
Colaroid: A Literate Programming Approach for Authoring
Explorable Multi-Stage Tutorials

April Yi Wang
University of Michigan

Ann Arbor, Michigan, USA
aprilww@umich.edu

Andrew Head
head@seas.upenn.edu

University of Pennsylvania
Philadelphia, Pennsylvania, USA

Ashley Zhang
gezh@umich.edu

University of Michigan
Ann Arbor, Michigan, USA

Steve Oney
University of Michigan
Ann Arbor, MI, USA
soney@umich.edu

Christopher Brooks
University of Michigan
Ann Arbor, MI, USA
brooksch@umich.edu

ABSTRACT
Multi-stage programming tutorials are key learning resources for
programmers, using progressive incremental steps to teach them
how to build larger software systems. A goodmulti-stage tutorial de-
scribes the code clearly, explains the rationale and code changes for
each step, and allows readers to experiment as they work through
the tutorial. In practice, it is time-consuming for authors to create tu-
torials with these attributes. In this paper, we introduce Colaroid, an
interactive authoring tool for creating high quality multi-stage tu-
torials. Colaroid tutorials are augmented computational notebooks,
where snippets and outputs represent a snapshot of a project, with
source code differences highlighted, complete source code context
for each snippet, and the ability to load and tinker with any stage
of the project in a linked IDE. In two laboratory studies, we found
Colaroid makes it easy to create multi-stage tutorials, while offering
advantages to readers compared to video and web-based tutorials.

CCS CONCEPTS
• Human-centered computing → Interactive systems and
tools.

KEYWORDS
programming, tutorials, instruction, computational notebooks

ACM Reference Format:
April Yi Wang, Andrew Head, Ashley Zhang, Steve Oney, and Christo-
pher Brooks. 2023. Colaroid: A Literate Programming Approach for Au-
thoring Explorable Multi-Stage Tutorials. In Proceedings of the 2023 CHI
Conference on Human Factors in Computing Systems (CHI ’23), April 23–
28, 2023, Hamburg, Germany. ACM, New York, NY, USA, 22 pages. https:
//doi.org/10.1145/3544548.3581525

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CHI ’23, April 23–28, 2023, Hamburg, Germany
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9421-5/23/04. . . $15.00
https://doi.org/10.1145/3544548.3581525

1 INTRODUCTION
Programmers often need to communicate how a program is built in
increments from scratch. For instance, instructors teach program-
ming students by showing them not just final solutions, but also
how those solutions are written step-by-step, demonstrating the
process of designing programming solutions as they do so. Stream-
ers [12] broadcast their programming activities live to show how
they build, deploy, and debug software projects of broad interest.
During everyday work and study, programmers write reports and
blog posts describing how they wrote code to reflect on their pro-
cess and seek feedback. Members of software teams explore how
code evolves by reviewing versions of that code in pull requests and
commit records. And authors of software libraries author getting-
started guides [9] that show how to create simple applications that
incorporate their software.

Ideally, one could create beautiful records of how programs are
constructed with ease. Such a record might allow readers to easily
see what has changed in the code from one stage of its develop-
ment to the next, and empower readers to execute and tinker with
each version of the code in their own development environment.
However, in reality, creating such records of program construction
can be time-consuming and difficult [19, 37].

Recently, computational notebooks have seen widespread adop-
tion as a medium for creating rich descriptive documents about
code. Notebooks allow authors to blend programming instructions
with annotations of that code. In this way, computational note-
books support the practice of literate programming [26], or writing
programs as “essays” intended to be read. Because they support
the possibility of integrating code snippets, documentation, and
figures, such notebooks have been used by data scientists to cre-
ate code tutorials [10, 29]. They support a kind of exploration and
tinkering that is central to “learning by doing”[27], because in a
computational notebook, a code cell can be modified and executed,
allowing readers to explore how changes to the code influence the
results.

Despite their value in describing programs in domains like data
science, the notebook paradigm has yet to influence the practice
of describing how code is built in stages. This is because the pre-
dominant execution paradigm of contemporary notebooks is one
where each cell is executed independently by submitting it to a
REPL (read-eval-print loop). Instructions are submitted to an inter-
preter in sequential order. Thus, in practice, these tutorials typically

https://orcid.org/0000-0001-8724-4662
https://orcid.org/0000-0002-1523-3347
https://orcid.org/0000-0001-5978-3714
https://orcid.org/0000-0002-5823-1499
https://orcid.org/0000-0003-0875-0204
https://doi.org/10.1145/3544548.3581525
https://doi.org/10.1145/3544548.3581525
https://doi.org/10.1145/3544548.3581525

CHI ’23, April 23–28, 2023, Hamburg, Germany Wang et al.

consist of cells of code at the granularity of standalone functions
or processes.

In many domains of programming, code is developed through
a cyclical process of editing, compiling, and running the code. For
example, a programmer may iteratively tweak the labels of a data
visualization until they arrive at a set that succinctly and clearly
describes the data, or a web programmer may build a web pro-
gram through incremental elaborations to “spaghetti code” [32]
split across multiple files. Such a process, while common to soft-
ware development and imperative to convey in many programming
media, is difficult to describe in a conventional notebook. How can
we help programmers document incremental code construction for
a broader set of programming tasks?

In this paper, we introduce Colaroid,1 a temporal-based notebook
that enables authors to flexibly track and document multi-stage
code construction, and creates tutorials that are interactive, ex-
plorable, and IDE-integrated. Colaroid stands out from traditional
computational notebook tools in several ways. First, it is embedded
within the context of the authentic practice environment — the IDE
where programmers can work on any programming activities in
their familiar programming environments. Second, each code cell
is made up of code changes, allowing programmers to organize the
steps based upon pedagogical considerations rather than syntactic
constraints. Meanwhile, Colaroid organizes the explanations and
code snippets into the computational narrative structure for story-
telling, providing output previews of each cell, and allowing users
to easily tinker and explore an intermediate step.

We conducted two studies to evaluate the usefulness of Colaroid
in the context of web programming tutorials. The first study fo-
cuses on the authoring experience where we asked instructors to
create web programming tutorials on given topics using Colaroid.
The second study explores the reading experience where we com-
pared how readers interact and perceive differently among Colaroid,
video, and article tutorials. The results show that the instructors
find the process of creating web programming tutorials in Colaroid
integrates well into their programming workflow. They found it
easy to scaffold the programming process, annotate their thoughts
while working on the programming, and post-edit the tutorials after
they are done. In particular, they found it useful to not only explain
the final solution, but also teach how to think like a programmer,
demonstrate authentic practices of decomposing features, and show
the hurdles of where things could go wrong. On the readers’ side,
Colaroid ensures that the narratives are easy to follow and repro-
duce. They found it better explains the construction of the program
and the impact of code changes between steps. In addition, readers
are more willing to explore and tinker with intermediate steps in
Colaroid, and thus more engaged with the tutorials. Moreover, read-
ers perceive that the Colaroid tutorials allow both quick skimming
and deep dive, and take less time to read in general.

In summary, our work makes the following contributions:
• We contribute an alternative design of temporal computa-
tional notebooks that allow programmers to author compu-
tational narratives on incremental code construction;

1A portmanteau of the words “code,” referring to coding tutorials, and “Polaroid” [51],
a series of cameras that allowed photographers to easily and rapidly take and print a
series of photographs.

• We implement Colaroid, a system that integrates the idea
of temporal computational notebooks and tailors for the
context of web programming;

• We reveal the advantages and limitations of this new ap-
proach from both the authoring and learning experience.

2 BACKGROUND AND RELATEDWORK
In this section, we motivate the design of Colaroid by reviewing
challenges that present in the process of authoring multi-stage
programming tutorials and inspiration that our tool draws from
prior research systems developed to help with authoring tutorials
and reviewing code changes.

2.1 Authoring multi-stage programming
tutorials

2.1.1 Authoring process. Prior work suggests that the process of au-
thoring high quality programming tutorials can be time-consuming
and effortful. Authoring a tutorial involves finding and extract-
ing source code snippets, often from multiple source code files,
and then formatting those snippets [17, 37]. One particularly time-
consuming aspect of authoring is keeping code snippets consistent
between stages of a tutorial, and updating previews of program
outputs if the authors change the snippets [19].

Two approaches to authoring tutorials have been observed in
prior work [19]. A first approach is to author a tutorial simultane-
ously with creating an application from scratch, creating snippets
to add to the tutorial as the application is gradually built up. One
downside of this approach is that authors may need to revise snip-
pets in the tutorial if they decide later that the code is too complex,
or if they wish to take a different implementation approach.

A second approach is to write the tutorial after the application
is completely implemented, decomposing the finished application
into snippets. While some authors have reported creating tutorials
after they implemented an application [19, 37], it can be challenging
to deconstruct a fully-implemented system into a series of partially-
implemented programs, in part because authors may have forgotten
important details about how they implemented the system [37].

Colaroid is designed to help authors create tutorials following
the first approach, writing tutorials simultaneously with creating an
application. The purpose of Colaroid is to reduce the effort needed
to create rich multi-stage tutorials which comprise of formatted
snippets, and explorable, fully-functional versions of the application
at each step.

These features of Colaroid are meant to help tutorials adhere to
best practices set forth by prior research. Prior studies of tutorial
design suggest that, among other qualities, effective tutorials show
solutions in multiple steps [34]; highlight important elements of the
code [34]; support deliberate practice [42] and provide feedback [24,
42]; and link to external resources [34]. Colaroid incorporates these
best practices by supporting the authoring of multi-stage tutorials,
with differences in each stage highlighted, supporting tinkering
and exploration with the code; and allowing rich text descriptions
that may include links external learning resources.

2.1.2 Tools for authoring tutorials. To assist with the task of author-
ing tutorials, researchers have designed systems with numerous
powerful affordances. One class of tools assists specifically with

Colaroid: A Literate Programming Approach for Authoring Explorable Multi-Stage Tutorials CHI ’23, April 23–28, 2023, Hamburg, Germany

the creation multi-stage programming tutorials, i.e., tutorials that
show the construction of a source code project through a series of
program versions. Ginosar et al. [13] proposed an IDE for authoring
multi-stage code examples by taking snapshots of a program at
various stages. Ginosar et al.’s environment supported the propa-
gation of edits across stages, if an author decided to change code
in the program that was introduced in an earlier stage. Colaroid’s
program snapshotting capabilities resemble those from Ginosar
et al.’s environment. The aim of Colaroid is to bring the multiple
program snapshots into a single tutorial document with “literate”
features for rich text authoring, enriched representations of each
step with output previews, and tight integration into the IDE to
allow readers to experiment with the code.

A number of systems have supported the creation of multi-stage
tutorials in other media. For instance, Storyteller [31] helps authors
create videos showing the construction of a source code system,
where authors can add checkpoints and comments labeling sig-
nificant versions of the code. Along this line of research, prior
work has explored the idea of linking video or textual tutorials
with non-coding applications through vision-based techniques [40],
recording UI state [2, 54], and recording application state [15]. Im-
prov [6] helps coders provide live coding demonstrations where
a program is shown as a series of live snippets in a presentation
where the snippets are synchronized with code in an IDE. With
Improv, authors can save “waypoints,” or multiple versions of code
that can be hot-loaded into the presentation [6]. Torii [19] supports
the authoring of multi-stage textual programming tutorials. Like
Colaroid, these tutorials are authored in a notebook-like interface,
and, during authoring time, edits to snippets are synchronized with
a single-version source code project. In relation to this prior work,
Colaroid aims to support the creation of mixed-media tutorials,
comprising of rich text and outputs with recorded interactions,
to highlight differences between steps, and to support a powerful
reading experience wherein readers can try out any version of code.

Prior work has also contributed techniques that could be assis-
tive to creating a tutorial in a system like Colaroid. For instance,
CodeScoop [17] helps programmers extract code snippets using in-
teractive program slicing; such snippets could be incorporated into
a tutorial. Sanchez et al. [44] propose an automated multi-staging
technique that, given an input program, introduces code folding
points that allow a program to be gradually introduced starting at
the passages that are inferred to be the most important. The Code-
pourri [14] project revealed that useful descriptions of individual
lines of code in an interactive tutorial can be sourced from a crowd
of programmers.

The broad motivation of Colaroid to support tutorial authoring
via snapshots during program construction has precedent in the
literature about interactive tutorial authoring tools. A few examples
from the literature include the MixT [7] tool for authoring mixed-
media tutorials for illustration applications, the Chronicle [16] tool
for authoring tutorial videos with rich, annotated timelines of tool
use, and the Torta [33] tool for authoring mixed-media (text and
embedded video) programming tutorials. The aim of Colaroid is
to support the kind of ease of authoring and richness of output
of some of these prior systems, focusing on the specific case of
explaining and letting readers explore the construction of rich,
multi-file software projects like games and web applications.

