
Think-Aloud Computing: Supporting Rich and Low-Efort
Knowledge Capture

Rebecca Krosnick∗ Fraser Anderson Justin Matejka
University of Michigan Autodesk Research Autodesk Research
Ann Arbor, MI, USA Toronto, ON, Canada Toronto, ON, Canada
rkros@umich.edu fraser.anderson@autodesk.com justin.matejka@autodesk.com

Steve Oney Walter S. Lasecki Tovi Grossman
University of Michigan University of Michigan University of Toronto
Ann Arbor, MI, USA Ann Arbor, MI, USA Autodesk Research
soney@umich.edu wlasecki@umich.edu Toronto, ON, Canada

tovi@dgp.toronto.edu

George Fitzmaurice
Autodesk Research
Toronto, ON, Canada

george.ftzmaurice@autodesk.com

∗This work was done while the author was an intern at Autodesk Research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specifc permission
and/or a fee. Request permissions from permissions@acm.org.
CHI ’21, May 08–13, 2021, Yokohama, Japan
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8096-6/21/05. . . $15.00
https://doi.org/10.1145/3411764.3445066

ABSTRACT
When users complete tasks on the computer, the knowledge they
leverage and their intent is often lost because it is tedious or chal-
lenging to capture. This makes it harder to understand why a col-
league designed a component a certain way or to remember require-
ments for software you wrote a year ago. We introduce think-aloud
computing, a novel application of the think-aloud protocol where
computer users are encouraged to speak while working to capture
rich knowledge with relatively low efort. Through a formative
study we fnd people shared information about design intent, work
processes, problems encountered, to-do items, and other useful
information. We developed a prototype that supports think-aloud
computing by prompting users to speak and contextualizing speech
with labels and application context. Our evaluation shows more
subtle design decisions and process explanations were captured
in think-aloud than via traditional documentation. Participants
reported that think-aloud required similar efort as traditional doc-
umentation.

CCS CONCEPTS
• Human-centered computing → Natural language interfaces.

KEYWORDS
Think-aloud, knowledge capture, documentation, process

ACM Reference Format:
Rebecca Krosnick, Fraser Anderson, Justin Matejka, Steve Oney, Walter
S. Lasecki, Tovi Grossman, and George Fitzmaurice. 2021. Think-Aloud
Computing: Supporting Rich and Low-Efort Knowledge Capture. In CHI
Conference on Human Factors in Computing Systems (CHI ’21), May 08–
13, 2021, Yokohama, Japan. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3411764.3445066

1 INTRODUCTION
As a user interacts with software, they often leverage a vast amount
of knowledge and skills to achieve high-level goals and intent within
certain constraints and contexts. However, when they complete
their task, the resulting artifact (e.g., code, 3D model, slide deck)
contains little trace of the user’s process or design rationale. This
makes it harder for colleagues or the user’s future self to understand
why certain design decisions were made, how workfows were
applied, and what elements of the artifact are important. This can
result in wasted efort, misinterpreted designs, and steeper learning
curves.

While there exist common documentation practices that aim to
capture some of this information (e.g., code comments, slide notes),
they often require additional efort or are not able to capture the
full breadth of information that may be useful to others. Regardless
of the kind of knowledge, its full potential is often not realized
because it remains within the mind(s) of a single or select few team
members. An alternative possible approach to capturing important
information is to encourage users to speak in the moment, a tech-
nique LiveSnippets [18] uses for capturing narration of a person’s
travels, cooking, or product reviews for the purpose of experience
writing.

We introduce think-aloud computing, a new knowledge capture
approach where the computer encourages users to think aloud and
share their goals, knowledge, and process as they work. This ap-
proach is a novel application of the think-aloud method typically
leveraged in usability studies to learn what a user’s process and men-
tal model of a tool is [24]. With this approach, users can document a

https://doi.org/10.1145/3411764.3445066
https://doi.org/10.1145/3411764.3445066
https://doi.org/10.1145/3411764.3445066
mailto:permissions@acm.org
mailto:tovi@dgp.toronto.edu
mailto:justin.matejka@autodesk.com
mailto:george.fitzmaurice@autodesk.com
mailto:wlasecki@umich.edu
mailto:fraser.anderson@autodesk.com
mailto:soney@umich.edu
mailto:rkros@umich.edu

CHI ’21, May 08–13, 2021, Yokohama, Japan Rebecca Krosnick et al.

wide variety of rich information with low efort, concurrently while
doing the task, or retrospectively as they refect on their work.

We conducted a formative study where we asked participants to
speak concurrently (i.e., as they worked) or retrospectively (i.e., after
they worked) over a 15-minute period, and found that useful and
distinct knowledge is shared in these two conditions. Based on prior
work and this study we present three components for a think-aloud
computing system: 1) prompting the knowledge worker to speak
and share useful information in a minimally distracting way, 2)
contextualizing the captured information in a meaningful way by
leveraging speech and software context clues, and 3) presenting the
knowledge appropriately for various use cases.

We built a proof-of-concept system instantiating these prompt-
ing, contextualizing, and presenting components to enable think-
aloud computing. A small widget encourages the user to speak by
helping them visualize how much they have spoken about certain
topics, and their audio is captured along with a screen recording
and meta-data for later review in a live-archive window. Through
an evaluation, we fnd that participants see benefts of this approach
without much cost, and novel information was captured.

The primary contribution of this work is the concept of think-
aloud computing, where a worker speaks (in an efort to capture their
knowledge and intent) while completing work on the computer.
To support this, we introduce techniques for explicitly eliciting
and interpreting their knowledge in real-time. This contribution is
motivated by a formative study, supported by a prototype designed
to encourage this behavior, and evaluated through a twelve-person
user study of the prototype and the approach overall.

2 RELATED WORK
This work is inspired by (and builds upon) think-aloud protocols,
as well as research in documentation practices in knowledge work,
context and speech capture, and live-streaming.

2.1 Think-Aloud (Background)
The think-aloud protocol is widely used in usability studies to un-
derstand participants’ thoughts, processes, and reasons for their
behavior [9, 24]. Using this protocol, researchers encourage users
to speak about whatever they are thinking as they perform a task
(e.g., what they are trying to do, why they are doing it, what they
may be feeling, etc.). The think-aloud protocol is widely used be-
cause it is a lightweight method to capture rich information about
participants’ mental processes and reasoning [16]. For instance,
researchers can observe that a user clicked the wrong button, and
that they understand they clicked the wrong button, because they
believed its blue color indicated ‘confrmation’ to them. Because of
the rich data the think-aloud protocol produces, it has become one
of the most popular tools to evaluate usability [48].

There are two approaches to the think-aloud process, which
can be used in combination: retrospective and concurrent [20, 44]
(alternatively referred to as refection-on-action and refection-in-
action [38]). In retrospective think-aloud, the participant verbalizes
their thoughts following the task. This approach places less cogni-
tive load on the user during the task and elicits more comments
about the fnal choices made, but may result in the user omitting
some information that is lost in the moment [20]. In concurrent

think-aloud, the user verbalizes thoughts while completing the task.
With this approach, there is slightly more cognitive load during the
task, especially for complex tasks, but more comments are elicited
regarding the process itself [43].

This work applies the think-aloud protocol outside of the context
of a study to capture thoughts, knowledge, process and decisions
as users work. It supports both concurrent and retrospective think-
aloud protocols to capture a wide breadth of information with
minimal impact to user performance.

2.2 Documentation and Process Capture
Much work has examined how to better capture the workfows,
decisions, and processes that users have while interacting with mod-
ern, complex software. Grossman et al.’s Chronicle project allows
users to capture screen recordings of their workfows, as well as
meta-data from instrumented applications, creating a rich, search-
able knowledge bank [12]. ScreenTrack [17] captures screenshots
and other software meta-data to provide a visual history of a user’s
work and help them retrieve relevant software, websites, and fles
when later resuming a task. Our think-aloud computing prototype
uses some of these techniques. MixT and Torta leverage similar
meta-data from a user’s demonstration and use it to automatically
generate tutorials that other users can beneft from [5, 30].

