
parameter. “Banana”,“Pineapple”, 

and “Fig” are alternates 

Fig

90¢ 

25¢ 

$2 

NEW $1 Suffix XPath: 
…>span.description 

Fig. 4. An explanatory illustration of our inference algorithm on an imaginary 
website titled “The Food Store”. Here, the user has selected “Apple” as a 
parameter in their NL query and wants “Banana”, “Pineapple”, and “Fig” to 
be alternative values. Our algorithm infers a common suffix across candidate 
parameter values and a common suffix across target elements. 

parameter values. For example, if the user asks “How much 
does one <Apple> cost?” on the page in Figure 4 and selected 
“Apple” as a parameter, they might want the algorithm to infer 
that “Banana”, “Pineapple”, and “Fig” are alternative values. 
Our algorithm first builds an XPath45 query that uniquely 
matches the element. It builds an index-based XPath (e.g., not 
classes alone) since this is the easiest way to ensure a unique 
XPath. For example, in Figure 4, a unique path for “Apple” 
might be html >. . . > .section[1] > .fruit[1] > 
div[1] > span[2]. A key insight of our algorithm is that 

4XPath is a language for querying the DOM based on HTML attributes 
and hierarchy; https://en.wikipedia.org/wiki/XPath 

5For the sake of brevity, we use a CSS query syntax in this paper rather 
than XPath (which our system uses). In this syntax, body > div[3] > 
.cl1 > span.cl2 matches an element with the tag span and class cl2 
that is a direct child of an element with class cl1 that in turn is a direct child 
of the third div (index 3) inside a body element. 

https://en.wikipedia.org/wiki/XPath


Unique XPath html > ... > .section[1] > .fruit[1] > div[1] > span[2] Apple

html > ... > .section[1] > .fruit[1] > div[index] > span[2] Apple, Banana, Pineapple 

Generalized XPath html > ... > .section[1] > .fruit[1] > div[index] > span.description Apple, Banana, Pineapple, Fig

Matches 

Generalize 

Generalize 

A 

B 
Matches 

Matches 

Fig. 5. The process to transform a single value’s XPath to a generalized XPath formula that works across parameter values. The algorithm starts with a 
unique XPath matching the original parameter value, “Apple”. (A) The algorithm then identifies possible “iteration points” that generate alternative parameter 
values; here we show one possible iteration point, which generalizes the specific node div[1] to div[index], resulting in the XPath formula now also 
matching “Banana” and “Pineapple”. (B) The algorithm then tries to make each XPath node more robust, opting for more semantically meaningful selectors. 
Here, the algorithm generalizes > span[2] to > span.description, resulting in the XPath formula now also matching “Fig”. 

other candidate values often have similar paths. Replacing 
div[1] with div[2] in the above XPath would yield the 
text element for “Banana” (and div[3] yields “Pineapple”). 

We refer to the first portion of the query (colored red from 
html to .fruit[1]) as the “common prefix”. It represents 
the path to the element that contains the list of items. The 
second portion (colored purple: div[1]) points to the specific 
element that contains the text “Apple”, the image of the apple, 
and the price. We refer to this as the “iteration point”. The last 
portion (colored blue: > span[2]) points to the portion of 
that specific element with the “Apple” text (to exclude the 
image and any other irrelevant elements). We refer to this as 
the “common suffix”. 

Our algorithm iteratively determines the common prefix, 
iteration point, and common suffix. First, the initial XPath 
query it generates uses indices to identify unique elements 
(as we describe in the next subsection, some of these will 
be replaced with more robust class queries). Next, it tries to 
identify an ideal iteration point (Figure 5A). There are many 
possible iteration points for a given XPath query. In the above 
query for Figure 4, placing the iteration point at .fruit, 
for example, might yield “Apple” and “Broccoli” (the first 
children of similar-looking elements) as possible values. To 
disambiguate, our algorithm first iterates through all possible 
iteration points and ranks them by number of valid results 
(whether the common suffix leads to a text node). We ask the 
user to make the final decision about which candidate values 
to use (if any) since it often is impossible to accurately infer 
the user’s intent. 

Once the user selects one of the proposed parameter values 
lists (or manually writes values), if the user edits or adds any 
values, the algorithm goes through a similar process to identify 
the parameter values’ locations (i.e., XPaths) on the page. It is 
important to know the parameter values’ locations on the page 
because later on, our program inference algorithm leverages 
parameter values’ locations for identifying which parameters 
a given demonstration event might depend on, if any. 