2.1.3 Literate programming. We see Colaroid as supportive of the
vision of literate programming [26] set forth by Donald Knuth
decades ago. In his foundational paper about literate programming,
Knuth proposed that program should be written in a way that
supports an understanding of the program, where source code is
presented in chunks in the order they should be considered by
the reader, and interspersed with generous textual commentary.
Literate programming has seen many instantiations in work that
followed, including tools for tutorial authoring (see last section)
and notebook interfaces (see next section). Colaroid’s unique ap-
proach to literate programming is to bring together the rich text
editing affordances of notebooks together with automated creation
of contextualized code snippets showing code differences, and close
integration of the literate document into an IDE where code can be
tinkered with.

2.2 Notebook programming environments
The tutorial authoring tool in Colaroid is a notebook. By our def-
inition, a notebook is a programming environment that supports
the creation of documents comprised of interspersed source code
snippets, descriptive text, and program outputs. Computational
notebooks are a kind of notebook that supports direct execution
of snippets. They have seen widespread use in data analysis [38],
visualization [35], math and science [4, 39, 52, 53], software devel-
opment [11, 41], technology for the Internet of Things (IoT) [8],
and music composition [21].

Colaroid embodies a vision of the notebook that is distinct in
someways from the conventional computational notebook. Because
the purpose of Colaroid is to reveal how a program changes from
one stage of its construction to the next, the base “cell” of the
notebook is not a standalone executable cell of code, but rather a
set of code changes. At the same time, drawing inspiration from
the key affordance of many notebooks of live feedback on code,
Colaroid still allows readers to understand what the code does,
both by viewing the output of the program at that stage, as well
as allowing them to load the code into their IDE to execute and
experiment with it. We see these two features—code changes as an
increment of code, and the ability to load any version of code into
an execution environment—as those of a new kind of notebook,
which we call a temporal-based notebook.

Prior systems have supported some subsets of these aspects of
temporal-based notebooks. For instance, for the Torii [19] system,
snippets in a tutorial correspond to incremental additions to an
underlying program. The same can be said with Codestrates [41],
where web applications are written as self-contained HTML, CSS,
and JavaScript cells in a notebook, albeit without the document
representing multiple versions of the same program. Colaroid aims
to provide simultaneous support of all of these aspects, for showing
the multi-stage construction multi-file projects.

For conventional computational notebooks, myriad challenges
arise in supporting execution and experimentation with code as
a notebook matures, as documented extensively in recent stud-
ies [5, 18, 23, 43, 48]. Tools have been developed to support version-
ing of content in computational notebooks to try to support and
augment exploration (e.g., [43, 47, 50]). Colaroid aims to support

CHI ’23, April 23–28, 2023, Hamburg, Germany Wang et al.

the executability and explorability of the code, by generating steps
with visible outputs and allowing code to be run in the IDE.

2.3 Interfaces for Understanding Code
Revisions

Colaroid is one of many tools that aim to help programmers under-
stand changes that have been made to code. Prior research intro-
duced many mechanisms for understanding code changes, includ-
ing recording audio of think-aloud descriptions of changes [28],
contextualized text discussions atop source code files [36] and note-
books [49], automatically generating documentation of changes [3,
30], visualizing changes to data outputs [47] and models [20], and
advanced navigation affordances for code repositories [25] and
notebooks [22]. Some techniques such as anchored conversation,
documentation generation, and visualization of changes to outputs,
could enrich tutorials created with Colaroid in the future. In our de-
sign efforts of Colaroid, we focused on designing representations of
code changes that would fit compactly into a tutorial format, while
calling attention to what has changed across multi-file projects.

3 AN EXPLORATORY ANALYSIS OF
MULTI-STAGE PROGRAMMING TUTORIALS

Multi-stage programming tutorials allow authors to demonstrate
the incremental construction process of a programming project
and encourage learners to learn by doing. Prior work [19] has been
done to describe technical tutorials broadly. In this work we are
interested in the makeup of tutorials in a more narrow context,
where the tutorial is intentionally designed to support learners who
are replicating the work of the author by following a set of clearly
delineated stages. To gain a better understanding of the nature
and composition of stages in this tutorial format we expand on the
work of [19] by engaging in an exploratory content analysis of 44
such tutorials to understand how authors arranged, formatted, and
linked these stages together.

3.1 Collecting Representative Multi-Stage
Tutorials

3.1.1 Selection Criteria. To better collect representativemulti-stage
tutorials, we came up with the following criteria:

• The tutorial must demonstrate the implementation process
of a meaningful programming project. We exclude tutorials
that are API documentation and example snippets, or blog
posts that draw references to several code fragments from
different projects. For example, tutorials on different ways to
implement asynchronous programming in JavaScript would
be excluded, while a tutorial which uses asynchronous pro-
gramming in JavaScript as a stage in a project would be
included.

• The tutorial must focus on achieving a specific programming
project outcome. Thus we would exclude tutorials that teach
configuration processes, such as how to configure a cloud
service through GUI or using a given command line tool.

• The tutorial must contain at least two stages that involve
coding. As we are interested in the mixture of technical and
pedagogical support, we consider a stage to be a piece of

the writing which has both English text which scaffolds the
learning and code demonstrating how to achieve an outcome.
Stages could also contain other forms of media support (e.g.,
images, animated GIFs).

3.1.2 Multi-Stage Tutorials Linked from Stack Overflow. Following
the sampling methodology of Head et al [19], we harvested links to
multi-stage tutorials from Stack Overflow. We scraped links from
Stack Overflow answers that contained the keyword “tutorial”. The
results were then filtered based on the recency (no later than 2017)
and quality (has more than 5 up-votes) to narrow our investigation,
and considered only the first 500 URLs matched. For each match we
manually inspected each tutorial to determine whether it met our
selection criteria. Of these tutorials, 27 (5.4%) matched our criteria,
as many of the outgoing links from Stack Overflow responses were
to API documentation, or tool-based tutorials. From this list of 27,
the majority 17 of the tutorials (63.0%) were authored by official
library teams or organizations and the remaining 7 (25.9%) were
personal blog posts.

3.1.3 Multi-Stage Tutorials on FreeCodeCamp. To collect a wider
variety of tutorials, we additionally collected 17multi-stage tutorials
that are personal blog posts on FreeCodeCamp, a popular program-
ming tutorial sharing site. We located the tutorials by searching
titles that contain keywords “step-by-step” or “from scratch”. We
then manually skimmed through the tutorials and filtered them
based on the selection criteria. In addition, we only kept one unique
tutorial if there are multiple tutorials from the same author.

3.1.4 Data Analysis. Three authors filtered and initially examined
the sampled tutorials. The selection criteria was iteratively refined
on a sample of 50 tutorials until substantial agreement was attained
(Fleiss’ 𝜅 ≥ 0.8). In total, we collected 44 step-by-step tutorials. A
list of tutorials that were analyzed appears in Appendix A. Then one
author selected tutorials using the criteria, and then conducted an
initial qualitative analysis via open coding [45] to identify common
themes (as shown in Table 1) related to the research questions. The
themes were discussed, refined, and categorized by three authors.
More specifically, we categorized the themes in to five aspects:
scaffolding strategies, composition of code snippets, presence of
code snippets, presence of intermediate results, and strategies to
support learning by doing.

3.2 Results
3.2.1 How do authors scaffold the stages? As shown in Table 1,
we identified three different strategies for scaffolding the stages —
iterative build-up, module-based build-up, and aggregated build-up:

Some tutorials use an iterative build-up strategy, where the cur-
rent stage iteratively builds upon previous stages. In iterative build-
up tutorials, authors may make changes at any line of the codebase.
For example, T1 contains a stage where the authors declare a func-
tion definition. It then wrapped the function into a class definition.
This scaffolding approach is used more in web programming or
mobile development tutorials because of spaghetti code [32].

In contrast, module-based build-up and aggregated build-up have
a complete block of changes that are self-contained. For module-
based build-up, the module code blocks are independent of each
other. They may be positioned in separate files and do not need to

Colaroid: A Literate Programming Approach for Authoring Explorable Multi-Stage Tutorials CHI ’23, April 23–28, 2023, Hamburg, Germany

Category Theme Example Tutorials

Scaffolding
Strategies

Iterative Build-up: The current stage iteratively
build upon prior stages where the changes can take
place in a nested way or at multiple locations.

T1 first declared a function definition. It
then wrapped the function into a class
definition.

T1-6; T9-10; T15; T17-24; T26;
T29; T31-36; T38-40; T42-44

Module-based Build-up: The stages are divided
into modules that are independent from each other.
The order of the stages does not matter.

T25 has each stage implemented as an
independent method in its own file.

T13; T16; T25; T27; T37; T41

Aggregated Build-up: The newly added code can
be linearly aggregated to the end of the previous
code base. It is different from module-based build-
up since the order matters.

T7 uses a Jupyter notebook styled format
where each stage contains lines of code
to be executed after previous stages.

T7-8; T11-12; T14; T28; T30

Composition
of Code Snip-
pets

Changes Only: The code snippets only present
the changes.

T19 only present the changes in each
stage and never duplicate the content of
adjacent stages.

T5; T7-8; T11-15; T19-20; T23;
T28; T30-31; T34-35; T37; T41-
42; T44

Full Context: The code snippet contains the com-
plete context of the current code file.

Each stage in T4 shows the entire imple-
mentation of the related code file.

T1-4; T9-10; T15; T17-18; T21;
T24; T27; T33; T36; T38

Partial Context: The code snippet contains partial
context of the current code file.

One stage in T6 involves changing a long
xml file. The irrelevant part in the xml
file is hidden.

T6; T21-22; T25-26; T29; T39-
40

Presence of
Code Snippets

Changes Highlighted: Changes are highlighted
from the context.

T9 uses a darker background to highlight
the changes in a stage.

T9; T17-18

With Syntax Highlights: The code snippets have
syntax highlights.

The code snippets in T6 have syntax high-
lights.

T2-4; T6-15; T17; T20-27; T29-
35; T38-40; T42-43

Context Locator: The code snippets use context
locators (e.g., line number; file name) to indicate
where the changes are.

T4 marks both file names and line num-
bers in each stage.

T4; T9-10

Presence of In-
termediate Re-
sults

Textual Outputs: The textual output from the con-
sole

Several stages in T15 contain textual out-
put.

T1-2; T7-8; T11; T14-15; T17-
18; T24; T31; T41

Screenshot or Video of Intermediate Output:
The output preview for intermediate stages

T16 takes screenshot of the intermediate
output.

T20-22; T26; T28-30; T32-36;
T40; T42

Screenshot of the Last Stage Only: The output
preview for the last stage

T25 only has one screenshot of the final
output.

T5; T15; T25; T38

Textual Description: The textual description of
the output

T13 describes what will happen after ex-
ecuting the stages.

T4; T6; T12-13; T20; T25; T27;
T37; T43

Attach aWorking Demo: An interactive working
demo

T3 embeds a working demo into the tu-
torial content.

T3-4; T9; T12; T23; T28; T30;
T34; T36; T41

Learn byDoing
Starter Code: Providing the starter code for learn-
ers to follow

T4 links to a starter code at the beginning
of the tutorial.

T4; T22; T33

Full Source Code: Providing the full source code
for reference

T6 attaches a link to the full so; Source
code.

T5-6; T9; T12-13; T16; T20;
T24-31; T33-34; T36; T38-41;
T43-44

Live Playground: An online IDE hosting the full
source code

T12 contains a link to a cloud-hosted
Jupyter notebook

T4; T9; T12; T28; T30; T36; T38-
39; T44

Table 1: Exploratory Analysis Results.

be combined in a certain order. We observed module-based build-up
for both web programming and data science programming tutorials.
For example, T13 is a data science tutorial on fine-tuning models.
T13 is implemented with the functional programming paradigm
where each stage declares a pure function. This tutorial focuses on
how each function is implemented, rather than how functions are
combined and used together.

For aggregated build-up, the new code block can be linearly
appended to the end of the previous code base. This scaffolding ap-
proach is used more often for data science programming or machine
learning programming tutorials.

3.2.2 How do authors structure the code snippets for a stage? Next,
we summarized the structures of the intermediate code snippets and

discussed how they fit with the scaffolding strategies. The first com-
position structure we observed is showing changed code only. For
example, T5 demonstrates the usage of an API for Android develop-
ment and it involves changing multiple files. The tutorial contains
only the modified code lines for stages. Without enough context, it
might be hard for readers to understand where the changes occur.
On the other side, we observed that most module-based build-up
tutorials and aggregated build-up tutorials choose to display only
the changes. Displaying only the changes is enough since the code
blocks are independent of each other, and the learners can just posi-
tion them at the end of the codebase. In addition, it saves space and
makes the tutorial concise. For iterative build-up tutorials, authors
usually provide the context of the changes. Some tutorials provide
the complete context of a relevant code file. However, this may not

CHI ’23, April 23–28, 2023, Hamburg, Germany Wang et al.

work when the code file gets long and the tutorial may contain
too many duplicated code. Thus, some tutorials choose to provide
partial context by attaching the code lines nearby the changes.