Beyond supporting learning, process capture has been explored
as a way to document rationale, design intent and history, and
refect on and share the creative process. Raison d’Etre enables
users to record and organize rationale and informal history in a
lightweight way by making recorded video interviews searchable
and organized [2]. TaskTracer monitors and captures high-level
workfow through UI events for later refection and exploration [8].
More recently, the maker community has been leveraging technol-
ogy to share their works-in-progress for feedback, to disseminate
their practices, and to encode the narrative or story of what they
are building [37, 42]. To facilitate design refection Co-notate en-
ables audio and video recording of a design activity, and allows
users to mark important events, such as ‘problems’, ‘ideas’, and
‘decisions’ [35], an approach our think-aloud computing prototype
also leverages.

For programming activities, team members’ design decisions
can often be found in chat messages with each other. Post-literate
programming takes advantage of this by letting users integrate
their Slack discussions as comments into their code [31]. Similarly,
Callisto stores and associates data scientists’ chat messages with
each other with elements in computational notebooks [45]. Other
programming environments let users insert multimedia comments
into their code to make documentation richer, for example narrated
programming sessions or code overviews [15].

This prior work demonstrates various values of documenting
and capturing how artifacts were created, and presents a variety
of useful techniques: context capture, real-time speech narration,
and real-time labeling. Think-aloud computing is the frst work to
leverage all of these techniques in one system.

2.3 Context and Speech Capture and Feedback
Being able to capture and record context in diferent situations
has been an active research area within ubiquitous computing and

Think-Aloud Computing: Supporting Rich and Low-Efort Knowledge Capture CHI ’21, May 08–13, 2021, Yokohama, Japan

HCI. The feld of lifelogging has made great strides in developing
technology to capture a users’ experiences and activities [39]. This
can be used as an assistive aid for people with memory impairments
to help them remember the past [21, 22], for self-refection [41], or
for improving health or happiness [25]. These systems often use
audio/video streams to document the sights, sounds, and speech of
the user and their environment [40].

Most similar to think-aloud computing is recent work, LiveSnip-
pets [18], which enables people traveling, cooking, or reviewing a
product to record their speech in-situ to draft a blog post for experi-
ence writing. During their experience, users can capture photos and
videos and provide a speech narration. LiveSnippets asks the user
domain-specifc scafolding questions to help guide their speech.
After they have captured their experience, users can then review
their speech contextualized with photos, videos, and other metadata
and fnalize the content for a blog post. Think-aloud computing
similarly enables users to record their speech and context but for a
diferent purpose – documenting information about their computer
work (e.g., creating slides, a 3D model, code). We employ a couple
diferent techniques: 1) subtle prompting through a visual widget,
as to not overly interrupt workers, and 2) real-time processing of
speech and software context to provide the user live feedback.

Recent advances in natural language processing have enabled
novel, robust speech capture use-cases [34, 47]. McGregor and
Tang explored the utility of introducing a personal audio assistant
into a meeting room, but found users were hesitant to directly
engage with it [29]. TalkTraces explored using audio capture to
track discussion themes and agenda items over time [3], giving the
team more context for their current and past meetings. Relatedly,
wearable technology has been employed to measure nonverbal
behaviors in individuals and groups and provide users feedback
[6, 19, 32]. No prior approaches actively monitor what is being
spoken, identify relevant information to the work-task at hand, and
prompt the users to elaborate.

2.4 Live-Streaming
In recent years live-streaming [36] has emerged as a popular way
for programmers [1, 4], gamers [13, 23], artists [11, 46], educators
[14], and other domain experts to engage audiences for social or
educational purposes, and to share their processes and knowledge.
Live-streamers typically share their screen and narrate as they per-
form tasks, which viewers can follow in real-time or later when
archived. Live-streaming is very related to think-aloud computing
as a knowledge capture approach because streamers share knowl-
edge, often tacit, in the context of tasks they are performing. Cur-
rently most archived live-streams are simply the video recording
along with viewer comments for each timestamp, making it difcult
for consumers to index the content. Recent work by Fraser et al. [10]
has explored automatically segmenting archived live-stream videos
into meaningful sections that the streamer can label to provide
consumers with a table of contents to ease navigation. StreamWiki
[26] helps streamers create summary content by enlisting their
viewers to create such content in real-time. Audiences provide real-
time feedback to live-streamers by expressing questions they have
and additional information they would like shared. Think-aloud
computing users work without a live audience, so an important

aspect of think-aloud computing systems is contextualizing users’
actions and speech in order to better prompt users to speak about
the right things at the right times.

3 FORMATIVE STUDY
We conducted a formative study to explore the potential value and
challenges of encouraging people to think aloud while working.
Specifcally, we wanted to understand the types of information that
people would share in retrospective and concurrent think-aloud
protocols, their attitudes toward speaking while working, and how
concurrent think-aloud would impact their performance and efort.

3.1 Participants and Tasks
We recruited 12 participants aged 22–50 (mean 35) years, three
identifed as female, nine identifed as male, from our organization
to participate in a 1-hour study. Participants received a $25CAD gift
card for their participation. We asked each participant to indicate
which task domains (coding, slide creation, 3D modeling) they were
comfortable with, and we assigned them a domain accordingly. Four
participants were assigned to each of the three domains.

Our intent with this study was to understand the breadth of
how think-aloud might be applicable across a range of computing
tasks. We chose three disparate domains to get insights into how
participants’ opinions and think-aloud patterns may vary based on
the task type. For example, coding is primarily text and language-
based whereas 3D modeling is primarily visual and spatial.

As the study tasks, participants were asked to create any content
of their choosing within their assigned domain. We also allowed
them to use any software or programming language of their choice.
Participants are referred to by C#, M#, S# for their coding, modeling,
and slide creation tasks respectively.

3.2 Procedure
The study was a mixed design, with each participant performing
one of three separate domains (between subjects; coding, slide
creation, 3D modeling), and each participant completing each of
the following two conditions (within subjects, with condition order
counterbalanced):

• Concurrent: Speak during 15 minute creation task
• Retrospective: Speak after 15 minute creation task, adding
information they felt was needed

For both conditions, participants were asked to imagine that
they or a future colleague would revisit the artifact that they were
creating and continue to work on it, learn from it, or otherwise
need to understand what they were doing. They were also told to
assume that the computer would capture all the information they
were speaking and that it would be associated with the artifact
when it was being revisited.

Following the tasks, participants were administered a short sur-
vey with 7-point Likert scale questions and participated in a short
a semi-structured interview.

3.3 Results
Overall, unique and useful information about user processes, de-
sign intent, and many other categories was captured from both

CHI ’21, May 08–13, 2021, Yokohama, Japan Rebecca Krosnick et al.

Figure 1: Participants’ ratings of how useful the information they shared was, by domain and condition. The 7-point Likert
scale results (between 1-Not Useful, and 7-Extremely Useful) have been aggregated into three categories: Not Useful (1, 2),
Moderately Useful (3, 4, 5), and Very Useful (6, 7).

Figure 2: Participants’ ratings of how confdent they were that they captured all the important information to share. The 7-
point Likert scale results (between 1-Very Not Confdent, and 7-Very Confdent) have been aggregated into three categories:
Not Confdent (1, 2, 3), Neutral (4), and Confdent (5, 6, 7).

the concurrent and retrospective think-aloud conditions. Partici-
pants reported that think-aloud requires efort but they believe the
information they capture will be useful.

3.3.1 Perceived Efort and Utility. The perception of the amount
of efort required for think-aloud and the impact it had on perfor-
mance varied by participant, and no clear efects of domain were
observed. During the concurrent think-aloud task, 6 of 12 partici-
pants reported that think-aloud had positive or no impact on their
work performance, but 8 of 12 participants reported that it required
at least medium efort. Fortunately, participants felt their eforts
were worthwhile. In both the concurrent and retrospective condi-
tions all participants reported that the information they shared was
at least moderately useful (Figure 1). Regarding confdence in cap-
turing all the important information to share, 6 of 12 participants
reported being confdent for the concurrent condition, with 8 of 12
for the retrospective condition (Figure 2). The scores suggest the

usefulness of sharing through think-aloud, but note that partici-
pants may be overly optimistic about the usefulness of their own
speech. To understand the true usefulness of the captured speech,
we would need to evaluate with consumers actually leveraging this
information.