B. Generalizing parameter value XPaths 

Now that we have attempted to find XPaths for all of the 
parameter values, the algorithm now tries to generalize these 
XPaths to have a common XPath suffix (Figure 5B). This is 

important because later on the inference algorithm relies on 
parameter value XPaths having the same suffix when it creates 
generalized rules. Parameter values that visually look similar 
will not necessarily have the same XPath suffix initially. In 
the example from Figures 4– 5, the first step of our inference 
algorithm produced > span[2] as the XPath suffix, to select 
the second child of the parent element (as the fruit images are 
the first child of each). This would match “Apple”, “Banana”, 
and “Pineapple”. It would not match “Fig”, however, because 
the “Fig” text is the third child instead of the second child 
(the ‘NEW’ badge is the second child). 

We want to create automation macros that are robust to these 
kinds of DOM variations. To create a generalized XPath suffix 
that matches as many parameter values as possible, we traverse 
through the generated XPath one level at a time and try to find 
a common class or attribute name across parameter values 
to replace that XPath node with. Classes and attributes are 
likely more semantically meaningful than the default index-
based XPath and are robust to index offsets. For the example in 
Figure 4, our algorithm would therefore find the more general 
suffix > span.description (Figure 5B). 

C. Inferring parameter-based automation logic 

The algorithm then tries to infer which parameters (if any) 
the user might want their program to depend on. It does this by 
looking for correspondences between the user’s demonstration 
events and the XPaths of the parameter values the user selected 
by leveraging two techniques, described below. 

1) Inferring row/column-based selection: For a given 
demonstration event, the algorithm tries to identify if the 
target element is within a table (either an HTML table or a 
div-based table). The algorithm tries to identify semantically 
similar siblings (i.e., potential rows and columns) by traversing 
up through the DOM hierarchy and at each level computing 
the children nodes’ similarity with each other, using Dice’s 
coefficient to measure the string similarity of the nodes’ 
outerHTML (i.e., the node and its full subtree). We then use 
the two DOM levels with the highest similarity scores and 
consider these as our rows and columns (we discuss limitations 
of this approach in section IV-D), and identify where the target 
element falls within these rows/columns. 



Now the algorithm can try to infer if the target element’s row 
and/or column could be based on the specified parameter/value 
pairs. For identifying whether the selected target element 
column could correspond to a parameter, we essentially try 
to determine if the table’s columns correspond to a particular 
parameter’s set of values by trying to align columns with 
parameter value elements. Once we identify which parameter 
p’s values (if any) the table’s columns correspond to, we 
now check if the value the user assigned to parameter p 
for this demonstration matches the target element’s column’s 
parameter value. If these align, then we infer that the target 
element’s column is determined by parameter p. 

The algorithm relatedly uses its knowledge about the table 
and selected parameter/value pairs to infer the reason that the 
target element’s row was selected. It checks to see 1) if a 
selected parameter value appears as text in the row, acting as 
a filter for the row (e.g., filtering by the player name) and 2) if 
the selected row satisfies a superlative for one of its columns 
(e.g., row with the highest number of Home Runs). 

2) Inferring entry-based selection: If the algorithm cannot 
find a meaningful row/column pattern, it tries to determine if 
the target element is an “attribute” associated with a specific 
parameter value. In Figure 4, if the user asks “What is the price 
of <fruit>?” and demonstrates the answer “$2” for <fruit 
= Pineapple>, the algorithm infers that “$2” was printed 
because it was “closer” to “Pineapple” than to any of the 
other fruit values, i.e., because $2 and Pineapple have the 
same parent, whereas $2 and the other fruits only share the 
grandparent html >. . . > .section > .fruit. 

Our algorithm then identifies the relative XPath relationship 
between the parameter value and the target element so it can 
form a general rule to apply for other parameter values in the 
future. For example, here, the XPath suffix for the “Pineapple” 
text is > span.description and the XPath suffix for 
Pineapple’s price ($2) is > span[3]. The inferred rule would 
be to get the XPath for the input parameter value (e.g., Apple, 
Banana) and replace span.description with span[3] 
to find the new target element (the price) to return to the user. 

At this point, this inferred rule will work if the macro is 
run with <fruit> set to “Apple”, “Banana”, or “Pineapple”, 
but will return the wrong answer when run for “Fig”. This is 
because the suffix for Apple, Banana, and Pineapple’s price is 
> span[3] but the suffix for Fig’s price is > span[4] 

(because of the offset due to the ‘NEW’ badge). Therefore, 
the XPath the macro infers for Fig’s price would erroneously 
return the “Fig” label itself. 