3.2.3 How do authors present the intermediate code snippets? We
found that most code snippets were rendered in the article with
visual styles to make them stand out from the plain text. Most tuto-
rials will wrap the code snippets with a different background and
font style. And some tutorials further add syntax highlights to make
them more distinct from other elements in the tutorial. In addition,
code changes are highlighted in tutorials that have provided full or
partial context. To help readers locate how the intermediate code
snippets fit into the context, several tutorials (T4, T9, and T10) use
mechanisms such as adding line numbers, adding file names, or
directly explaining where the changes should go to. Notably, these
styled code snippets with change highlighting and context locators
are more likely to be found in official library tutorials. Most per-
sonal blog post tutorials use Markdown inline code rendering and
are limited at tracking code changes and locating the changes in
the entire project source code.

3.2.4 How do authors present the intermediate results? In addition
to the presence of code snippets, we investigated the display of
output previews in tutorials. We believe that providing intermediate
results can help readers better understandwhat they need to achieve
in each stage when reading through a tutorial. It also helps readers
to align their progress if they choose to learn by replicating the
stages in the tutorials locally. However, we found that most tutorials
have low coverage of intermediate results in general. We observed
that authors may directly display the output if the output is textual
(e.g., an output from console), take screenshots (either static image
or animated GIF) of a visual output, textually describe what is
expected to happen, or attach a working demo. Some tutorials only
present the output of the project for the last stage. We suspect that
this is due to the additional cost of presenting the intermediate
results. For example, authors may need to embed a working partial
version of the application which they would need to change if the
code changes, or save a screenshot and upload it to the static assets
of their site, or rehearse and record a GIF.

3.2.5 How do tutorials support learning by doing? Lastly, we in-
vestigated elements in the tutorial that might encourage readers
to learn by doing. It is common to see tutorials attaching a link
to the final source code for readers to dive into details. Some tuto-
rials also provide a starter code and encourage readers to follow
along the way. However, in some cases, readers may not want to
follow the tutorial from the beginning. Instead, they may want to
skim the beginning, jump to a certain stage, and start from there.
We observed that some tutorials provide an embedded code live
playground where readers can directly tinker the code and see the
updated output. However, these embedded code live playground are
rarely provided for every stage because of the high cost of creating.

3.3 Design Opportunities to Improve Authoring
and Reading Experience

To motivate the design of a literate programming approach for
authoring multi-stage tutorials, our formative analysis explores
the composition of representative multi-stage tutorials. Inspired by

the results, we discuss potential challenges and opportunities to
improve the authoring and reading experience of these tutorials.

3.3.1 Design Tutorial Authoring Tools to Capture and Document
the Entire Incremental Building Process. Our formative study shows
that multi-stage tutorials can be useful for demonstrating and ex-
plaining how a programming project is incrementally built from
scratch. Depending on the programming project, the authors may
create small or big incremental stages and provide the code and
explanations for the stages. These tutorials allow learners to not
only understand how the final source code works, but also the
authentic practice of how to decompose the stages and build it
incrementally. We argue that tutorial authoring tools should allow
authors to capture the authentic incremental building process as if
doing a video recording of the code editor.

3.3.2 Design Tutorial Authoring Tools to Capture the Context of
Code Changes. In addition, we discovered three different ways to
break down the coding process. For module-based build-up and
aggregated build-up, existing approaches like computational note-
books [38] and Codestrates [41] allow authors to treat each code
change as an individual code cell and linearly aggregate them to-
gether in the final document. However, if the process can not be
simply broken down into individual pieces, authors need to provide
context to indicate where the incremental changes are positioned.
More specifically, we observed several strategies for describing the
context, including providing incremental changes only, providing
the complete context of the current code file, and providing the
partial context of the current code file. Comparing the strategies,
we argue that it is more work to capture the complete context of the
current code, and would result in a long and tedious document and
cause information overload if the project scales up. However, due to
expert blind spots, providing the partial context of the current code
file or providing incremental changes only may result in learners’
confusion to follow the stages. Thus, we further argue that tutorial
authoring tools should help authors capture and efficiently present
the full context of the changes.

3.3.3 Design Tutorial Authoring Tools to Preview Multi-Stage Out-
put. Multi-stage tutorials usually capture both code changes and
the output. The output of the stages can be presented in the form of
screenshots, video recordings, or textual descriptions. However, we
found that most tutorials only provide output previews for impor-
tant stages, with an exception of a tutorial written in the Jupyter
notebook that captures the output preview for every stage.We argue
that previewing the output of each stage is important for learners
to understand the impact of code changes. Given that the process
of creating an output preview for each stage is time-consuming, we
believe that there is an opportunity to improve tutorial authoring
tools to automatically capture the output overview.

3.3.4 Design Tutorial Authoring Tools to Encourage Learning by
Doing. From the exploratory analysis, we found that multi-stage
tutorials contain elements that make it easier for learners to try out
the code, which include starter code, full source code, and a live
playground. Learners can better understand and follow the tutorial
by replicating and tinkering with the stages. However, we observed
that most live code playgrounds embedded in tutorials are only
provided for the last stage. Learners have to follow the stages and

Colaroid: A Literate Programming Approach for Authoring Explorable Multi-Stage Tutorials CHI ’23, April 23–28, 2023, Hamburg, Germany

can not flexibly skip stages to explore a stage of their interests. This
indicates a design opportunity for tutorial authoring tools to enable
learners to run and edit stages easily.

4 SYSTEM DESIGN
As our formative studies show, tutorial readers benefit from tutorials
that are easy to distribute and enable them to skim the contents
of the tutorial while providing enough detail to revisit individual
steps in depth. We designed Colaroid to help authors easily create
tutorials with these properties.

4.1 Illustrative Scenario
To illustrate the design of Colaroid for documenting incremental
code construction and sharing tutorials, we will use a hypothetical
scenario.Alice is a tutorial authorwhowants to create and distribute
a tutorial that describes how to build anHTML-based “Flappy Bird”2
clone. We will also follow Bob, one reader of Alice’s tutorial. We
will use Alice and Bob to illustrate the features of Colaroid in the
following subsections.

4.2 Overview of Colaroid Notebooks
As shown in Figure 1, every Colaroid notebook exists as part of a
larger codebase. Specifically, we implemented Colaroid as an ex-
tension for Visual Studio Code (VS Code), which is currently the
most widely used IDE according to a recent survey3. This helps
optimize Alice’s authoring experience by allowing her to write a
tutorial while staying within her authentic development context.
We implemented and tested Colaroid in the context of web program-
ming (due to its ubiquity) but its design could be easily adapted and
expanded to more languages and paradigms.

To start writing her tutorial, Alice first opens her VS Code editor
and creates a new directory containing a HTML file with several
starter lines, as she would do if she were writing this code outside
the context of a tutorial. To create a tutorial, Alice opens the Co-
laroid tutorial authoring side-panel (shown in Figure 1.B) from the
VS Code menu bar. The Colaroid panel is adjacent to Alice’s regular
code editor (Figure 1.A). In this panel, Alice sets the tutorial title
and adds a short description of the tutorial in natural language and
Markdown.

4.3 Cells as Steps in Colaroid
In Jupyter (and most other computational notebooks), code is di-
vided into “cells” where each cell usually represents a single concep-
tual block. For example, a cell might contain all the code responsible
for compressing all of the data that another cell produced. How-
ever, this conceptualization of cells is a poor fit for interactive
web applications, like the “Flappy Bird” game that Alice is build-
ing. This is because web applications rely on event listeners and
callbacks, which often results highly inter-dependent “spaghetti
code” [32]. As a result, the implementation of a single behavior
might be split across many places in the code and difficult to iso-
late into a single cell. This can be particularly challenging in web
programming, which relies on three separate languages (HTML,

2https://en.wikipedia.org/wiki/Flappy_Bird
3https://survey.stackoverflow.co/2022/#section-most-popular-technologies-
integrated-development-environment

CSS, and JavaScript) to perform different functions on the same
UI elements. For example, the code responsible for properly dis-
playing an element might consist of HTML to define the content
of that element (which needs to be placed in the appropriate part
of the larger document), CSS to specify its appearance (which is
typically in a different file), and multiple distributed segments of
JavaScript (which is subject to the aforementioned spaghetti code
phenomenon) that describe its dynamics.

Further, the order in which tutorial authors may want to explain
their code often does not match the order of the code itself. It can
me more intuitive to explain a code base through a description
of components that are connected either conceptually or by their
runtime behavior instead of through a line-by-line discussion from
top to bottom.

To address these challenges, we re-conceptualized “cells” in Co-
laroid in a way that would allow them to represent code distributed
across multiple locations, in any order. Rather than representing
the code itself (which is often impossible to group into one cell)
cells in Colaroid contain “pointers” to regions of code in the larger
codebase context. More specifically, these pointers reference code
edits—insertions and deletions in the larger codebase—that explain
a part the resulting code. In the context of tutorials, each cell typi-
cally represents a step in the tutorial. In other words, a Colaroid
cell represents a historical state of the programming process.

Every cell contains three components to make the historical state
that they represent more understandable for readers: a text area to
describe the explanations and rationales of the code in this state
(Figure 1.C), a code preview area showing the state of the code and
highlighting the changes from the previous state (Figure 1.D), and
an output area where the code in this state is rendered as a live
HTML preview (Figure 1.E). For example, Alice might create a cell
describing how to add a “Score” indicator that points to: 1) HTML
code that defines its content, 2) the portion of CSS that specifies its
font and size, 3) the JavaScript code that updates it to add to the
score when the user avoids a boundary, 4) the JavaScript code that
resets the score when the user starts a new game, etc. Alice might
augment that cell with a brief description of what the code does
and illustrate its effect by recording an example game session that
Bob and other tutorial readers can replay, see, and interact with.
The following sections will describe how Alice does this in more
detail.

4.4 Authoring Tutorials by Documenting
Incremental Changes

Colaroid optimizes the authoring experience by allowing the au-
thors to write these tutorials while staying within their authentic
development context, capturing the context and highlighting the
changes with minimal effort, and enabling rich editing and styling
on the tutorials. Colaroid automatically tracks the changes across
multiple project files and displays the code preview and the output
preview under the explanations. This means users can progressively
author the first draft of the tutorial as they construct the program.

After Alice initializes the tutorial, she begins to write code to
create the central ‘bird’ character. In her code editor, she adds a
<div> HTML element in the HTML file, writes CSS code to specify
the bird’s size and color, and references the CSS code from within

https://en.wikipedia.org/wiki/Flappy_Bird
https://survey.stackoverflow.co/2022/#section-most-popular-technologies-integrated-development-environment
https://survey.stackoverflow.co/2022/#section-most-popular-technologies-integrated-development-environment

CHI ’23, April 23–28, 2023, Hamburg, Germany Wang et al.

Figure 1: An overview of Colaroid. Colaroid is implemented as a VS Code extension. The user can open the Colaroid Notebook
(B) side by side with their main code editor (A). A Colaroid notebook consists of cells. Each cell captures a history state of the
codebase, which contains three components — a text annotation area explaining the rationale behind this state (C), a code
editor area displaying the state of the code and highlighting the changes compared to the previous state (D), and an output area
rendering the HTML display of the history state (E).

the HTML file. After testing the page locally, Alice decides to pause
here to create a cell in Colaroid. The new cell automatically refer-
ences Alice’s edits and Alice can add a more detailed explanation
of her changes in Markdown.

4.5 Recording Interactions in Output Widgets
The impact of code changes on the output might be not straightfor-
ward to observe. Natural language explanations might be helpful
but insufficient to understand the code changes in a cell. It can
instead be helpful to have a chance to see and try the resulting
program, particularly for UI code that reacts to user input. Colaroid
cells contain an “output” widget that display the UI at the historical
state represented by that cell.

However, the specific part of the output that readers should
focus on might not be readily apparent. For example, a tutorial
author might write a cell containing code that reacts when the user
hovers over a given element. The effect of these changes will not be
apparent until a reader interacts with the output in the correct way.
Thus, Colaroid allows tutorial authors to optionally record example
interactions (e.g., typing or clicking on UI elements). These example
interactions are automatically replayed for tutorial readers.