Participants also revealed what kinds of information they
thought would be very important to capture, for example, in para-
metric modeling, sharing whether certain parameter choices were
arbitrary or intentional, and why, is important: “So I think informa-
tion around those parameters would be key or critical. That’s where all
that information is. . . you go back and like, ‘why did I make this 10
degrees?’ And the answer is ‘no reason’, then great. It’s 12 degrees now
cause I like it better. . . Whereas like, ‘no, it needs to be ten degrees
because there’s a thing on the ground that it’s going to mesh with’,
then...” (M2).

Some participants did comment on the efort of concurrently
speaking-aloud, for example, “especially since I didn’t have a

Think-Aloud Computing: Supporting Rich and Low-Efort Knowledge Capture CHI ’21, May 08–13, 2021, Yokohama, Japan

Figure 3: Top 20 categories by count (i.e., all categories with 5 or more speech items), ordered by concurrent to retrospective
occurrence ratio. See full data in supplementary material.

complete plan in mind, I was just kind of doing things ad hoc. It
was kind of difcult to justify everything that I was actually doing
while I was doing it” (C4). However, our analysis of speech content
and the types of information shared (reported below) found that a
lot of likely useful information is captured in concurrent speech that
is less often captured in retrospective speech, mirroring existing
research on these protocols [20].

3.3.2 Information Captured. The amount of speech captured var-
ied widely by participant, some very talkative and others relatively
quiet. In the concurrent condition participants spoke between 17
and 170 utterances (median: 61), and in the retrospective condition
participants spoke between 5 and 114 utterances (median: 16). We
defne an utterance as a contiguous set of words spoken until a
pause of greater than one second occurs, as this is the unit the
speech-to-text service we use transcribes real-time speech in.

We sampled approximately 450 speech items from the retrospec-
tive and concurrent think-aloud sessions and bucketed them into 57
categories. We defne a speech item as a contiguous set of phrases
or sentences that hold some shared semantic meaning. A speech
item may include one or more utterances and may belong to one or
more categories. We saw that many category types occur in high
frequency in one of the two conditions relative to the other. For
example, lower-level steps, frustrations, and planning and decision
making all occurred more frequently during concurrent speech,
while expression of limitations or unfnished work occurred more
frequently in retrospective speech. Figure 3 shows the top 20 cat-
egories by speech item count (i.e., all categories with 5 or more
speech items, excluding categories specifc to the study environ-
ment) ordered by the concurrent to retrospective occurrence ratio.

From this set of 57 categories, we further distilled these into fve
classes, where each speech item could belong to multiple classes.
While other classifcations may be useful, we believe these cover
most speech items observed in the formative study, as well as the
majority of usage scenarios that we explored.

• Design intent: These referred to the high-level goals and
intents of the user, and often explain why they are doing
something, e.g., “I would intend to be able to move forward
and back in space here, it’s like a focusing mechanism” (M1).

• Process: These referred to the operations the user is doing,
and the tools, commands and environment they are using,
e.g., “Now I’m going to add the card content” (C3).

• To-do item: These referred to tasks that the user or someone
else would have to complete later, e.g., “so we need to do a
lot of adding images, formatting, making it look pretty” (S3).

• Problem: These referred to problems with the software or
the user’s approach, or other issues that needed to be dealt
with, e.g., “ooh, we have a bug” (M4).

• Important: These referred to elements of the artifact or
process that are fagged for special consideration, e.g., “it’s
also important for the team to know that. . . if you’re doing
any online research, please check the source” (S1).

In addition to the content of the speech items, there is also value
in capturing afect or sentiment. While we did not formally code
for these, there were moments of excitement and frustration that
could potentially add rich context. These potentially represent ‘a-ha
moments’, or points of failure or frustration that others could learn
from in the future [7].

CHI ’21, May 08–13, 2021, Yokohama, Japan Rebecca Krosnick et al.

4 THINK-ALOUD COMPUTING
Based on results of the formative study and prior work on process
and context capture, we believe adding the think-aloud protocol
to everyday computing tasks has the potential to add great value
by capturing rich knowledge that is otherwise lost. We introduce
think-aloud computing, where computer users are prompted to
speak about what they are doing and why, with a system to capture
speech, categorize it, and archive it for later use.

Think-aloud computing is related to but distinct from other
recorded spoken language scenarios (e.g., medical examiners record-
ing speech during an autopsy, lawyers recording audio of client
meetings, live-streaming, and other cognitively-demanding tasks
requiring concurrent documentation). Think-aloud computing is
specifcally focused on the techniques to efectively and non-
intrusively capture and leverage verbalized knowledge for work
performed on the computer: prompting the user to speak about
particular information, contextualizing the speech to understand
context, and presenting the captured speech in a meaningful way
for various applications. We developed these three components
based on results of the formative study (e.g., that sometimes people
are quiet and need to be reminded to speak), prior work (e.g., that
contextualizing audio with video capture and command metadata
can be useful when presented to consumers), and our intuition
(e.g., that processing and categorizing speech in real-time can help
prompt speakers to speak more and about certain topics, and that
these categorizations can be useful to consumers too).

4.1 Core Concepts
4.1.1 Prompting. From the formative study, we found there is a
wide range of how much people speak while working and what they
speak about. Additionally, certain use cases, users, or organizations
might want to set goals or targets about the types of things they are
speaking about (similar to organizational practices around comment
quality and quantity). However, care must be taken not to overly
interrupt the user and add signifcant cognitive load [27]. Several
relevant factors are important when considering when and how to
prompt or notify someone [33]:

• Notifcation Level: The degree to which you interrupt the user.
As think-aloud computing should minimize the cognitive
load, the system should subtly prompt the user, e.g., with
slight changes in size or color of a graphic, so as not to
frequently distract the user.

• Representational Fidelity: How the information is encoded is
relevant, as it should be readily consumable. To allow users
to readily parse how well they are meeting their goals, the
representation should be simple and iconic.

• Information Capacity: As the system has a limited under-
standing of the domain the user is working in, the informa-
tion capacity conveyed in the prompts should be small.

4.1.2 Contextualizing. A think-aloud computing system should
capture and process the user’s speech as well as other software con-
text. With natural language processing, it should automatically de-
tect important information or topics of interest. Processing speech
sentiment or afect could also be useful in identifying when the
user has encountered a problem (i.e., is frustrated) or has solved a

problem (i.e., is excited). Capturing software context (e.g., applica-
tions open, actions performed, mouse/key events, cursor/scrollbar
position), as seen in prior work [5, 12, 30], could be helpful for con-
sumers to understand the context around captured speech. Cues
from the captured speech and software context can also help the
system intelligently prompt the user.

4.1.3 Presenting. The information captured can be presented in
diferent ways depending on the application. It is likely useful to
have a fltering or search interface for viewing particular kinds of
information. If the interface presents a full text transcript, it might
be helpful to highlight particularly important information and gray
out unimportant information.

It could also be useful to embed transcribed speech appropriately
in the given software artifact, for example attached to the created
artifact or the line of code written. This may provide useful context
for users working on the content in the future without requiring
them to consult a separate archive to view the captured information.

4.2 Sample Usage Scenarios
Based on interviews with participants and the knowledge they
captured, we believe think-aloud computing could be useful in a
variety of scenarios.

4.2.1 Building on a Colleague’s Work. Within an organization, of-
ten a given software artifact will be created by one person then
worked on by many others. This happens when the original cre-
ator leaves the company, project ownership changes, or the project
enters a new stage. The new artifact owner is now tasked with
adding a new feature, adapting for a new use case, or adjusting
for a new manufacturing material. The original creator had ideas
in mind when they made design decisions, and likely there were
particular constraints they were adhering to. If these constraints
are not clear to the new owner, there is a risk they might violate
them, for example, removing a software dependency they thought
was no longer needed, or shrinking a gap in a model too much.
Think-aloud computing could help capture design intents of the
original creator that likely would not have been documented in
writing.