To be robust to index offsets like this, the algorithm now 
tries to generalize this XPath suffix using a similar approach 
to section IV-B. However, a key difference is that since we are 
generalizing the demonstration target element’s XPath suffix, 
we do not have a ground truth target element for each of the 
other parameter values. Therefore, we simply try to generalize 
the XPath suffix such that some target node is matched for 
each parameter value, and we opt to use classes and attributes 
which are semantically more meaningful than indices. For the 
example in Figure 4, the algorithm generalizes the target XPath 

suffix to be > span.price. 

D. Limitations 

1) Natural language understanding: The current algorithm 
does not leverage any natural language understanding (NLU) 
beyond simple text string matching. This means that if the 
user provides a parameter value that does not appear on the 
page, then no inferences will be made for that value. 

2) Identifying rows and columns: The current approach for 
identifying table rows and columns looks for levels of the 
DOM where the children nodes have high similarity (note: this 
is to identify “semantic” tables, e.g., implemented with divs). 
If more than two levels of the DOM have high similarity 
scores, then our algorithm might choose the wrong two levels 
to use as its rows and columns. For example, the Forbes 
billionaires website 6 shows one semantic table (the hundreds 
of rows of billionaires), but the table is actually broken up by 
ads into 15-row subtables. Our algorithm currently identifies 
the 15-row subtables and the individual rows as the two levels 
with the highest similarity scores, therefore not considering 
the table columns in its inference. 

3) Identifying parameter attributes from non-tabular hierar-
chically structured data: Our algorithm is currently not well-
equipped to extract a parameter-based attribute from a list 
of entries, for example to answer questions like “What is 
the <attribute> of <movie>?” on the IMDb website7 , where 
<attribute> could be “rating”, “duration”, “gross”, etc. This 
is because the algorithm currently assumes a set of attribute 
values will appear side-by-side as siblings or equivalent rela-
tives. This is less often the case for non-tabular hierarchically 
structured data, for example, on the IMDb website, a movie’s 
duration and genre are sibling nodes, but user rating, director, 
and votes appear in other parent nodes within a given entry. 

4) Operating across multiple pages: The algorithm cur-
rently only operates on a single page of a website. It would 
be useful to support operations across multiple pages of a 
website, in particular searching for and performing superlative 
operations across results that are paginated (e.g., multiple 
pages of MLB players or movie titles). 

V. USER STUDY SETUP 

We conducted a lab study as a first step to assess the 
usability and usefulness of ParamMacros’s natural language 
parameterization and program creation workflows. 

A. Participants 

We recruited 12 participants from our University mailing 
lists and Slack workspaces. Participants (5 female, 6 male, 
1 non-binary) were ages 21–42 (median 28). At the time of 
the study 9 participants were students (1 undergraduate, 5 
master’s, 5 PhD), 1 a technology consultant, 1 a fundraising 
professional, and 1 a senior product manager. One participant 

6https://web.archive.org/web/20220401164932/https://www.forbes.com/ 
billionaires/ 

7https://web.archive.org/web/20220327010150/https://www.imdb.com/ 
search/title/?count=100&groups=oscar best picture winners&sort=year% 
2Cdesc&ref =nv ch osc 
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reported no programming experience, three reported less than 
1 year, two reported 1–2 years, two reported 2–5 years, one 
reported 5–10 years, and three reported more than 10 years 
of experience. The study lasted one hour and we compensated 
participants with a $25 USD Amazon gift card. 

B. Study Design 

Our user study involved two meaningfully different sites: the 
Forbes billionares list6 and an IMDb movie list7 . The Forbes 
website included a table of the top 25 billionaires and their 
metadata (e.g., age, country, net worth), and enabled us to 
evaluate queries with multiple parameters. The IMDb website 
included a list of 25 movies and their metadata (e.g., rating, 
director, gross revenue), and enabled us to evaluate queries on 
non-tabular hierarchically structured data. We used replicas 
of the original sites in order to work around some of our 
system’s inference limitations. The goal of this study was to 
understand how users interact with ParamMacros within the 
scope of inferences it supports. We used a between-subjects 
design. Participants were assigned to one of the two websites 
(six participants per website). The study included three stages: 

1) Enumerating Queries: We showed each participant their 
assigned website and asked them to write 5 queries that could 
be objectively answered using the content on that website. 