For example, suppose that after Alice writes the aforementioned
code to create the ‘bird’ character, she decides to implement the
interactive behavior of the bird character. Alice creates a JavaScript
file and links to it from her HTML code. In the JavaScript file, Alice
writes code to make the bird jump when users click the screen.
Alice makes this a new step in the tutorial. When she does, Colaroid
displays an output preview where Alice can interact with all of the
code up to that cell. As Alice clicks the output preview widget,
she is able to see the bird moving. To make the effect of her code
changes more apparent for readers, Alice records her interactions.
Alice is able to replay her interactions by clicking on the ‘play’
button and can re-record as necessary. Readers like Bob can replay
these interactions and experiment with the code and output at this
(and every) step.

4.6 Revising and Editing Colaroid Notebook
Cells

In our pilot studies with early prototypes of Colaroid, participants
expressed the importance of correcting errors in post-editing. Co-
laroid supports a variety of post-editing with the draft tutorial,
including editing text explanations, editing code, and annotating

Colaroid: A Literate Programming Approach for Authoring Explorable Multi-Stage Tutorials CHI ’23, April 23–28, 2023, Hamburg, Germany

outputs. For text explanations, users can toggle the display into
a Markdown editor and make changes to the content. We imple-
mented Markdown styling with Colaroid, which could be easily
extended into a rich text editor for editing and styling the explana-
tions. In terms of modifying code, Colaroid allows users to zoom
into a particular cell by restoring the local files into the state of
the cell and directly making changes from the main code editor. In
order to keep the edits synchronized [13], we chose to propagate
these changes to the follow-up cells.

Thusfar, Alice has created three cells in Colaroid. However, she
realizes that she forgot to change the HTML page title in the initial
step, as shown in Figure 2. Alice can edit the initial step in Colaroid
by clicking the ‘revise’ button, which then restores the state of
every file in her codebase for that step in the tutorial. Alice then
fixes her mistake by adding a page title and saving her changes.
Colaroid automatically propagates her changes to later steps, which
means the page title in steps 2 and 3 are also updated.

4.7 Sharing and Distributing Tutorials
After creating the tutorial, authors can share the entire project
folder with learners so that they can open the tutorial in their
own code editors. Authors can also export the tutorial into hosted
webpages and static PDFs. Below, we explain how tutorials are
stored, and describe several ways to share and distribute tutorials.

4.7.1 Leveraging Git for Code Versioning. Colaroid stores code
changes by leveraging the git version control system. Additionally,
Colaroid creates a JSON dictionary for storing the tutorial informa-
tion, including themapping between the code commit identification,
the text annotations and the output interaction recordings. Thus,
authors can directly pass the project folder to learners in order for
them to open the Colaroid notebook in their own editor. Future
front-ends for Git repositories (e.g., GitHub and GitLab) could easily
add native support for Colaroid tutorials.

4.7.2 Sharing through Cloud Platforms. Alternatively, authors can
also host their project folders through repository hosting platforms
(e.g., GitHub, Bitbucket). When learners download the project code,
they can access the Colaroid narrative by clicking the “Open Co-
laroid Notebook” option in the editor’s menu. With cloud comput-
ing environments that connect to these repository hosting platforms
(e.g., GitHub Codespaces), learners can directly play around with
the narrative in their browser. This approach overcomes the burden
of cloning the project and opening it in their own editor, which
requires Colaroid to be pre-installed.

Alice completes her tutorial and polishes it by fixing issues in
intermediate steps and adding interaction recordings. Alice uploads
her project directory to GitHub, a code repository sharing site. At
some later point, Bob finds Alice’s tutorial and decides to open the
GitHub Codespace to view it on a cloud-hosted VS Code editor.

4.8 Reading Tutorials
Colaroid enhances the experience of reading tutorials by encourag-
ing learners to actively play around and explore the intermediate
steps. In addition, it can render tutorials into several different for-
mats according to learners’ needs.

4.8.1 Explorable Explanation. Inspired by computational notebooks,
Colaroid allows learners to freely explore the intermediate steps to
engage with the narrative. This way of learning concepts through
live, interactive, and reactive environments has been characterized
as “explorable explanation” [46]. We design two mechanisms to
support the explorable explanation. First, when skimming through
the narrative, learners can play with the live preview of the output
or watch the recorded interactions to get a better sense of what
the current progress is. Next, if they are interested in exploring an
alternative solution, they can load the state of the cell into their
main code editor and tweak around with it.

4.8.2 Rendering Notebooks into Multiple Formats. Colaroid note-
books can be rendered into multiple formats according to users’
needs. In addition to the default article view, learners can browse
the steps in a “slide view”, which gives them the focus on a particu-
lar step. They can also browse the steps in a “timeline view”. As the
learners move the progress bar, the state of the intermediate code
will be loaded to the main editor, which provides learners with a
guided tour around the construction of the program.

After Bob finds Alice’s tutorial, he quickly skims through the
initial steps in the ‘article’ view. Bob skims through the text an-
notations and highlighted code changes to skip steps when he
already feels comfortable with the code changes. In addition, Bob
can also visually observe the output of each step to gain an intuitive
understanding.

At step 4, Bob notices that the tutorial describes the ‘repeat’
option in CSS. This is the first time Bob has heard of this property
so he wants to do a deep dive and explore what things look like with
alternative values. Thus, Bob clicks on the step to open the state
of the codebase at that step in the VS Code editor. The state of the
project is temporarly restored to that of step 4. Bob is able to browse
and directly modify the code to experiment with its output. After
exploring step 4, Bob can continue to read through the notebook
and explore other steps.

4.9 Implementation
We implemented Colaroid as a VS Code extension so that we can
enable the interaction between the tutorial panel and the code
editor. In this section, we highlight the important implementation
choices for Colaroid.

4.9.1 The Notebook View. The front-end component of Colaroid
is built with the VS Code Extension Webview API, which renders
HTML content and passes messages between the editor and the
extension.

4.9.2 Mapping Git Commit with Tutorial Cells. Colaroid uses git
to manage code versioning and editing and a separate JSON file
(.colaroid.json) to determine how cells are rendered. Using git
allows Colaroid to leverage a robust, widely-used versioning tool.
For every cell in the notebook, .colaroid.json stores: message
(theMarkdown text of the step), hash (the corresponding git commit
hash for the step), and recording (recorded interaction—mouse
movement, clicks, etc.).

We chose to augment git with a separate data file (.colaroid.json)
for several reasons. First, this structure allows us to easily remove
a step without having to remove the commit. Second, we did not

CHI ’23, April 23–28, 2023, Hamburg, Germany Wang et al.

<html><head>
 <title>Untitled</title>
</head><body>
 <h1>Flappy Bird</h1>
</body></html>

<html><head>

 <title>Untitled</title>

</head><body>

 <h1>Flappy Bird</h1>

 <div class="bird"></div>
</body></html>

A

<html><head>
 <title> HTML 5 Game </title>
</head><body>
 <h1>Flappy Bird</h1>
</body></html>edit w/r.t. A

Phase 1 → Phase 2:

User moves editor to
change step A.

Colaroid creates a new
‘change’ branch with the
current codebase and
resets the head to the step
that is being revised

git checkout -b change

git reset --hard ...

main

mainchange

Phase 2 → Phase 3:

User edits step A, creating
modified step A'

Colaroid creates a new
commit with the revisions

git commit ...

editor

editor

edit w/r.t. A

main

change

editor

Phase 3 → Phase 4:

Colaroid will propagate the
change in A' to all the future
steps by merging commits

git cherry-pick

 —strategy-option=ours ...

<html><head>

 <title> HTML 5 Game </title>

</head><body>

 <h1>Flappy Bird</h1>

 <div class="bird"></div>
</body></html>

edit w/r.t. A'

editor

Phase 4 → Phase 5:

Colaroid will remove the
original main branch and
rename the ‘change’
branch to ‘main’

A A' B'

editor

main

Phase 1 Phase 2 Phase 3

Phase 4 Phase 5
main

change

1 B # Step 2: Add the Bird Character

0 # Step 1: Starter CodeA
ExplanationCommit ID

1 B # Step 2: Add the Bird Character

0 # Step 1: Starter CodeA'
ExplanationCommit ID

1 B # Step 2: ...

0 # Step 1: ...A
ExplanationCommit ID

1 B' # Step 2: Add the Bird Character

0 # Step 1: Starter CodeA'
ExplanationCommit ID

1 B' # Step 2: ...

0 # Step 1: ...A'
ExplanationCommit ID

<html><head>
 <title> HTML 5 Game </title>
</head><body>
 <h1>Flappy Bird</h1>
</body></html>

edit w/r.t. A

BA
BA

A'

BA

A' B'

BA

A

B

Figure 2: Colaroid implements code versioning and change propagating through git. Suppose the author wants to edit the first
step (e.g., changing HTML page title) and propagate the change to subsequent steps. Colaroid maps steps with the hash ID of
the code commits in Git. As shown in phase 1 and phase 2, Colaroid will first check out the main branch into a new branch
named “change” and reset the head to the code version that needs to be edited. By doing this, authors would see commit A
loaded in their code editor. Next, tutorial authors can make changes directly in the code editor. Once they confirm finishing the
edits, Colaroid will create a new commit for the changes and merge commits in the later steps into the change branch.

directly store the explanation as the commit messages for easy
modification and unlimited word length. Lastly, this approach also
allows us to store additional annotations like interactive recording
data with each step.

4.9.3 Propagating Changes. As Figure 2 shows, Colaroid leverages
git to implement code versioning and change propagation. When a
user clicks on the ‘edit’ button of a code snapshot, Colaroid checks
out the current branch into a temporal branch, and reset the head
to that code snapshot (say commit A). This loads the code snap-
shot into the user’s editor and allows them to make changes. After
the changes are done, the user would click on the save button,
which triggers Colaroid to create a new commit in the temporal
branch (say commit A'). Next, Colaroid starts the change propaga-
tion process. Colaroid loops through all the commit hash IDs for
commits in the notebook JSON file. For each commit (say commit
B), Colaroid would execute the git cherry-pick command with
the merging strategy to be ours. This command would attempt to
automatically merge the two commits (commit A' and commit B)
and pick the original commit (commit B) if the changes can not
be propagated automatically. After merging, we now get a new
commit (say commit B'). Colaroid then updates the mapping table

from [commit A, commit B] to [commit A', commit B']. The
underlying mechanism of git cherry-pick is implemented using
a three-way merge algorithm, similar to [13]. We choose to lever-
age git cherry-pick because it is a standard and widely-used
implementation.

4.9.4 Recording Interactions in Output Snapshot. Colaroid allows
users to record interactions to demonstrate behaviors in an output
snapshot. The output snapshot is implemented as an <iframe />
element that renders the code snapshot. We implemented the inter-
action recording by injecting a tracking script inside the iframe
that captures mouse and keyboards input. This input data is times-
tamped and stored in the notebook JSON file.

5 SYSTEM EVALUATION OVERVIEW
To evaluate how Colaroid supports documenting incremental code
construction, we designed two studies to investigate the authoring
experience and the reading experience of Colaroid. To evaluate the
authoring experience, we recruited instructors and senior students
to create web programming tutorials from given topics using Co-
laroid. We summarized how they perceive the usability of Colaroid
and how they compare Colaroid with other tutorial authoring tools.

Colaroid: A Literate Programming Approach for Authoring Explorable Multi-Stage Tutorials CHI ’23, April 23–28, 2023, Hamburg, Germany

To further investigate the benefit of the Colaroid narrative in com-
municating the code construction process, we deployed Colaroid
tutorials in a web programming workshop where students learned
new programming concepts through project-based examples and
applied them to a different context. We reported how students use
and perceive Colaroid tutorials differently from a traditional static
article tutorial and a video walkthrough.

6 STUDY 1: EVALUATING THE AUTHORING
EXPERIENCE

To evaluate the authoring experience of Colaroid, we conducted a
user study with 10 experienced web programmers where partici-
pants are asked to create a project-based tutorial using Colaroid.
The scope of this study is to focus on the authoring experience
from the tutorial creators’ perspective, instead of the learning ex-
perience from the learners’ perspective. More specifically, we aim
to explore whether tutorial authors find Colaroid easy to use, and
understand its usefulness compared to their prior experience in
creating programming tutorials.

6.1 Method
6.1.1 Recruitment. We reached out to both instructors and senior
students from the computer science program and the information
science program on campus. We asked participants to fill a screen-
ing survey to indicate their prior experience in programming and
teaching programming. Qualified participants identified themselves
as experienced web programmers — including instructors, teach-
ing assistants, or senior students who have previously taken an
advanced web programming class or believe that they have equiva-
lent skills. In total, we recruited 10 participants (9 graduate students
and 1 senior undergraduate student). As shown in Table 2, their
experience in web programming varies from 2 years to 15 years.