4.2.2 Learning from a Colleague. People want to learn from each
other, for example, to improve their skills with a particular software
or learn best practices. The information captured via think-aloud
computing will help people review a colleague’s video capture and
fnd relevant parts via the text transcript and labels. By not only
being able to view their end product or a screen recording of their
actions, having think-aloud data alongside this information would
allow the learner to better understand the reasoning behind the
colleague’s actions.

4.2.3 Providing Feedback on a Colleague’s Work. More senior team
members often give their junior colleagues feedback—for example,
in a code review, on a user interface mockup, or on a data analysis.
They provide feedback both on the fnal artifact as well as the
process of getting there. Think-aloud computing could give senior
team members insight about their colleague’s design intent and
work process, helping them give more useful and focused feedback.

Think-Aloud Computing: Supporting Rich and Low-Efort Knowledge Capture CHI ’21, May 08–13, 2021, Yokohama, Japan

Figure 4: Several possible designs for the user interface of a
think-aloud computing system.

4.2.4 Refresh Context from Your Own Work. Projects often span
long time scales and old work documents need to be revisited.
Even if users create a document themselves, if they created it many
weeks or months ago, likely they may not remember why all the
design decisions were made. Think-aloud computing could help
them capture more of these design decisions so their future-self
can access them.

4.2.5 Create Opportunities for Reflection. The ability to revisit
thoughts and actions from someone’s prior work session opens
doors for reviewing their full design space. One could see the design
options they tried or considered, and why they were or were not
chosen. This could be especially useful for more creative domains
like graphic design or writing.

4.3 Potential Interface Designs
Depending on the user, their organization, and their use case, there
are many possible user interface designs within the prompting-
contextualizing-presenting design space that might make sense for
a think-aloud computing system (Figure 4). For example, the wedge
designs (Figure 4, top-left) indicate how much the user has spoken
about certain pre-specifed topics (e.g., wedges for design intent,
process information, cost, security) to encourage them to speak
more in the areas that are lacking.

An alternative, more subtle version displayed in the operating
system’s menu-bar might still encourage the desired speech (Fig-
ure 4, top right). If a user only wanted to use it during a ‘rubber
duck debugging’ session, a simplifed version that just encourages
overall speech might be more useful (Figure 4, bottom left). Lastly,
users or organizations may see value in only capturing and acting
on a specifc category, such as ‘to-do’, so a tailored version could
be used (Figure 4, bottom right).

For the purpose of exploring the viability of a think-aloud com-
puting system, we chose to implement and evaluate one interface
design, a wedge-based design (Figure 4, top-left) using the 5 classes
(design intent, process, problem, to-do, and important) from the
formative study. This is the prototype we discuss for the remainder
of this paper. The wedge design and the 5 classes are just a single
instantiation of the think-aloud computing approach and we are
not claiming this is the optimal design. Likely there is no optimal
design and instead diferent interface designs are better for some

Figure 5: Visual widget that allows people to refect on the
amount they have spoken about diferent categories of in-
formation. Wedges fll up as that element is spoken about,
and subtle prompts encourage the user to speak about a
topic. The annotations indicate which words will ensure au-
tomatic classifcation into those categories.

scenarios than others. Additionally, we focus on exploring prompt-
ing and contextualizing in this work, leaving presenting for future
work.

5 PROTOTYPE
Based on the think-aloud computing design space and implications
from the formative study, we built a software-agnostic prototype
system that prompts users to speak via a small, always-visible
widget (Figure 5), captures and processes their speech and software
context, and lets them view/refne captured information in a live
archive window (Figure 6). Users can also retrospectively capture
knowledge by recording speech snippets or typing text comments
while reviewing a previous work session.

Figure 6: Live archive window, where users can review
recorded speech, screen recording, and meta-data from past
sessions, as well as the current capture session.

CHI ’21, May 08–13, 2021, Yokohama, Japan Rebecca Krosnick et al.

5.1 Ambient Display
The user’s primary interaction with the system is just to speak, and
occasionally reference the visual widget to understand if they are
meeting targeted speech levels for the various categories. As they
speak, the system will capture and transcribe their speech, as well
as capture video of their screen and available software metadata.

As our goal is to avoid distracting the user from their work, the
widget is intentionally small and can be placed in an unobtrusive
area of their screen. The widget serves two purposes: 1) to inform
the user how much they are speaking relative to their targets and 2)
to collect speech labels from the user to improve the classifcation
process.

The blue ‘wedge’ conveys how much the user has spoken overall.
Each time the user speaks, the blue wedge flls a small amount. The
wedge represents the number of speech utterances in a given time
range (e.g., the last fve business days), so as the user’s speech rate
decreases, the wedge fll-level will decrease. The wedge includes
a dotted ‘goal line’ that users are encouraged to reach. Here we
set the goal line based on average speech rates in the formative
study, but in an in-the-wild system, the value could be based on
past speech rates, best practices, or another metric or context.

In addition to encouraging speech in general, in the formative
study we identifed fve kinds of information that we want to en-
courage users to share: design intent, process, to-do items, problems,
and anything particularly important.

Design intent (yellow wedge) and process (red wedge) are flled
as the user speaks that type of information. The widget leverages
rudimentary keyword matching to classify the user’s speech. The
user can speak particular keywords (depicted as annotations in
Figure 5; e.g., “This is meant to” for design intent) to help the
widget classify their speech and update the wedge fll-levels. A
thick black border is also briefy added to matching wedges to
make the automatic classifcation apparent to the user. If the widget
fails to classify the user’s speech correctly, the user can manually
click a wedge to classify their last utterance. In the future, more
robust natural language processing approaches would allow for
more fexibility in speech and less manual classifcation from the
user.

To-do item, problem, and important are presented as buttons in
the widget, and can also be activated through speaking keywords or
through manual button clicks. These labels are buttons rather than
wedges because although these kinds of information are useful to
capture, they will not necessarily occur in a given work session.
For example, it does not make sense to encourage a user to speak
about problems if they are not experiencing any.

5.2 Prompting
In addition to subtly cueing users with wedge fll-levels, the widget
will pulsate if it thinks the user could have something interesting to
say, to encourage them to reveal more about their current actions
or thoughts. For example, currently the “design intent” wedge will
pulsate if the user performs multiple “Undo” operations in a row,
as the user likely has important but potentially undocumented
reasons for these actions (e.g., they made a mistake and want to
try a diferent approach). The important, to-do item, and problem
buttons will pulsate if the user speaks a curse word, which we are

Figure 7: System overview of the implemented think-aloud
computing system

using to approximate sentiment recognition. Future versions of
this system could prompt users based on other actions, words, or
context clues for eliciting speech at critical points.

5.3 Live Archive
A live archive window (Figure 6) presents transcribed utterances and
their real-time labels alongside corresponding video capture and
software commands used. This serves both as an initial presentation
interface for people who want to leverage the spoken information
and its context, as well as a post hoc editing interface for creators.

For the most part, creators will keep the live archive window
minimized during work time, and then can retrospectively view
the information they captured and correct transcription mistakes,
remove utterances, correct utterance labels, and type or speak addi-
tional comments. If the transcription is erroneous, raw audio/video
is available for the user to reference. The ability to make edits gives
the user control over what is captured and shared, and gives them an
opportunity to refect on their past work and add any new insights
they have. With improved speech recognition and classifcation,
we anticipate fewer interactions with the editing functionality, and
this interface will largely be used for retrospective think-aloud. To
facilitate retrospective think-aloud, audio transcription is supported
as a means of adding content.

5.4 Implementation
The system (Figure 7) is built as a two-window Electron applica-
tion. Utterance data is persisted using MongoDB. Video capture
is performed using FFmpeg for encoding a livestream to YouTube.
The system uses Microsoft Azure Cognitive Services speech-to-text
for transcribing the think-aloud speech in real-time. We created
plugins to capture command data directly from Fusion 360, as well
as system-wide for currently active software using the MacOS ac-
cessibility API. Keyword-based natural language processing is used
for classifying speech utterances.