2) Parameterizing Queries: We showed participants a tu-
torial video parameterizing the query “For the person with 
the most home runs, how many did they have?” on the 
Major League Baseball website. We showed how to gen-
eralize “home runs” and “most” to parameters <statistic> 
and <superlative>, respectively. We then gave each partic-
ipant three queries to parameterize: two queries they wrote 
themselves and one pre-determined query (identical across 
participants per given website)8 . This allowed us to see variety 
in how people parameterize different queries, as well as 
observe patterns for a common query. 

3) Creating a program: We showed participants a tutorial 
video creating a demonstration and validating the generated 
program. We then presented participants with two pre-made 
parameterized queries to create programs for. We chose to 
use pre-made queries to ensure they were domain-appropriate 
for the webpage, sufficiently challenging, comparable across 
users, and supported by our inference engine. The queries for 
Forbes were “What is the <metadata> of the <most/least> 
<age/net worth> billionaire in <country>?” and “What is 
<person>’s net worth?”. The queries for IMDb were “What 
was the rating for <movie>?” and “What was the gross for 
the <most/least> grossing movie?”. 

After participants completed all three stages, we adminis-
tered a seven-point Likert scale survey regarding ease of use 
and usefulness, and conducted a semi-structured interview. 

VI. USER STUDY RESULTS 

Overall, participants found ParamMacros’s program creation 
process to be intuitive and useful. We found that the param-

8 One participant per website did not complete the common pre-determined 
task due to an adjustment to the study design. 

eterization process is promising but some participants needed 
time before becoming comfortable with it. 

A. Parameterizing questions 

1) Parameterization patterns: The target webpage provided 
important context that helped ground participants’ param-
eterizations. Participants often parameterized proper nouns, 
attributes, and numbers in questions. As an example, for 
the common question we presented for Forbes, “Who is the 
youngest billionaire in the United States?”, all five8 par-
ticipants parameterized “youngest” to be a superlative and 
“United States” to be a country. For the common question 
for IMDb, “What was the rating for Nomadland?”, all five8 

participants parameterized “Nomadland” to be a movie, and 
three of five participants parameterized “rating” to be an 
attribute, allowing alternative values such as “gross”, “genre”, 
and “runtime”. Two participants also parameterized generic 
terms to allow more specific values, e.g., P9 parameterized 
“movie” to have alternative values “thriller” and “action”. 

In addition to using parameters to allow alternative values 
with different meanings, three participants created parameters 
to allow flexibility in word choice and phrasing. For example, 
P9 parameterized “How long” to also allow the value “What’s 
the length of”. These participants understood that “there is no 
one way to make a statement or to ask a question” (P7) and 
the potential implications of that. 

Two participants commented that there were multiple gran-
ularities at which they could parameterize questions, and 
they were unsure what granularity to choose. For example, 
a coarse-grained parameterization of “What was the rating for 
Nomadland?” would simply parameterize “Nomadland” to any 
kind of “movie”. A finer-grained parameterization would also 
parameterize “rating” to “attribute” (e.g., genre, gross), or even 
parameterize “What” to different question types. 

2) Alternative values: Participants found auto-extracted al-
ternative values useful when they matched the user’s expec-
tation. Participants commonly leveraged auto-extracted values 
when parameterizing proper nouns, e.g., movie titles (all six 
IMDb participants) and countries (five of six Forbes partici-
pants). This is likely because these proper nouns are distinct, 
so our algorithm was successful at finding them on the page. 

In other cases, participants noticed that the extracted values 
were not meaningful or that no extracted values were returned. 
In these cases, participants just wrote their desired alterna-
tive values manually. To improve confidence amongst users 
and provide meaningful alternative values in more situations, 
future work should leverage natural language understanding 
to better interpret the website and parameter of interest, and 
should embed context alongside the candidate values to reveal 
their source (e.g., their location on the page). 

3) Understandability: Participants had varying opinions 
on the parameterization workflow. Nine of 12 participants 
responded that they “somewhat agree” (5), “agree” (3), or 
“strongly agree” (1) on a seven-point Likert scale that the 
parameterizatiton workflow was easy to use. Some participants 
said it took them “some time to figure out what a parameter 



actually means” (P10) but that they better understood after 
seeing parameters applied later in the program creation stage. 