6.1.2 Study Task. Each study session consists of four components
— a training component, a warm-up task, a freeform exploration
task, and a post-task discussion. When participants joined the study,
we first provided them with a 15 minutes training on how to install
and use Colaroid. To ensure that they get enough practice of using
Colaroid, we asked them to perform some exercises in a pre-made
Colaroid tutorial. Participants were given a tutorial on the topic
of creating a stopwatch. Participants need to make a few edits
using the core features of Colaroid, including making changes to a
markdown text to explain a concept, making changes to a previous
step, recording an interaction, and building an additional feature
in the application while making it a new step. We encouraged
participants to ask any questions about the usage of the Colaroid
notebook. The warm-up exercises last for 15 minutes.

Then, participants completed a 30-minute open-ended authoring
task. In this task, a participant created a first draft of a tutorial de-
scribing the construction of a simple web application. Participants
could write about any web application they wished. To help partic-
ipants pick a focus, we provided examples of web applications they
could focus on, including counters, TODO lists, and lottery number
generators. These recommended applications were chosen to be
simple enough to implement in the time given, yet just complex
enough that the tutorials would be interesting.

Participants were asked to write for an envisioned audience of
students who have just started learning HTML, JavaScript, and CSS.
They were asked to add commentary to their tutorial that described
both the functionality of the code, and engineering considerations,
like the rationale behind requirements, and how to debug the code.
The amount of time alotted for the task was sufficient for creating
a tutorial with several steps, and draft text commentary. Full drafts
of text commentary and polish were considered outside of scope
for the task.

After the study session, we asked participants to complete a
questionnaire about the usability of the tool. We also asked partic-
ipants several semi-structured interview questions to probe into
their feedback. In addition, we requested participants to upload
their tutorials for additional analysis.

Each study session lasts around 80 minutes. All the sessions were
conducted virtually with participants using Colaroid from their own
VS Code editors and sharing screens through video conferencing
tools.

6.2 Results
6.2.1 Overall Quality of the Tutorials. As shown in Table 2, all the
participants were able to create a complete tutorial in Colaroid
in the 30 minutes freeform exploration session. The topic of the
tutorial covered a diverse range, including lottery number gener-
ator, number guessing game, calculator, todo list, and so on. We
examined the tutorial artifacts and found that participants used
different strategies to scaffold the steps (as referred as a base unit
of the Colaroid notebook) of the tutorial. For example, I2, I6, and
I8 all created tutorials on building a counter. I2 included 4 steps
in the tutorial: setting up boilerplate code for the counter project,
adding all the UI elements, programming interactive behaviors, and
adding the style of the UI elements. I6 divided the steps by features
with each step implementing a different button. I8 provided more
detailed steps on how to link to external stylesheets and JavaScript
files, how to get DOM elements in JavaScript, and how to respond to
users’ interactions. Regardless of the scaffolding strategies, Colaroid
ensures that the code context of each step is captured and orga-
nized together into a single narrative. In addition, we observed that
participants use Colaroid to create different types of explanations.
Some participants (I2, I5, I6, I9) simply explained the purpose of the
code changes to each step — what they did. Others also included
various pedagogical instructions. For example, I4 added many ref-
erence links to the Bootstrap API as he went through example UI
components; I9 created a fully explained tutorial (1063 markdown
words in total) which not only covers what he did, but also how he
did it and why he did it in styled markdowns. From the post-task
questionnaire, most participants (8 out of 10) are satisfied with the
tutorials they created. Several participants (I4, I8, I10) mentioned
that if given more time, they would like to polish the explanations
and add more external references, though the first draft is “good
enough for capturing the process” (I4).

6.2.2 Easy to Author. Next, we examined how participants per-
ceived the authoring experience in Colaroid. In the post-task ques-
tionnaire, most participants found the system not difficult to use (9
out of 10) and easy to learn (10 out of 10). Participants commented
that the interface is “intuitive” (I1, I6, I7). Participants highlighted

CHI ’23, April 23–28, 2023, Hamburg, Germany Wang et al.

Table 2: For study 1, we recruited 10 teaching assistants and senior students who are experienced in web programming.

PID Background Web
Prog.
Exp.

Teaching Exp. Tutorial Topic Tutorial
Length

Markdown
Words

I1 Ph.D. in CS 6 Years Teaching Assistant Lottery Number Generator 16 Steps 463
I2 Ph.D. in CS 15 Years Teaching Assistant Counter 4 Steps 98
I3 Master in IS 4 Years Tutoring Number Guessing Game 4 Steps 485
I4 Senior in IS 2 Years Tutoring Bootstrap 5 Steps 102
I5 Master in IS 4 Years Teaching Assistant Counter 7 Steps 178
I6 Ph.D. in CS 2 Years None Counter 5 Steps 30
I7 Master in IS 3 Years Tutoring Lottery Number Generator 7 Steps 152
I8 Master in CS 2 Years None Counter 10 Steps 237
I9 Master in CS 3 Years None Calculator 13 Steps 1063
I10 Master in IS 8 years Teaching Assistant Todo List 7 Steps 219

Figure 3: Results of the post-task questionnaire in study 1.

two features that improve the authoring experience — propagating
changes from editing previous steps (I1, I4, I6, I9), and recording
interactions on the output (I3, I4, I5, I9). For example, I1 and I6 men-
tioned that they may want to later polish the code or fix mistakes in
previous steps; I3 mentioned the benefits of recording interactions:

I really like how the recorded interaction would track
your mouse. I have worked on similar tutorials before
for react components. It is not always super apparent
to learners on what happened to the output. (I3)

Several participants (I1-3, I6-8, I10) who have used Jupyter note-
books mentioned that the Colaroid notebook reminds them of
Jupyter notebook and it is easy to understand the idea behind
Colaroid. Participants also mentioned the differences between the
two notebooks:

This reminds me of Jupyter notebook where you can
use it to teaching things progressively and see how
things are worked through. But with Jupyter Note-
book, cells do not usually build on top of each other.
Sometimes you can mess up with the notebook by
executing the same cell multiple times or revise a pre-
vious cell and rerun it. I think Colaroid captures the
process more honestly. (I3)

In the post-task questionnaire, we probed into participants’ prior
experience in demonstrating a coding project to others. Some partic-
ipants mentioned live demo in classroom (I1, I2) or remote sharing
(I3) and pointed out two issues with live demo: difficult for async
setting — “may have different schedules” (I3), and hard to archive —
“depends on the students in terms of how they take notes about the
process” (I2).

Colaroid: A Literate Programming Approach for Authoring Explorable Multi-Stage Tutorials CHI ’23, April 23–28, 2023, Hamburg, Germany

Other participants mentioned their prior experience of authoring
article tutorials and video tutorials and compared it with Colaroid
tutorials. Participants reported several challenges of authoring arti-
cle tutorials. For example, I2 reported the challenges of switching
context and interleaving the development context when creating
article tutorials — “I prefer creating tutorials directly inside the
VS Code editor because I don’t have to go back and forth between
different authoring tools.” (I2); I6 mentioned that it is a tedious
process to supplement all the details in an article tutorial — “I really
like to attach screenshots. But in a Medium post, I am not going to
screenshot everything.” (I6); I7 said that making an engaging web
article is technically hard — “With web articles, I think the biggest
problem is that it is hard to create interactive elements in it. Some
people are able to make very fancy web articles. But it takes efforts
you know” (I7). For authoring video tutorials, participants reported
the difficulties in post-editing:

In the past I have had to author documentation videos
where I am recording myself going through things
step by step for future programmers. But the prob-
lem with the video is the editing process. If I made a
mistake, if it is just a word cut or something, I will
start over and continue on. If it is something I realized
later on, I will probably have to go through the entire
process again. (I9)

6.2.3 Perceived Benefits for Learners. Lastly, participants made
several comments on how they think the Colaroid tutorials will
benefit learners. We categorized the feedbacks into two aspects:
potential usage scenarios and advantages over other tutorials.

For potential usage scenarios, most participants mentioned the
Colaroid can be useful for instructors to deliver demonstrations
to students. For example, I5 mentioned creating lecture notes in
Colaroid to make students “easier to follow along in the class.”; I2
and I10mentioned that studentswould “get a better sense of the flow
by seeing the intermediate process”. Participants also mentioned
that Colaroid can be useful for students to handle their assignments,
which helps instructors understand “how they scaffold the project
andwhy they do certain things” (I4). In addition, several participants
mentioned using Colaroid for collaboration:

This tool can be potentially useful for collaboration.
Consider working with massive number of people on
an open-source project, the documentation is very
important. It can be helpful to explain decisions re-
garding each steps. (I1)

Participants also solicited the advantages of Colaroid over other
tutorials from learners’ perspective, including capturing all the
implementation details compared to article tutorials (I3, I5, I6, I8),
encouraging learning by doing rather than passive reading (I2-3,
I6), and less time consuming than video tutorials (I4-7, I9, I10).
These results correspond to our findings in study 2 on the reading
experience of Colaroid. Since this is not the focus of study 1, we
will elaborate on these advantages later in the results of study 2.

7 STUDY 2: EVALUATING THE READING
EXPERIENCE

Colaroid introduces not only a novel way of authoring tutorials, but
also a new approach to interact with tutorials. Thus, we conducted a
second study to evaluate how the affordances of Colaroid influence
the experience of following a tutorial. In the second study, we
provided learners with expert-created tutorials and asked them to
apply what they learn into a new problem context. We compared
Colaroid tutorials to two baseline formats of tutorials — text articles,
and video tutorials.

7.1 Method
7.1.1 Recruitment. The study takes place as part of an advanced
web programming workshop. The topic of the workshop is building
HTML5 games, where the target audience are students who have
basic knowledge of HTML5, but have never programmed HTML5
games before. We reached out to students who are currently taking
or previously took the web programming class from our institution.
In total, we recruited 16 participants for the study. All the partici-
pants had formally taken classes on web programming, and none
of them had programmed HTML5 games before.

7.1.2 Study Setup. The study consisted of two sessions over a
span of two weeks. The final project of the workshop is to build
a dinosaur adventure game in HTML5. We provided participants
with a set of tutorials on building a Flappy Bird game in HTML5.
The dinasaur adventure game in the final project and the Flappy
Bird game in the tutorial use similar APIs but are different in several
mechanisms. We purposely made the final project challenging so
that participants can maximally utilize the tutorials to help them
accomplish the goal. We later validated the task difficulty with
experts evaluating the project submissions and found that half of
the participants were able to satisfy 60% of the final requirements.

The final project is scaffolded into two subgoals. In week one,
students were asked to implement the layout and basic animation of
the game. In week two, they finished the rest of the game by making
the game interactive with users’ input. We scheduled a 60-minute
individual session each week with each participant to observe how
they interact with the tutorials. In the first session, we provided
10 minutes of training on how to use the tutorial environment.
Participants then spent 40 minutes exploring the session goal. After
each session, participants were asked to complete a questionnaire
asking them to assess their experience of following along with the
tutorial. Lastly, after the second session where participants have
experienced both conditions, we conducted a reflective interview for
comparing the tutorials. All the sessions were conducted virtually
using a video conferencing tool. Participants were explicitly told
not to work on the game outside of the study session.

Our study used a within-subjects design where participants were
given the Colaroid tutorial and one of the traditional tutorials.
We counterbalanced the order of the tutorials. More specifically,
there are 4 participants in each unique combination of conditions
(Colaroid + article, article + Colaroid, Colaroid + video, video +
Colaroid).

7.1.3 Study Apparatus. We used GitHub Codespaces for partici-
pants to access the tutorials. GitHub Codespaces allows participants

CHI ’23, April 23–28, 2023, Hamburg, Germany Wang et al.

Figure 4: We used GitHub Codespaces for participants to access tutorials. All the three types of tutorials are displayed side by
side with the main code editor.

to view the Colaroid tutorials in an online VS Code editor which
has Colaroid installed. The online VS Code editor is connected to
a virtual machine, thus, participants could edit, run, and test the
code as if they are doing it locally. We hosted the tutorial projects
on GitHub, and created the codespace instance ahead of time. We
chose to use GitHub Codespaces because it simplifies the process of
sharing the project, installing the Colaroid extension, and setting up
the study environment on participants’ local editors. It also avoids
inconsistent versions or any incompatibility issues on users’ local
editors. To ensure participants have a similar experience in viewing
tutorials and project code, we embedded the article tutorial and
video tutorial inside the code editor. As shown in Figure 4, all three
types of tutorials are shown side by side with the main code editor.
Participants can open them in new tabs if needed.