6 EVALUATION
To better understand the value and limitations of the think-aloud
computing concept, we conducted a study to answer two key ques-
tions: What information is captured with think-aloud versus more
traditional documentation practices? How do knowledge capture

Think-Aloud Computing: Supporting Rich and Low-Efort Knowledge Capture CHI ’21, May 08–13, 2021, Yokohama, Japan

Figure 8: Ratings of efort it took to document knowledge, for think-aloud and traditional conditions. The 7-point Likert scale
results (between 1-Very Low Efort, and 7-Very High Efort) have been aggregated into three categories: Low Efort (1, 2, 3),
Medium Efort (4), and High Efort (5, 6, 7).

workfows of think-aloud and traditional text documentation com-
pare?

6.1 Participants and Tasks
We recruited twelve participants from within our organization to
complete the study. There was no overlap with the formative study.
Five identifed as male, seven female, and the mean age was 33
years (range 19–57). The study lasted 90 minutes and participants
were compensated with a $50CAD gift card. Participants all had
some experience with the task they were being asked to complete.

The study was a mixed design, with each participant perform-
ing one of three separate domains (between subjects; coding, slide
creation, 3D modeling; four participants per domain), and each
participant performing the task twice (within subjects; once with
the think-aloud system, and once using traditional documenta-
tion). Condition order and associated task were counterbalanced.
For coding, participants coded tic-tac-toe and connect four games;
for slide creation, participants made slide decks about a historical
event and an activity they were interested in; and for 3D modeling,
participants created models of kitchen appliances and furniture.

As with the formative study, conducting a more in-depth study
with more participants for a particular domain would be valuable,
but our main goal was to understand the value and challenges of
think-aloud computing compared to traditional processes across a
variety of domains.

6.2 Procedure
6.2.1 Training Phase. Participants were provided context for the
kinds of information they might want to share, why they might
be sharing, and who their audience may be. It is a similar script
to the one used in the formative study, with the addition of fve
potential information types we highlight (design intent, process,
to-do, problem, important). For each condition, we briefy explained
how to capture knowledge and gave participants an opportunity to
practice.

• Traditional text documentation: We provided participants
a Word document they could capture information in and
showed them how to take screenshots. They were also in-
formed they could document in any other natural way (e.g.,
code comments or slide notes). We chose text documenta-
tion as our baseline condition because this is how people
commonly document in practice.

• Think-aloud tool: We gave a brief tutorial on interacting with
the prompting widget (Figure 5), including how to use the
keywords shown in Figure 5 to automatically classify speech,

pointing out that the wedges fll as you speak more, and that
dotted lines indicate fll-goals per wedge. The number of
utterances required to hit the goal lines were chosen based
on data from the formative study.

6.2.2 Work Phase. For each condition, participants were frst given
25 minutes to work on the instructed task and asked to capture
knowledge along the way.

6.2.3 Review Phase. Participants were then given 5 minutes to re-
fect on the work they had done and information they had captured
and make any additions or edits to the captured information. For
the think-aloud condition, we demonstrated how to make additions
or edits in the live archive window. We then conducted a survey
and interview.

6.3 Results
6.3.1 Survey Ratings. Participants rated the amount of efort it took
to document knowledge similarly for the two conditions (Figure 8).
In both conditions, 6 of 12 participants reported that it took “low
efort” to document their knowledge while working. For the think-
aloud condition, 3 participants rated “medium efort” and 3 “high
efort”, while for the traditional condition 2 rated “medium efort”
and 4 rated “high efort”.

6.3.2 Information Captured only with Think-Aloud Computing. The
amount of information captured varied widely by participant. In
the think-aloud condition, participants spoke between 46 and 297
utterances (median: 172). In the traditional documentation condi-
tion, participants captured between 10 and 41 lines (median: 26)
in their Word documents, code comments, and slide notes. While
utterance and line counts cannot be directly compared, they do give
a sense of the volume of information captured in each condition.

After thematically clustering participants’ captured content, we
found fve categories of information that were captured with the
think-aloud protocol, but not traditional documentation. That these
categories of information were not captured with the traditional
techniques suggests that besides simply enabling a diferent capture
paradigm, the think-aloud technique actually enables the capture
of diferent types of information when compared to existing tech-
niques.

• Problem solving/debugging. Lightweight labeling of a “prob-
lem” could provide easy indexing if the user wants to come
back later to debug it and refresh their memory about the
failure and debugging attempts (captured via speech and soft-
ware context). Since identifcation of a problem is sometimes

CHI ’21, May 08–13, 2021, Yokohama, Japan Rebecca Krosnick et al.

followed-up with a solution, this could also provide a helpful
collection of problem/solution pairs.

• Context. In many cases, participants provided additional con-
textual information in think-aloud, detailing why they vis-
ited a given website or why they found it useful. With tra-
ditional documentation, some of this information may be
lost.

• Available design choices or alternatives. Some participants
discussed very subtle design alternatives or choices. For ex-
ample, slides participant S4 said “Something to think about,
are we using Russian or Soviet terminology here.” Access to
design choices could encourage discussion amongst collabo-
rators or curiosity in other consumers.

• Checkpoints. Across all three tasks, participants uttered
self-congratulatory remarks such as “ok that looks reason-
able” (C1) after fnishing a step and seeing a correct out-
put/behavior. These checkpoints are interesting in that they
could be used as state markers to enable users to fnd or
revert back to past places in their task. These utterances
also suggest an opportunity to enhance the segmentation
of speech and potentially create dynamic task checklists or
process steps.

• Unconscious design decisions/constraints. There were numer-
ous instances where the user made on-the-fy, unconscious
decisions that they likely would not have included in tra-
ditional textual documentation, for example, M3 said “so
new body, 2 inches, that’s good, actually probably make it less,
make it 1.5, just because that would be a thick piece of stock”
and “want to give it a bit of fare, tapered edge, 10 degrees is
aggressive, maybe something like 6, or 7”. In both these exam-
ples, valuable information about the user’s requirements or
constraints are captured and could later be used to under-
stand why decisions were made and to learn from the users’
knowledge and skills.

6.3.3 Observations and Interview Results. Overall, participants
found value in capturing knowledge through think-aloud, and many
themes such as causes of disruption, refning captured speech, and
speaking preferences emerged in the semi-structured interviews.

Disruptions Dependent on Task and Documentation Type. A dom-
inant theme within the interview data was the disruptions that
using a voice-based method such as think-aloud would prevent or
cause. Some thought that the think aloud-technique would be less
disruptive, especially when performing a task that was not rooted
in language, for example 3D modeling, “I’m just speaking out loud
and I’m already doing that when I’m modeling in my head so, I don’t
think it adds additional efort or much efort or burden on me versus
trying to write in a document” (M2). Because 3D modeling programs
currently do not have any commenting functionality, the need to
switch to another window to write traditional text documentation
was cumbersome for many modelers and interrupted their work-
fow, e.g., “when you are working on a screen and then you want to
switch to something else and you have to just switch the screens and
go to the Word document, I really hate it” (M4) and “it was like a
total drain. It’s like half the time I was spending documenting, half
the time was spent designing. . . it’s defnitely hurting productivity”
(M1). Alternatively, coding participants found less distraction with

traditional documentation, “I think maybe talking out loud was a
little bit difcult to do while coding cause it kinda takes a little bit
of time to switch between explaining your code and then actually
coding. . . I guess cause coding is kinda close to just typing a comment,
so it wasn’t as hard to switch” (C2). These comments are consistent
with Mayer’s redundancy principle [28].