B. Creating a program 

All Forbes participants successfully created correct pro-
grams for each of the two program creation tasks (with the 
exception of P5, whose browser stopped working during the 
study). All IMDb participants successfully created correct 
programs for the “What was the gross for the <most/least> 
grossing movie?” task. Note that during the study we discov-
ered an inference limitation in automating the other IMDb 
task (“What was the rating for <movie>?”)—participants’ 
programs returned the correct rating for some movies, but for 
others exhibited an off-by-one error, returning the rating for 
the next movie in the list. 

Participants had largely positive feedback on the program 
creation process, saying it was “intuitive” (P2, P3) and that 
“starting the recording, clicking different areas, extracting, 
that made a lot of sense to me” (P1). 11 of 12 participants 
responded that they “somewhat agree” (4), “agree” (4), or 
“strongly agree” (3) on a seven-point Likert scale that the 
demonstration workflow was easy to use. 

C. Usefulness 

Participants were positive about the usefulness of the over-
all system. All participants responded that they “somewhat 
agree” (3), “agree” (6), or “strongly agree” (3) on a seven-
point Likert scale that the system was useful for creating 
macros. Seven participants thought that these macros would 
be useful for answering questions about data in spreadsheets. 
One participant (P1) said for her work in fundraising she 
frequently asks questions like “Who’s giving the most?” when 
creating strategies for reaching out to donors. Two participants 
(P5 and P12) commented that they ask questions like “Which 
participant had the highest <x>, and how old were they?” in 
their user research. Two participants said they use intelligent 
voice assistants for personal tasks (e.g., playing music on 
Spotify, searching for bus routes) and would appreciate the 
ability to customize and correct errors. 

D. Threats to Validity 

Since we conducted a lab study and provided participants 
with predetermined websites, participants might not have had 
as intrinsic a motivation or understanding of meaningful ques-
tions to be asked or answered on the website, as compared with 
websites they encounter in the wild. In future work, it would 
be useful to study automation systems like ParamMacros in the 
wild to further assess usability and understand usage patterns. 

VII. DISCUSSION AND FUTURE WORK 

Parameterizing natural language and creating a demonstra-
tion seems to be a promising approach for enabling end-
users to create custom question-answering automation. Most 
of our user study participants were able to create meaningful 
question parameterizations and working programs. Although 
it took some participants some time to understand what parts 

of their questions made sense to parameterize, we believe this 
is a reasonable learning curve and suspect that end-users who 
already know the kinds of questions they want to automate 
will know what parameterizations are helpful. 

In practice, there is diversity in how people may phrase 
the same question, but parameterized questions follow a very 
specific phrasing. To support natural speaking patterns, an 
important area of future work would be to use natural language 
understanding to map end-user freeform questions to the filled-
in parameterized questions they best match. 

Our current inference algorithm focuses on structural pat-
terns in the website DOM to identify candidate parameter 
values and to generalize the user’s demonstration. This works 
for content that follows a consistent DOM structure, but has 
limitations if there is variation. Incorporating natural language 
understanding [5] would enable us to uncover semantic pat-
terns that cannot be found based on structure alone, which 
would help identify alternative parameter values and more 
intelligently infer likely target elements. Regardless, there will 
always be edge case data or patterns in the DOM that an 
inference algorithm will not correctly understand. To still 
allow users to create custom automation in these situations, 
PBD systems may want to enable users to write small chunks 
of code to extract the desired data [47]. 

ParamMacros assumes the user largely wants to generalize 
the same behavior across all parameter values. If the user 
instead wants drastically different behavior in a particular 
situation, the user can create a refinement demonstration which 
simply just creates a different program to run in that situation. 
Future work should explore more holistic approaches for 
enabling the end-user to encode conditional logic, perhaps 
leveraging or building on approaches in Pumice [6]. 

VIII. CONCLUSION 

We propose leveraging end-users to parameterize natural 
language queries that they want to create automation macros 
for. End-users know the kinds of questions they want their 
automation macro to support, so we leverage their under-
standing of their goals to identify meaningful parameters 
and possible values. A meaningful set of parameters and 
their values provides programming-by-demonstration systems 
a scope of the set of tasks they should support and hints on 
how to generalize. We designed a PBD system, ParamMacros, 
that applies this approach and enables end-users to create 
custom automation macros for answering questions about 
website content. End-users identify parameters in their natural 
language question and then create a demonstration of how 
to answer that question on the website. Results from our user 
study suggest that users can identify meaningful parameters in 
natural language questions and would find a parameterization 
and PBD workflow useful for their automation needs. 
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