7.1.4 Tutorial Preparation. We asked the two instructors of the
web programming class to prepare the tutorials. The two instructors
are familiar with participants’ web programming experience and
therefore can create instructional materials that best suit their learn-
ing. Each instructor was responsible for creating a set of tutorials
for one session. Each set of tutorials contains the same instructional
content in three forms — article, video, and Colaroid. For Colaroid
tutorials, we provided instructors documentation on how to use
Colaroid for creating tutorials. For article tutorials, instructors used
a document editing tool (Dropbox paper) for creating styled texts
with screenshots. Instructors can also include external links to pro-
vide more context for the tutorial. For video tutorials, instructors
used a screen recording tool to demonstrate how they build the
application while talking over the video to provide explanations.
Instructors also did some post-production edits such as cutting and
adjusting the speed. Instructors are explicitly told to create the
best version of the tutorial they could and to make sure that the
three types of tutorials convey similar instructional content. The
research team further helped instructors edit the tutorials by fixing

typos and styling issues, improving the quality of the screenshots,
making sure the contents are reasonable and approximately the
same quality across across three formats.

7.1.5 Data Collection and Analysis. This study collected data from
multiple sources. First, we collected students’ background infor-
mation on their familiarity with web programming, HTML5 game
programming, and the VS Code editor. This data is used in screen-
ing the participants so that participants meet the same criteria
for recruitment. For each session, two members from the research
team were present and took observational notes individually. After
discussing, synthesizing, and iterating the observation notes, we
created a code book on interesting behaviors that emerged from
observations. One member from the research team further applied
closed coding on the screen recording to understand how students
interact with the tutorials. For students’ final artifacts for both ses-
sions, we asked two experts to rate the quality of their submissions.
The two experts first discussed the rubric for grading the function-
ality of the game (e.g., giving 10 points if the game character reacts
to users’ keyboard interaction, an additional 10 points if the game
character demonstrates a “jumping” movement, and an additional
10 points of the game character stops movements when running
into a tree.), This analysis is to help us understand how the tuto-
rial formats led to noticeably different programming outcomes. In
addition, we asked students to fill out a questionnaire after each
session and compared the questionnaire results for each session.
As shown in Table 3, we divided the population into two groups
— groups that use Colaroid and article tutorials, and groups that
use Colaroid and video tutorials. For each group, we conducted a
paired t-test to understand the significance between the Colaroid
condition and the regular tutorial’s condition. We also conducted
an exit interview with participants after the second session where
we asked them additional questions comparing the tutorials they
have experienced in the two learning sessions.

Colaroid: A Literate Programming Approach for Authoring Explorable Multi-Stage Tutorials CHI ’23, April 23–28, 2023, Hamburg, Germany

7.2 Results
7.2.1 How do participants engage with the tutorials? Firstly, we are
interested in how participants engage differently with three types
of tutorials. We consider learners’ engagement with the tutorials
beneficial to the purpose of learning, though the frequent use of a
tutorial may actually slow them down. We probe into participants’
engagement by coding and visualizing their interactions with the
tutorial.

Figure 5 illustrates how participants switch context between the
tutorial and their own project where the x–axis represents the en-
tire experiment duration. All participants spent the full duration of
40 minutes on the task. Although there is no significant difference
in participants’ self-reported feeling of engagement, we found that
there was a significant effect for the tutorial type, with participants’
actual engagement time with Colaroid tutorials more than video tu-
torials (M=8.79 mins, SD=5.40, p<0.01) and article tutorials (M=8.76
mins, SD=2.69, p<0.01). Participants mentioned that they benefited
from tinkering the intermediate steps in Colaroid:

I feel more engaged because I can run the tutorial
code for each step and change the code to see how it
works. (P6)
I feel more engaged because there’s literally aworkspace
in the Colaroid tutorial which allows you to work
alongside it. (P20)

In addition, we counted the occurrence of switching between
the tutorial and the project, and found that participants switched
more frequently in Colaroid (M=16.5, SD=7.46) and article tutorials
(M=14.38, SD=8.75) than video tutorials (M=7.13, SD=4.67). We
further observed that many participants switched more frequently
in Colaroid and article tutorials to either copy the example code or
compare their own code with the example code. In the reflection
interview, some participants mentioned that video tutorials are
less engaging because “you can’t do it on your own pace” (P4),
“you can not copy the code and revise it” (P12), and “I don’t have
patience to watch them” (P2). In particular, we noticed that some
participants (e.g., P20, P12) gave up on the video tutorials after
watching a segment at the beginning of the study, and decided
to only use the final code of the Flappy Bird game to help them
implement the dinosaur game.

7.2.2 Are Colaroid tutorials easier to follow along? As shown in
Table 3, we found significant differences in how participants per-
ceive the time costs to follow along with three formats of tutorials.
On a scale of 5 where 1 is completely disagree and 5 is completely
agree, video tutorials (M=3.88, SD=0.99, p<0.05) are perceived to
take more time to read than Colaroid tutorials (M=2.38, SD=1.41).

When comparing Colaroid tutorials with article tutorials, many
participants mentioned that showing the code difference and output
preview saved them time in reading:

It saves time to only read the code diff, and the preview
works great because I don’t need to guess myself. (P6)

When comparing Colaroid tutorials with video tutorials, most
participants mentioned that video tutorials are lengthy to watch
and hard to navigate around:

The explanations in two tutorials (Colaroid and video)
are both clear to me. It (Colaroid tutorial) is easier for

me to find what I want, but in the video tutorial, I
have to go over it and find what I need. (P1)

P3 recalled her prior experience with video tutorials:
When I first learn programming, I need to have at least
two screens. I need to watch how professor do the
coding, and I need to do it by myself. When I watch a
video, I sometimes need to spend time to understand
what the professor is talking about. So I have to press
pause and read the code again. (P3)

In addition, some participants also mentioned the challenges in
navigating between steps in video tutorials:

I like the Colaroid tutorial because I can skip around,
look at the code, and play around with it for myself. I
think I like to look at things twice over on and maybe
read twice.With video, it’s pain to rewind and rewatch
and rewind. (P15)

7.2.3 Does Colaroid support more incremental procedure following?
Next, we investigated how different tutorial modalities commu-
nicate the process. Participants complained that article tutorials
were not good at tracking the process for several reasons. First,
article tutorials only showed a sliced range of the code snippets.
We observed that a common pattern for participants to learn from
a tutorial is by trial and error. Many participants copied and pasted
the tutorial’s code into their own projects to see how it applied to
their scenarios. However, it is not straightforward for them to see
where the new code should be pasted. In a step where the instructor
inserts a statement into a declared function, some participants were
confused about where to locate the newly added code and pasted
it outside of the declared function. In the post-task questionnaire,
participants perceived that it is clear to them how the steps evolved
in Colaroid (M=4.5, SD=0.73) than in the article tutorial (M=3.63,
SD=0.52, p < 0.01). For example, one participant reported:

I had a harder time with this one (article). I can’t easily
compare the steps. Although each step has a link to a
github repo, having them open separately and not able
to see the differences between the repo does make it
a bit more difficult. And a lot of the article tutorials
don’t guarantee to have that. It was a lot easier to have
the centralized space and to see changes between each
step (in Colaroid). (P7)

Colaroid tutorials also provide better translation of the process by
showing how the step changes affect the output in the tutorial. We
observed that when skimming the tutorial, many participants would
try the intermediate output in the Colaroid tutorial to understand
the outcome of the step and then decide whether they are interested
to look into more details. One participant compared the fidelity
across three modalities and rated Colaroid as between video and
article:

I think it really helps to see someone do it and be able
to understand how each step they are doing and make
sure I understand how to replicate it. The only issue
with video tutorials is sometimes that I don’t have
patience to watch them because I read much faster
than I can. So sometimes I prefer to skim an article. I
think Colaroid is like between the video and article. I

CHI ’23, April 23–28, 2023, Hamburg, Germany Wang et al.

Table 3: Perceptions of the three tutorials. Participants rated their agreement with nine questions on a scale from 1 (strongly
disagree) to 5 (strongly agree). (M: mean, SD: standard deviation). *p < 0.05; ** p < 0.01

Statement Condition N M SD p Agreement: 1 to 5

This tutorial is easy to follow.

Colaroid 8 4.13 0.64 0.17
Article 8 3.63 0.52
Colaroid 8 3.88 1.36 0.32
Video 8 3.38 1.19

It is clear to me how the steps evolved.

Colaroid 8 4.63 0.52 0.001**
Article 8 3.63 0.52
Colaroid 8 4.38 0.92 0.19
Video 8 4.00 1.07

It is easy to understand how the step changes affect
the output in the tutorial.

Colaroid 8 4.38 0.74 0.07
Article 8 3.63 0.92
Colaroid 8 4.25 1.04 0.11
Video 8 3.50 1.51

This tutorial helps me with making progress on my
dinosaur project.

Colaroid 8 4.50 0.53 0.10
Article 8 4.00 0.76
Colaroid 8 4.13 1.13 0.49
Video 8 3.63 1.50

After reading the tutorial, I am confident that I can
replicate the Flappy Bird project from scratch by my-
self.

Colaroid 8 4.25 0.70 0.001**
Article 8 2.88 1.25
Colaroid 8 3.50 1.69 1.0
Video 8 3.50 1.51

After reading the tutorial, I am confident that I can
build similar HTML5 games from scratch by myself.

Colaroid 8 3.50 1.20 0.04*
Article 8 2.75 0.89
Colaroid 8 3.00 1.69 1.0
Video 8 3.00 1.60

The tutorial takes too much time to read.

Colaroid 8 2.25 0.89 0.06
Article 8 3.25 0.89
Colaroid 8 2.38 1.41 0.04*
Video 8 3.88 0.99

I feel engaged when reading the tutorial.

Colaroid 8 4.13 0.64 0.04*
Article 8 3.50 0.75
Colaroid 8 3.88 1.25 0.49
Video 8 3.38 1.50

I am satisfied with the progress of the dinosaur game
so far.

Colaroid 8 4.00 0.76 0.04*
Article 8 3.38 0.74
Colaroid 8 3.88 1.13 0.84
Video 8 4.00 1.07

Expert Evaluation on the Artifact

Colaroid 8 60.00 27.26 0.12
Article 8 54.38 32.12
Colaroid 8 58.13 35.75 0.81
Video 8 63.13 35.25

Actual Engagement Time (mins)

Colaroid 8 14.68 3.00 0.007**
Article 8 8.76 2.69
Colaroid 8 14.35 4.87 0.002**
Video 8 8.79 5.40

could skim through it, but I can understand the ma-
terials much more thoroughly and comprehensively
like actually being able to watch someone go through
every step of the process and explain it. (P2)

7.2.4 Does Colaroid lead to better learning outcomes? In the post-
task questionnaire, we asked participants to rate a few statements
regarding to the task performance. As shown in Table 3, there is no

significant differences in terms of participants’ satisfaction to the
final artifacts they built. In addition, we did not see a significant
differences in terms of how experts’ evaluation of the artifacts
regarding to different formats of the tutorials.

Despite that there no evidence showing that Colaroid tutorials
can significantly improve participants’ learning outcome, several
participants mentioned Colaroid encourage active learning: “I think
I learned by doing. And having an interactive notebook is more

Colaroid: A Literate Programming Approach for Authoring Explorable Multi-Stage Tutorials CHI ’23, April 23–28, 2023, Hamburg, Germany

Colaroid Article Video Dinosaur Game

21

3

Figure 5: We manually coded the screen recording to understand how students interact with the tutorials. All participants used
the full 40 mins on the task. Participants’ engagement time with Colaroid tutorials is significantly more than article tutorials
(1) and video tutorials (2). In particular, we noticed that some participants (3) gave up on the video tutorials after watching a
segment at the beginning of the study.

suitable for that.” (P20). One participant provided an interesting
analogy of the learning experience provided by three tutorial modal-
ities:

An analogy to that is like you are in a chemistry class
or biology class, Colaroid is like the lab where you
can quickly do something to a chemical experiment,
where the video is like watching a lecture recording
and the article is like reading a textbook. You will
learn it but I felt like it’s not as useful because you
don’t see what actually happens in the environment
of your world. (P19)

7.2.5 Summary of the Results. In summary, our evaluation shows
that Colaroid provides a more engaging reading experience by fol-
lowing along the scaffolded steps with active exploration. Colaroid
harnesses the advantages of article tutorials in terms of providing a
self-paced and easy-to-skim reading experience. Colaroid also har-
nesses the advantages of video tutorials in terms of capturing the
details and context for reproducing, supporting more incremental
procedure following. Although there are no significant differences
in the learning outcomes of Colaroid, participants perceive Colaroid
to encourage active learning.

8 DISCUSSION
This paper describes the design of the Colaroid system and demon-
strates how literate programming principles can be applied to sup-
port the instruction of software packages and libraries. We con-
tribute to the field (1) a novel design for creating step-by-step
technical education content, extending the concept of literate pro-
gramming into a temporal dimension, (2) a system, Colaroid, which
supports this design and is embedded within the software develop-
ment tools commonly used by programmers, and (3) an evaluation
of this system, looking at how both authors and learners would use
it to create and understand learning resources.