Capture and Refnement Workfows. During the study sessions,
many participants spoke using a stream of consciousness, likely
because it was easier than actively determining what to say and
what not to say. As a result, the prompting widget captured a lot of
speech, which has both benefts and disadvantages: “when I could
see the results, I think it was cool that I could see the breakdown of
what was said, but there was a lot of garbage in there” (M1). Some
participants had difculty determining what would be useful to
say while performing a task, e.g., “I think my thought process is
kind of almost forming as I’m working on something. So, I fnd that a
lot of these intermediate thoughts are actually not that useful.” (C1).
Relatedly, many participants decided to speak but only minimally
classify their speech because they wanted to focus on their work or
were not exactly sure how to classify their speech. As noted by M3,
“I preferred speaking rather than speaking and then thinking about
what category that fell under. Because it’s easy to just talk through
your thing, rather than talking through it and then thinking what
bucket it needs to go with.” We believe these efects will decrease
as people become more familiar with speaking while working and
learn the kinds of information that they and their colleagues fnd
valuable.

Value of Thinking-Aloud. Regardless of the challenges in label-
ing and self-fltering speech, most participants saw value in being
able to capture intent and process information using a think-aloud
method. As noted by C2, think-aloud could be useful for capturing
assumptions or subtle design choices, e.g., “the assumptions that I’m
making I think are probably like the most important things to record
because things like the top corner is (0,0) on the top left, it’s stuf that
isn’t really part of how the game works, it’s just something that you
need to know for it to work”.

Others thought captured information would be useful for under-
standing the design history and components of a model, e.g., “like
for robotics, it’s really difcult to just look at a design and be like, ‘oh
this is why they did it’. . .What you usually do is go scroll through the
history of design. . .And you step-by-step see how they built it. . .But if
that could just be spoken to you, that’s super useful” and “Like if you
open up like an assembly of this thousand part model, I have no idea
why this part is there. ‘Like what is this part, is it a custom part?’...So
just being able to speak to like, ‘oh, I just got this from McMaster-Carr
and imported the model in’„,” (M1).

Participants expressed the benefts of automatically capturing
a list of to-do items or unresolved problems, “Keeping a rolling
tally of things that you have left to do, that can be super helpful, or
problems that you’ve encountered along the way, because you could
then, later on, almost be like, ‘okay, well I resolved that problem’, or
‘these problems are still outstanding”’ (M3).

Others thought it would be useful for teaching, “I could see it
being almost like when you’re recording a tutorial or something where
if you went back and you had to send it to someone after, it’d be useful
to sort of mark up what you had been saying or presenting” (S2).

Think-Aloud Computing: Supporting Rich and Low-Efort Knowledge Capture CHI ’21, May 08–13, 2021, Yokohama, Japan

S4 commented on the increased utility of think-aloud computing
if captured information is embedded within the software artifact,
“I could see using some of these things if it was embedded, I think in
the tool itself. I could imagine the [PowerPoint] presenter notes being
enhanced with some of these capabilities to categorize”.

6.3.4 Study Limitations. Through this study we learned participant
opinions about think-aloud computing and we observed the kinds
of information that think-aloud computing may capture. However,
we did not explicitly evaluate whether consumers of information
captured via think-aloud computing would fnd it useful for their
own work. Information utility should specifcally be studied in the
future, but based on participant interviews and our own intuition
we believe that such knowledge would be useful for a variety of
work scenarios.

7 DISCUSSION AND FUTURE WORK
We found that a wide variety of unique information is cap-
tured when people think aloud while working, and that in fact
unique information about subtle design decisions/constraints, design
choices/alternatives, problem solving/debugging, and checkpoints is
captured that is rarely captured in written documentation. Without
this information, the original creator or other team members revis-
iting a software artifact might perform redundant work or make a
change that breaks something. Even though think-aloud captures
unique and subtle information that traditional documentation does
not, participants found that they still require similar efort. Below
we discuss where we think think-aloud computing could be partic-
ularly helpful and future work to explore improved techniques and
particular applications.

7.1 Where Could Think-Aloud be Efective?
We suspect think-aloud could be particularly useful for spatial and
visual tasks (like 3D modeling, creating slides, or editing 2D graph-
ics). Using speech enables users to capture information without
needing to switch modalities between graphical manipulation and
typing. Since writing and coding are both text-based, writing textual
notes seems to be more manageable, and is already commonplace
in text and code editors.

Every tool has scenarios and people it is and is not ideal for.
Think-aloud computing probably will not work well for people
who are uncomfortable thinking-aloud, or those in an environment
where speaking-aloud is not socially feasible. Relatedly, novices
(i.e., to a domain or particular software) may be less willing to
speak because they must remain very focused on their work to
make progress, or, they fear anything they say could be incorrect.
Further work is needed to better understand the specifc impacts
of think-aloud computing within these scenarios, as well as further
identify benefts unique to these situations.

7.2 Better Prompting, Contextualizing, and
Presenting

While the current implementation was sufcient to evaluate the
potential of this approach, integrating more advanced natural
language processing algorithms would allow the think-aloud com-
puting widget to automatically classify and contextualize more

utterances. This would approach our vision of the user simply
speaking while working, with useful information automatically
getting captured, meaningfully organized and summarized. Better
NLP would also enable the widget to more intelligently identify
opportune times to prompt the user to elaborate.

It would also be useful to explore how to present captured think-
aloud information depending on the scenario, e.g.: adjusting the
information presented to a learner based on their skill level; a
personal task manager for to-do items and recently completed tasks;
or transcribed think-aloud embedded contextually appropriately
within code, a model, or other artifact.

7.3 Think-Aloud Computing Applications
We explored think-aloud computing as an approach specifc to
computer-based tasks. However, thinking-aloud while working
probably brings similar knowledge capture benefts to other task
domains, such as physical tasks (e.g., sports training, construction
work) or collaborative tasks (e.g., group search, planning). Future
work should explore technology for appropriately prompting think-
aloud as well as contextualizing and presenting knowledge in these
new domains.

Think-aloud computing could be useful beyond simply capturing
and presenting knowledge. It could be leveraged for providing the
user automated real-time assistance in their work, for example,
suggesting relevant tools and workfows, sharing Stack Overfow
posts when the user encounters a challenge, generating bug reports,
or synthesizing test cases based on the speaker’s words, speech
afect, and interactions with software.

We also believe that this approach could be helpful to the tra-
ditional use case of the think-aloud protocol, usability testing, in
particular for non-supervised user studies. If a system could take
over the role of prompting users to speak the right kinds of in-
formation at the right times, user studies could be conducted on
a longer-term scale, in diferent time zones, or otherwise with-
out the researcher present. Researchers could then post hoc flter
data to see how users interacted with specifc components. How-
ever, more work would be necessary to understand the qualitative
and quantitative diference between the results generated by using
the automated approach compared to a traditional human-driven
prompt.

8 CONCLUSION
Think-aloud computing is a promising new approach for capturing
knowledge. Through a formative study we discovered the wide
variety of information that people share when they think-aloud
while working. We built a prototype think-aloud computing sys-
tem and found that think-aloud captures information that tradi-
tional written documentation typically does not: problem solving
steps, additional context, available design choices, checkpoints,
and unconscious design decisions; information that could be use-
ful to workers. Participants also felt that think-aloud computing
requires similar efort to traditional text-based documentation prac-
tices. We believe think-aloud computing will enable people to more
efectively leverage the knowledge of their colleagues and past
selves.

CHI ’21, May 08–13, 2021, Yokohama, Japan Rebecca Krosnick et al.

ACKNOWLEDGMENTS
We the reviewers for their feedback, which has helped improve this
work. We also thank Nikhita Joshi, Kimia Kiani, and Roya Shams
for their feedback and our study participants for their time.

REFERENCES
[1] Abdulaziz Alaboudi and Thomas D. LaToza. 2019. An Exploratory Study of

Live-Streamed Programming. In 2019 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC), IEEE, Memphis, TN, USA, 5–13. DOI: https:
//doi.org/10.1109/VLHCC.2019.8818832

[2] John M. Carroll, Sherman R. Alpert, John Karat, Mary Van Deusen, and Mary Beth
Rosson. 1994. Raison d’etre: capturing design history and rationale in multimedia
narratives. In Proceedings of the CHI’94 Conference on Human Factors in Computing
systems, Publ by ACM, 192–197.