By weaving together instructional narrative, code context, and
output interactions we are able to support both the authors who
create instructional content and the learners who aim to use it to
improve their skills. Embedding this system within the authentic

work environment for software developers – the integrated devel-
opment environment – increases the engagement of learners with
the instructional content, supporting an active learning experience.

Our design presents a new perspective on how literate program-
ming [26] can be extended to support guided complex instruc-
tion. Many of the literate programming systems in wide use, such
as the Jupyter programming environment [38] for computational
notebooks, are “spatially-based”, where the narrative components
are generally used to describe pieces of code in a top-down order
through the document. Through the design of Colaroid we have
introduced a new paradigm of “temporally-based” literate artifacts,
where the code being constructed is described in an order in which
someone would take to build a running system. The key difference
between our design and existing systems [35, 38] is that each step in
a temporal literate artifact is its own state, and the narrative, code,
and runtime environment (e.g., web browser, or python interpreter)
for that state is unique. Users can navigate between steps, and doing
so shows them the appropriate execution state and instructions for
that step. There is no “run all cells” command or the like – a user
simply chooses to inspect the last step of the narrative to see the
final state of the system.

This design ties together narrative (instruction), code, and system
state, and for learners it promotes both guided instruction as well
as active learning. Colaroid expanded prior studies [2, 15, 40, 54]
on linking tutorials with application state into the domain of learn-
ing web programming, revealing the benefits in both authoring in
authentic environments and learning in authentic environments.
Compared to other application domains (e.g., drawing, 3D model-
ing), we can leverage existing code versioning tools and sharing
platforms for tracking system states of the target application — code
editors. In addition, Colaroid is different from existing approaches
to annotating and replaying application states (e.g., CodeTour [1])
as it generates the narrative for learners to skim through and learn
at their own pace. Beyond supporting just the learner, this design
also supports the iterative authoring process of tutorial content,
encouraging encapsulation of instructional explanations with the
appropriate code state.

CHI ’23, April 23–28, 2023, Hamburg, Germany Wang et al.

8.1 Outlook
The growth of zero install web-based integrated development en-
vironments supported by software code repositories (e.g., gitpod,
GitHub Codespaces, Binder) offers a new opportunity to streamline
education as it relates to the features and use of software packages.
Many open source software repositories already contain a directory
of examples which are intended to go with web tutorial content. By
leveraging the Colaroid system, these repositories could provide
one-click learning opportunities, allowing users to go from the
familiar source code version control interface into an authentic
IDE with detailed instructional content. From within the browser,
learners could immediately begin to explore both the code base
and the runtime state of tutorials, engaging in active learning im-
mediately. This also opens the potential for educational content to
be woven into the software as a first class artifact, by extending
the continuous integration systems in place to produce regression
tests against the individual steps of the educational tutorials. Such
an approach would allow project communities to require that a
software release include up-to-date educational examples of a given
library, reducing inconsistencies between online tutorials and the
libraries they aim to teach.

8.2 Limitations
8.2.1 Limitations of Colaroid. As presented, Colaroid is engineered
for creating web programming tutorials specifically and the cur-
rent output preview is limited to this task. There is opportunity to
consider how the system might need to be changed in order to sup-
port other kinds of tutorial content. For instance, rendering Python
output in the preview, or visualizing data changes [47], may be a
straightforward way to support data science programming instruc-
tion. It is possible that this approach might go beyond traditional
programming as well. For instance, in the field of graphic design
step-by-step tutorials are often used for instruction, and share many
similarities to the web programming context we explored. It would
be interesting to apply temporally-based literate techniques inside
of a tool such as Adobe Photoshop, where the software code is
replaced with layered images, and the narrative describes how tool
functions are used to manipulate the images to achieve a desired
effect. Being able to load a given image (state) and set of instructions
may be particularly interesting to study as graphic design often
includes a kinesthetic expression component (e.g., drawing) which
may be strengthened through repeated practice.

Through use of the system it became clear that there were many
additional supports which might be integrated to improve experi-
ences for both authors and learners. For instance, voice dictation
through speech to text for narrative portions of the tutorial would
naturally fit instructional approaches such as lecturing or massive
online courses. We limited our narrative component markdown
text, the rough format used in online tutorials, but there are other
media types which may be appropriate and further the authoring
experience. In addition, Colaroid does not save learners’ exploration
of the steps, or compare them with the reference solution.

8.2.2 Limitations of our Evaluation. We chose to explore the Co-
laroid with an eye to both authoring and learning tasks. For the
authoring study, only a small number of participants (𝑛 = 10) were

observed, and they created small-size tutorials for simple web de-
velopment tasks, and were not given explicit instructions or time
for polishing of the educational content. This evaluation method
allowed us to study their interactions in-depth, and follow up with
interview questions to understand their thinking. However, a larger
field trial of the tool would help to uncover whether tutorial style
has an interaction on adoption and acceptance of the authoring
experience. It would be especially beneficial if Colaroid was enabled
for more programming domains as the interaction between domain,
tutorial style, and the temporal literate programming design could
be explored.

For the learner study, the tutorial topic (Flappy Bird) and the task
topic (Dinosaur Game) only represent one usage case of tutorials
— following a tutorial step-by-step to create a similar application.
It is worth exploring different usage cases of tutorials, including
replicating a project by following a tutorial, or learning key con-
cepts as one might do in lecture content. Importantly, we did not
measure learning gains which is one of the reasons users engage
in consuming online tutorial content. The interactions between
productivity, engagement, and long term learning (versus imme-
diate performance learning) are significant, and thus we make no
claims here that Colaroid results in longer term knowledge reten-
tion. However, we are excited by the increased engagement that
learners experienced in the Colaroid condition, as there is signifi-
cant evidence that active learning and hands on practice does result
in long term learning gains [27].

9 CONCLUSION
This paper presents a literate programming approach to author
explorable and multi-stage tutorials. We implemented a prototype
Colaroid, an IDE-integrated tutorial editor that captures the scaf-
folded implementation process in the authentic work environment.
On the other hand, Colaroid provides the IDE-integrated reading
experience, allowing learners to explore and tinker with the steps
in the tutorial directly in their authentic work environment. Our
evaluation shows that Colaroid can benefit both the authoring ex-
perience by effective and rich editing, and the reading experience
by encouraging learning by doing.

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science
Foundation under DUE 1915515. We would like to thank Michael
Nebeling for his feedback on the paper. We thank Yuyu Yang and
Steven Nguyen for their help in collecting the programming tu-
torials. We thank the SI 579 teaching team for their help in the
evaluation study. We also thank the study participants and review-
ers for their time and effort.

REFERENCES
[1] 2022. CodeTour. https://marketplace.visualstudio.com/items?itemName=vsls-

contrib.codetour
[2] Lawrence Bergman, Vittorio Castelli, Tessa Lau, and Daniel Oblinger. 2005.

DocWizards: a system for authoring follow-me documentation wizards. In Pro-
ceedings of the 18th annual ACM symposium on User interface software and tech-
nology. 191–200.

[3] Raymond PL Buse and Westley R Weimer. 2010. Automatically documenting
program changes. In Proceedings of the IEEE/ACM international conference on
Automated software engineering. 33–42.

https://marketplace.visualstudio.com/items?itemName=vsls-contrib.codetour
https://marketplace.visualstudio.com/items?itemName=vsls-contrib.codetour

Colaroid: A Literate Programming Approach for Authoring Explorable Multi-Stage Tutorials CHI ’23, April 23–28, 2023, Hamburg, Germany

[4] Paul Cairns and Jeremy Gow. 2005. Literate proving: presenting and documenting
formal proofs. In International Conference on Mathematical Knowledge Manage-
ment. Springer, 159–173.

[5] Souti Chattopadhyay, Ishita Prasad, Austin Z Henley, Anita Sarma, and Titus
Barik. 2020. What’s wrong with computational notebooks? Pain points, needs,
and design opportunities. In Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems. 1–12.

[6] Charles H Chen and Philip J Guo. 2019. Improv: Teaching programming at scale
via live coding. In Proceedings of the Sixth (2019) ACM Conference on Learning@
Scale. 1–10.

[7] Pei-Yu Chi, Sally Ahn, Amanda Ren, Mira Dontcheva, Wilmot Li, and Björn
Hartmann. 2012. MixT: automatic generation of step-by-step mixed media
tutorials. In Proceedings of the 25th annual ACM symposium on User interface
software and technology. 93–102.

[8] Fulvio Corno, Luigi De Russis, and Juan Pablo Sáenz. 2019. Towards compu-
tational notebooks for IoT development. In Extended Abstracts of the 2019 CHI
Conference on Human Factors in Computing Systems. 1–6.

[9] Barthélémy Dagenais and Martin P Robillard. 2010. Creating and evolving devel-
oper documentation: understanding the decisions of open source contributors.
In Proceedings of the eighteenth ACM SIGSOFT international symposium on Foun-
dations of software engineering. 127–136.

[10] Alan Davies, Frances Hooley, Peter Causey-Freeman, Iliada Eleftheriou, and
Georgina Moulton. 2020. Using interactive digital notebooks for bioscience and
informatics education. PLoS computational biology 16, 11 (2020), e1008326.

[11] Eve 2020. Eve: Programming designed for humans. http://witheve.com/
[12] Travis Faas, Lynn Dombrowski, Alyson Young, and AndrewDMiller. 2018. Watch

me code: Programming mentorship communities on twitch. tv. Proceedings of
the ACM on Human-Computer Interaction 2, CSCW (2018), 1–18.

[13] Shiry Ginosar, Luis Fernando De Pombo, Maneesh Agrawala, and Bjorn Hart-
mann. 2013. Authoring multi-stage code examples with editable code histories.
In Proceedings of the 26th annual ACM symposium on User interface software and
technology. 485–494.

[14] Mitchell Gordon and Philip J Guo. 2015. Codepourri: Creating visual coding
tutorials using a volunteer crowd of learners. In 2015 IEEE symposium on visual
languages and human-centric computing (VL/HCC). IEEE, 13–21.

[15] Floraine Grabler, Maneesh Agrawala, Wilmot Li, Mira Dontcheva, and Takeo
Igarashi. 2009. Generating photo manipulation tutorials by demonstration. In
ACM SIGGRAPH 2009 papers. 1–9.

[16] Tovi Grossman, Justin Matejka, and George Fitzmaurice. 2010. Chronicle: capture,
exploration, and playback of document workflow histories. In Proceedings of the
23nd annual ACM symposium on User interface software and technology. 143–152.

[17] Andrew Head, Elena L Glassman, Björn Hartmann, and Marti A Hearst. 2018.
Interactive extraction of examples from existing code. In Proceedings of the 2018
CHI Conference on Human Factors in Computing Systems. 1–12.

[18] Andrew Head, Fred Hohman, Titus Barik, Steven M Drucker, and Robert DeLine.
2019. Managing messes in computational notebooks. In Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems. 1–12.

[19] Andrew Head, Jason Jiang, James Smith, Marti A Hearst, and Björn Hartmann.
2020. Composing flexibly-organized step-by-step tutorials from linked source
code, snippets, and outputs. In Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems. 1–12.

[20] Fred Hohman, Kanit Wongsuphasawat, Mary Beth Kery, and Kayur Patel. 2020.
Understanding and visualizing data iteration in machine learning. In Proceedings
of the 2020 CHI conference on human factors in computing systems. 1–13.

[21] Mike Horn, Amartya Banerjee, and Matthew Brucker. 2022. TunePad Playbooks:
Designing Computational Notebooks for Creative Music Coding. In CHI Confer-
ence on Human Factors in Computing Systems. 1–12.

[22] Mary Beth Kery, Bonnie E John, Patrick O’Flaherty, Amber Horvath, and Brad A
Myers. 2019. Towards effective foraging by data scientists to find past analysis
choices. In Proceedings of the 2019 CHI Conference on Human Factors in Computing
Systems. 1–13.

[23] Mary Beth Kery, Marissa Radensky, Mahima Arya, Bonnie E John, and Brad A
Myers. 2018. The story in the notebook: Exploratory data science using a literate
programming tool. In Proceedings of the 2018 CHI Conference on Human Factors
in Computing Systems. 1–11.

[24] Ada S Kim and Amy J Ko. 2017. A pedagogical analysis of online coding tutorials.
In Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science
Education. 321–326.

[25] Youngtaek Kim, Jaeyoung Kim, Hyeon Jeon, Young-Ho Kim, Hyunjoo Song,
Bohyoung Kim, and Jinwook Seo. 2020. Githru: visual analytics for understanding
software development history through git metadata analysis. IEEE Transactions
on Visualization and Computer Graphics 27, 2 (2020), 656–666.