[21] Matthew L. Lee and Anind K. Dey. 2008. Using lifelogging to support recollection
for people with episodic memory impairment and their caregivers. In Proceedings
of the 2nd International Workshop on Systems and Networking Support for Health
Care and Assisted Living Environments, ACM, 14. [3] Senthil Chandrasegaran, Chris Bryan, Hidekazu Shidara, Tung-Yen Chuang, and

Kwan-Liu Ma. 2019. TalkTraces: Real-Time Capture and Visualization of Verbal
Content in Meetings. In Proceedings of the 2019 CHI Conference on Human Factors
in Computing Systems, ACM, 577.

[4] Yan Chen, Walter S. Lasecki, and Tao Dong. 2021. Towards Supporting Program-
ming Education at Scale via Live Streaming. Proc. ACM Hum.-Comput. Interact. 4,
CSCW3 (January 2021), 1–19. DOI: https://doi.org/10.1145/3434168

[5] Pei-Yu Chi, Sally Ahn, Amanda Ren, Mira Dontcheva, Wilmot Li, and Björn Hart-
mann. 2012. MixT: automatic generation of step-by-step mixed media tutorials.
In Proceedings of the 25th annual ACM symposium on User interface software and
technology, ACM, 93–102.

[6] Ionut Damian, Chiew Seng (Sean) Tan, Tobias Baur, Johannes Schöning, Kris
Luyten, and Elisabeth André. 2015. Augmenting Social Interactions: Realtime
Behavioural Feedback using Social Signal Processing Techniques. In Proceedings
of the 33rd Annual ACM Conference on Human Factors in Computing Systems -
CHI ’15, ACM Press, Seoul, Republic of Korea, 565–574. DOI: https://doi.org/10.
1145/2702123.2702314

[7] Sidney D’Mello, Tanner Jackson, Scotty Craig, Brent Morgan, P. Chipman, Holly
White, Natalie Person, Barry Kort, R. El Kaliouby, and Rosalind Picard. 2008.
AutoTutor detects and responds to learners afective and cognitive states. In
Workshop on emotional and cognitive issues at the international conference on
intelligent tutoring systems, 306–308.

[8] Anton N. Dragunov, Thomas G. Dietterich, Kevin Johnsrude, Matthew McLaugh-
lin, Lida Li, and Jonathan L. Herlocker. 2005. TaskTracer: a desktop environment
to support multi-tasking knowledge workers. In Proceedings of the 10th interna-
tional conference on Intelligent user interfaces, ACM, 75–82.

[9] K. Anders Ericsson and Herbert A. Simon. 1980. Verbal reports as data. Psycho-
logical review 87, 3 (1980), 215.

[10] C. Ailie Fraser, Joy O. Kim, Hijung Valentina Shin, Joel Brandt, and Mira
Dontcheva. 2020. Temporal Segmentation of Creative Live Streams. In Proceed-
ings of the 2020 CHI Conference on Human Factors in Computing Systems, ACM,
Honolulu HI USA, 1–12. DOI: https://doi.org/10.1145/3313831.3376437

[11] C. Ailie Fraser, Joy O. Kim, Alison Thornsberry, Scott Klemmer, and Mira
Dontcheva. 2019. Sharing the Studio: How Creative Livestreaming can Inspire,
Educate, and Engage. In Proceedings of the 2019 on Creativity and Cognition, ACM,
San Diego CA USA, 144–155. DOI: https://doi.org/10.1145/3325480.3325485

[12] Tovi Grossman, Justin Matejka, and George Fitzmaurice. 2010. Chronicle: capture,
exploration, and playback of document workfow histories. In Proceedings of the
23nd annual ACM symposium on User interface software and technology, ACM,
143–152.

[13] William A. Hamilton, Oliver Garretson, and Andruid Kerne. 2014. Streaming on
twitch: fostering participatory communities of play within live mixed media. In
Proceedings of the 32nd annual ACM conference on Human factors in computing
systems - CHI ’14, ACM Press, Toronto, Ontario, Canada, 1315–1324. DOI: https:
//doi.org/10.1145/2556288.2557048

[14] William A. Hamilton, Nic Lupfer, Nicolas Botello, Tyler Tesch, Alex Stacy,
Jeremy Merrill, Blake Williford, Frank R. Bentley, and Andruid Kerne. 2018.
Collaborative Live Media Curation: Shared Context for Participation in Online
Learning. In Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems - CHI ’18, ACM Press, Montreal QC, Canada, 1–14. DOI:
https://doi.org/10.1145/3173574.3174129

[15] Yiyang Hao, Ge Li, Lili Mou, Lu Zhang, and Zhi Jin. 2013. Mct: A tool for comment-
ing programs by multimedia comments. In Proceedings of the 2013 International
Conference on Software Engineering, IEEE Press, 1339–1342.

[16] Morten Hertzum, Kristin D. Hansen, and Hans HK Andersen. 2009. Scrutinising
usability evaluation: does thinking aloud afect behaviour and mental workload?
Behaviour & Information Technology 28, 2 (2009), 165–181.

[17] Donghan Hu and Sang Won Lee. 2020. ScreenTrack: Using a Visual History of a
Computer Screen to Retrieve Documents and Web Pages. In Proceedings of the
2020 CHI Conference on Human Factors in Computing Systems, ACM, Honolulu
HI USA, 1–13. DOI: https://doi.org/10.1145/3313831.3376753

[18] Hyeongcheol Kim, Shengdong Zhao, Can Liu, and Kotaro Hara. 2020. LiveS-
nippets: Voice-based Live Authoring of Multimedia Articles about Experiences.
In 22nd International Conference on Human-Computer Interaction with Mobile
Devices and Services, ACM, Oldenburg Germany, 1–11. DOI: https://doi.org/10.
1145/3379503.3403556

[19] Taemie Kim, Agnes Chang, Lindsey Holland, and Alex Sandy Pentland. 2008.
Meeting mediator: enhancing group collaborationusing sociometric feedback. In
Proceedings of the ACM 2008 conference on Computer supported cooperative work -
CSCW ’08, ACM Press, San Diego, CA, USA, 457. DOI: https://doi.org/10.1145/
1460563.1460636

[20] Hannu Kuusela and Paul Pallab. 2000. A comparison of concurrent and retrospec-
tive verbal protocol analysis. The American journal of psychology 113, 3 (2000),
387.

[22] Matthew L. Lee and Anind K. Dey. 2008. Lifelogging memory appliance for
people with episodic memory impairment. In Proceedings of the 10th international
conference on Ubiquitous computing, ACM, 44–53.

[23] Pascal Lessel, Alexander Vielhauer, and Antonio Krüger. 2017. Expanding Video
Game Live-Streams with Enhanced Communication Channels: A Case Study. In
Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems,
ACM, Denver Colorado USA, 1571–1576. DOI: https://doi.org/10.1145/3025453.
3025708

[24] Clayton Lewis. 1982. Using the’thinking-aloud’method in cognitive interface
design. Research Report RC9265, IBM TJ Watson Research Center (1982).

[25] Ian Li, Jon Froehlich, Jakob E. Larsen, Catherine Grevet, and Ernesto Ramirez.
2013. Personal informatics in the wild: hacking habits for health & happiness.
In CHI’13 Extended Abstracts on Human Factors in Computing Systems, ACM,
3179–3182.

[26] Zhicong Lu, Seongkook Heo, and Daniel J. Wigdor. 2018. StreamWiki: Enabling
Viewers of Knowledge Sharing Live Streams to Collaboratively Generate Archival
Documentation for Efective In-Stream and Post Hoc Learning. Proc. ACM Hum.-
Comput. Interact. 2, CSCW (November 2018), 1–26. DOI: https://doi.org/10.1145/
3274381

[27] Gloria Mark, Daniela Gudith, and Ulrich Klocke. 2008. The cost of interrupted
work: more speed and stress. In Proceedings of the SIGCHI conference on Human
Factors in Computing Systems, ACM, 107–110.

[28] Richard E. Mayer and Cheryl I. Johnson. 2008. Revising the redundancy principle
in multimedia learning. Journal of Educational Psychology 100, 2 (2008), 380–386.
DOI: https://doi.org/10.1037/0022-0663.100.2.380

[29] Moira McGregor and John C. Tang. 2017. More to meetings: challenges in using
speech-based technology to support meetings. In Proceedings of the 2017 ACM
Conference on Computer Supported Cooperative Work and Social Computing, ACM,
2208–2220.

[30] Alok Mysore and Philip J. Guo. 2017. Torta: Generating mixed-media gui and
command-line app tutorials using operating-system-wide activity tracing. In
Proceedings of the 30th Annual ACM Symposium on User Interface Software and
Technology, ACM, 703–714.

[31] Soya Park, Amy X. Zhang, and David R. Karger. 2018. Post-literate Programming:
Linking Discussion and Code in Software Development Teams. In The 31st Annual
ACM Symposium on User Interface Software and Technology Adjunct Proceedings,
ACM, 51–53.

[32] Rupa Patel, Andrea Hartzler, Mary Czerwinski, Wanda Pratt, Anthony Back,
and Asta Roseway. 2013. Visual Feedback on Nonverbal Communication: A
Design Exploration with Healthcare Professionals. In Proceedings of the ICTs for
improving Patients Rehabilitation Research Techniques, IEEE, Venice, Italy. DOI:
https://doi.org/10.4108/icst.pervasivehealth.2013.252024

[33] Zachary Pousman and John Stasko. 2006. A taxonomy of ambient information
systems: four patterns of design. In Proceedings of the working conference on
Advanced visual interfaces, ACM, 67–74.

[34] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever.
2018. Improving language understanding by generative pre-training. URL
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-
unsupervised/language_understanding_paper.pdf (2018).

[35] Søren Rasmussen, Jeanette Falk Olesen, and Kim Halskov. 2019. Co-notate: Ex-
ploring Real-time Annotations to Capture Situational Design Knowledge. In
Proceedings of the 2019 on Designing Interactive Systems Conference, ACM, 161–
172.

[36] Raquel Robinson, Jessica Hammer, and Katherine Isbister. 2019. All the World
(Wide Web)’s a Stage: A Workshop on Live Streaming. In Extended Abstracts of
the 2019 CHI Conference on Human Factors in Computing Systems, ACM, Glasgow
Scotland Uk, 1–8. DOI: https://doi.org/10.1145/3290607.3299016

[37] Daniela K. Rosner and Kimiko Ryokai. 2008. Spyn: augmenting knitting to support
storytelling and refection. In Proceedings of the 10th international conference on
Ubiquitous computing, ACM, 340–349.

[38] Donald A. Schon. 1984. The refective practitioner: How professionals think in
action. Basic books.

https://doi.org/10.1109/VLHCC.2019.8818832
https://doi.org/10.1109/VLHCC.2019.8818832
https://doi.org/10.1145/3434168
https://doi.org/10.1145/2702123.2702314
https://doi.org/10.1145/2702123.2702314
https://doi.org/10.1145/3313831.3376437
https://doi.org/10.1145/3325480.3325485
https://doi.org/10.1145/2556288.2557048
https://doi.org/10.1145/2556288.2557048
https://doi.org/10.1145/3173574.3174129
https://doi.org/10.1145/3313831.3376753
https://doi.org/10.1145/3379503.3403556
https://doi.org/10.1145/3379503.3403556
https://doi.org/10.1145/1460563.1460636
https://doi.org/10.1145/1460563.1460636
https://doi.org/10.1145/3025453.3025708
https://doi.org/10.1145/3025453.3025708
https://doi.org/10.1145/3274381
https://doi.org/10.1145/3274381
https://doi.org/10.1037/0022-0663.100.2.380
https://doi.org/10.4108/icst.pervasivehealth.2013.252024
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://doi.org/10.1145/3290607.3299016

Think-Aloud Computing: Supporting Rich and Low-Efort Knowledge Capture

[39] Abigail Sellen and Steve Whittaker. 2010. Beyond total capture: a constructive
critique of lifelogging. Communications of the ACM (2010).

[40] Mohit Shah, Brian Mears, Chaitali Chakrabarti, and Andreas Spanias. 2012. Lifel-
ogging: Archival and retrieval of continuously recorded audio using wearable
devices. In 2012 IEEE International Conference on Emerging Signal Processing
Applications, IEEE, 99–102.

[41] Alice Thudt, Dominikus Baur, Samuel Huron, and Sheelagh Carpendale. 2015.
Visual mementos: Refecting memories with personal data. IEEE transactions on
visualization and computer graphics 22, 1 (2015), 369–378.

[42] Tifany Tseng. 2016. Build in progress: Building process-oriented documentation.
Makeology: Makerspaces as learning environments. New York: Routledge (2016).

[43] Maaike Van Den Haak, Menno De Jong, and Peter Jan Schellens. 2003. Retro-
spective vs. concurrent think-aloud protocols: testing the usability of an online
library catalogue. Behaviour & information technology 22, 5 (2003), 339–351.

[44] Maaike J. Van den Haak and Menno DT De Jong. 2003. Exploring two meth-
ods of usability testing: concurrent versus retrospective think-aloud protocols.
In IEEE International Professional Communication Conference, 2003. IPCC 2003.

Proceedings., IEEE, 3 pp.
[45] April Yi Wang, Zihan Wu, Christopher Brooks, and Steve Oney. 2020. Callisto:

Capturing the “Why” by Connecting Conversations with Computational Narra-
tives. In Proceedings of the 2020 CHI Conference on Human Factors in Computing
Systems, ACM, Honolulu HI USA, 1–13. DOI: https://doi.org/10.1145/3313831.
3376740

[46] Saelyne Yang, Changyoon Lee, Hijung Valentina Shin, and Juho Kim. 2020. Snap-
stream: Snapshot-based Interaction in Live Streaming for Visual Art. In Proceed-
ings of the 2020 CHI Conference on Human Factors in Computing Systems, ACM,
Honolulu HI USA, 1–12. DOI: https://doi.org/10.1145/3313831.3376390

[47] Tom Young, Devamanyu Hazarika, Soujanya Poria, and Erik Cambria. 2018.
Recent trends in deep learning based natural language processing. ieee Computa-
tional intelligenCe magazine 13, 3 (2018), 55–75.

[48] Thinking Aloud: The #1 Usability Tool. Nielsen Norman Group. Retrieved Sep-
tember 18, 2019 from https://www.nngroup.com/articles/thinking-aloud-the-1-
usability-tool/

CHI ’21, May 08–13, 2021, Yokohama, Japan

https://doi.org/10.1145/3313831.3376740
https://doi.org/10.1145/3313831.3376740
https://doi.org/10.1145/3313831.3376390
https://www.nngroup.com/articles/thinking-aloud-the-1-usability-tool/
https://www.nngroup.com/articles/thinking-aloud-the-1-usability-tool/

	Abstract
	1 INTRODUCTION
	2 RELATED WORK
	2.1 Think-Aloud (Background)
	2.2 Documentation and Process Capture
	2.3 Context and Speech Capture and Feedback
	2.4 Live-Streaming

	3 FORMATIVE STUDY
	3.1 Participants and Tasks
	3.2 Procedure
	3.3 Results

	4 THINK-ALOUD COMPUTING
	4.1 Core Concepts
	4.2 Sample Usage Scenarios
	4.3 Potential Interface Designs

	5 PROTOTYPE
	5.1 Ambient Display
	5.2 Prompting
	5.3 Live Archive
	5.4 Implementation

	6 EVALUATION
	6.1 Participants and Tasks
	6.2 Procedure
	6.3 Results

	7 DISCUSSION AND FUTURE WORK
	7.1 Where Could Think-Aloud be Effective?
	7.2 Better Prompting, Contextualizing, and Presenting
	7.3 Think-Aloud Computing Applications

	8 CONCLUSION
	Acknowledgments
	References