[26] Donald Ervin Knuth. 1984. Literate programming. The computer journal 27, 2
(1984), 97–111.

[27] Kenneth RKoedinger, ElizabethAMcLaughlin, Julianna Zhuxin Jia, andNorman L
Bier. 2016. Is the doer effect a causal relationship? How can we tell and why
it’s important. In Proceedings of the sixth international conference on learning

analytics & knowledge. 388–397.
[28] Rebecca Krosnick, Fraser Anderson, Justin Matejka, Steve Oney,Walter S. Lasecki,

Tovi Grossman, and George Fitzmaurice. 2021. Think-Aloud Computing: Sup-
porting Rich and Low-Effort Knowledge Capture. In Proceedings of the 2021 CHI
Conference on Human Factors in Computing Systems. 1–13.

[29] Sean Kross and Philip J Guo. 2019. Practitioners teaching data science in industry
and academia: Expectations, workflows, and challenges. In Proceedings of the
2019 CHI conference on human factors in computing systems. 1–14.

[30] Mario Linares-Vásquez, Luis Fernando Cortés-Coy, Jairo Aponte, and Denys
Poshyvanyk. 2015. Changescribe: A tool for automatically generating commit
messages. In 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, Vol. 2. IEEE, 709–712.

[31] Mark Mahoney. 2018. Storyteller: a tool for creating worked examples. Journal
of Computing Sciences in Colleges 34, 1 (2018), 137–144.

[32] Brad A Myers. 1991. Separating application code from toolkits: Eliminating the
spaghetti of call-backs. In Proceedings of the 4th annual ACM symposium on User
interface software and technology. 211–220.

[33] Alok Mysore and Philip J Guo. 2017. Torta: Generating mixed-media gui and
command-line app tutorials using operating-system-wide activity tracing. In
Proceedings of the 30th Annual ACM Symposium on User Interface Software and
Technology. 703–714.

[34] Seyed Mehdi Nasehi, Jonathan Sillito, Frank Maurer, and Chris Burns. 2012. What
makes a good code example?: A study of programming Q&A in StackOverflow.
In 2012 28th IEEE International Conference on Software Maintenance (ICSM). IEEE,
25–34.

[35] Observable 2020. Observable: the magic notebook for exploring data and thinking
with code. https://observablehq.com/

[36] Steve Oney, Christopher Brooks, and Paul Resnick. 2018. Creating guided code
explanations with chat. codes. Proceedings of the ACM on Human-Computer
Interaction 2, CSCW (2018), 1–20.

[37] Chris Parnin, Christoph Treude, and Margaret-Anne Storey. 2013. Blogging
developer knowledge: Motivations, challenges, and future directions. In 2013 21st
International Conference on Program Comprehension (ICPC). IEEE, 211–214.

[38] Jeffrey M Perkel. 2018. Why Jupyter is data scientists’ computational notebook
of choice. Nature 563, 7732 (2018), 145–147.

[39] Clément Pit-Claudel. 2020. Untangling mechanized proofs. In Proceedings of the
13th ACM SIGPLAN International Conference on Software Language Engineering.
155–174.

[40] Suporn Pongnumkul, Mira Dontcheva, Wilmot Li, Jue Wang, Lubomir Bourdev,
Shai Avidan, and Michael F Cohen. 2011. Pause-and-play: automatically linking
screencast video tutorials with applications. In Proceedings of the 24th annual
ACM symposium on User interface software and technology. 135–144.

[41] Roman Rädle, Midas Nouwens, Kristian Antonsen, James R Eagan, and Clemens N
Klokmose. 2017. Codestrates: Literate computing with webstrates. In Proceedings
of the 30th Annual ACM Symposium on User Interface Software and Technology.
715–725.

[42] Ernst Z Rothkopf and MJ Billington. 1979. Goal-guided learning from text: infer-
ring a descriptive processing model from inspection times and eye movements.
Journal of educational psychology 71, 3 (1979), 310.

[43] Adam Carl Rule. 2018. Design and use of computational notebooks. University of
California, San Diego.

[44] Huascar Sanchez, Jim Whitehead, and Martin Schäf. 2016. Multistaging to under-
stand: Distilling the essence of java code examples. In 2016 IEEE 24th International
Conference on Program Comprehension (ICPC). IEEE, 1–10.

[45] Anselm Strauss and Juliet Corbin. 1994. Grounded theory methodology: An
overview. (1994).

[46] Brad Victor. 2011. Explorable Explanations. (2011). http://worrydream.com/
ExplorableExplanations/

[47] April Yi Wang, Will Epperson, Robert A DeLine, and Steven M Drucker. 2022.
Diff in the Loop: Supporting Data Comparison in Exploratory Data Analysis. In
CHI Conference on Human Factors in Computing Systems. 1–10.

[48] April YiWang, AnantMittal, Christopher Brooks, and Steve Oney. 2019. How data
scientists use computational notebooks for real-time collaboration. Proceedings
of the ACM on Human-Computer Interaction 3, CSCW (2019), 1–30.

[49] April Yi Wang, Zihan Wu, Christopher Brooks, and Steve Oney. 2020. Callisto:
Capturing the" Why" by Connecting Conversations with Computational Narra-
tives. In Proceedings of the 2020 CHI Conference on Human Factors in Computing
Systems. 1–13.

[50] Nathaniel Weinman, Steven M Drucker, Titus Barik, and Robert DeLine. 2021.
Fork It: Supporting stateful alternatives in computational notebooks. In Pro-
ceedings of the 2021 CHI Conference on Human Factors in Computing Systems.
1–12.

[51] Wikipedia contributors. 2022. Instant camera — Wikipedia, The Free Ency-
clopedia. https://en.wikipedia.org/w/index.php?title=Instant_camera&oldid=
1109305997 [Online; accessed 15-September-2022].

[52] Stephen Wolfram. 2003. The mathematica book. Vol. 1. Wolfram Research, Inc.
[53] Yihui Xie. 2018. knitr: a comprehensive tool for reproducible research in R. In

Implementing reproducible research. Chapman and Hall/CRC, 3–31.

http://witheve.com/
https://observablehq.com/
http://worrydream.com/ExplorableExplanations/
http://worrydream.com/ExplorableExplanations/
https://en.wikipedia.org/w/index.php?title=Instant_camera&oldid=1109305997
https://en.wikipedia.org/w/index.php?title=Instant_camera&oldid=1109305997

CHI ’23, April 23–28, 2023, Hamburg, Germany Wang et al.

[54] Tom Yeh, Tsung-Hsiang Chang, and Robert C Miller. 2009. Sikuli: using GUI
screenshots for search and automation. In Proceedings of the 22nd annual ACM

symposium on User interface software and technology. 183–192.

Colaroid: A Literate Programming Approach for Authoring Explorable Multi-Stage Tutorials CHI ’23, April 23–28, 2023, Hamburg, Germany

A TUTORIAL LISTS IN FORMATIVE STUDY

ID Tutorial Title Link Author Source

T1 Polymorphism https://docs.oracle.com/javase/tutorial/java/IandI/
polymorphism.html

Official Stack Overflow

T2 Guide to Java 8 Comparator.comparing() https://www.baeldung.com/java-8-comparator-comparing Third-Party Stack Overflow

T3 React Authenticator https://ui.docs.amplify.aws/react/connected-components/
authenticator

Official Stack Overflow

T4 React Router Tutorial https://reactrouter.com/en/v6.3.0/getting-started/tutorial#
tutorial

Official Stack Overflow

T5 Explore SplashScreen API, Android 12, Kotlin https://medium.com/realm/explore-splashscreen-api-
android-12-kotlin-7a8bf83b061a

Personal Stack Overflow

T6 Adding a splash screen to your mobile app https://flutter.dev/go/android-splash-migration Official Stack Overflow

T7 Federated Learning for Image Classification https://www.tensorflow.org/federated/tutorials/federated_
learning_for_image_classification

Official Stack Overflow

T8 Building Your Own Federated Learning Algorithm https://www.tensorflow.org/federated/tutorials/building_
your_own_federated_learning_algorithm

Official Stack Overflow

T9 RTK Query Quick Start https://redux-toolkit.js.org/tutorials/rtk-query Official Stack Overflow

T10 Redux Toolkit TypeScript Quick Start https://redux-toolkit.js.org/tutorials/typescript Official Stack Overflow

T11 Text generation with an RNN https://www.tensorflow.org/text/tutorials/text_generation Official Stack Overflow

T12 A Visual Guide to Using BERT for the First Time https://jalammar.github.io/a-visual-guide-to-using-bert-
for-the-first-time/

Personal Stack Overflow

T13 Hugging Face Transformers: Fine-tuning DistilBERT for Bi-
nary Classification Tasks

https://towardsdatascience.com/hugging-face-
transformers-fine-tuning-distilbert-for-binary-
classification-tasks-490f1d192379

Personal Stack Overflow

T14 Huggingface Fine Tuning https://nbviewer.org/github/omontasama/nlp-huggingface/
blob/main/fine_tuning/huggingface_fine_tuning.ipynb

Personal Stack Overflow

T15 Swift 5.5: Asynchronous Looping With Async/Await https://www.biteinteractive.com/swift-5-5-asynchronous-
looping-with-async-await/

Third-Party Stack Overflow

T16 How do Spring Boot 2.X add interceptors? https://programmer.group/how-do-spring-boot-2.x-add-
interceptors.html

Third-Party Stack Overflow

T17 Testing Smart Contracts https://hardhat.org/tutorial/testing-contracts.html#using-a-
different-account

Official Stack Overflow

T18 Tutorial: Create a Go module https://go.dev/doc/tutorial/create-module Official Stack Overflow

T19 5 minute guide to deploying smart contracts with Truffle and
Ropsten

https://medium.com/coinmonks/5-minute-guide-to-
deploying-smart-contracts-with-truffle-and-ropsten-
b3e30d5ee1e

Personal Stack Overflow

T20 Using HDR rendering https://github.com/microsoft/DirectXTK12/wiki/Using-
HDR-rendering

Official Stack Overflow

T21 JSF 2.3 tutorial with Eclipse, Maven, WildFly and H2 https://balusc.omnifaces.org/2020/04/jsf-23-tutorial-with-
eclipse-maven.html#InstallingWildFly

Personal Stack Overflow

T22 Developing an Accessibility Service for Android https://codelabs.developers.google.com/codelabs/
developing-android-a11y-service

Official Stack Overflow

T23 Practical use of scoped slots with GoogleMaps https://vuejs.org/v2/cookbook/practical-use-of-scoped-
slots.html

Official Stack Overflow

T24 Using Django Check Constraints to Ensure Only One Field Is
Set

https://adamj.eu/tech/2020/03/25/django-check-
constraints-one-field-set/

Personal Stack Overflow

T25 JWT Auth in ASP.NET Core https://codeburst.io/jwt-auth-in-asp-net-core-
148fb72bed03?gi=cef51cc81e61

Personal Stack Overflow

Table 4: Tutorial Lists in Formative Study (1)

https://docs.oracle.com/javase/tutorial/java/IandI/polymorphism.html
https://docs.oracle.com/javase/tutorial/java/IandI/polymorphism.html
https://www.baeldung.com/java-8-comparator-comparing
https://ui.docs.amplify.aws/react/connected-components/authenticator
https://ui.docs.amplify.aws/react/connected-components/authenticator
https://reactrouter.com/en/v6.3.0/getting-started/tutorial#tutorial
https://reactrouter.com/en/v6.3.0/getting-started/tutorial#tutorial
https://medium.com/realm/explore-splashscreen-api-android-12-kotlin-7a8bf83b061a
https://medium.com/realm/explore-splashscreen-api-android-12-kotlin-7a8bf83b061a
https://flutter.dev/go/android-splash-migration
https://www.tensorflow.org/federated/tutorials/federated_learning_for_image_classification
https://www.tensorflow.org/federated/tutorials/federated_learning_for_image_classification
https://www.tensorflow.org/federated/tutorials/building_your_own_federated_learning_algorithm
https://www.tensorflow.org/federated/tutorials/building_your_own_federated_learning_algorithm
https://redux-toolkit.js.org/tutorials/rtk-query
https://redux-toolkit.js.org/tutorials/typescript
https://www.tensorflow.org/text/tutorials/text_generation
https://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/
https://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/
https://towardsdatascience.com/hugging-face-transformers-fine-tuning-distilbert-for-binary-classification-tasks-490f1d192379
https://towardsdatascience.com/hugging-face-transformers-fine-tuning-distilbert-for-binary-classification-tasks-490f1d192379
https://towardsdatascience.com/hugging-face-transformers-fine-tuning-distilbert-for-binary-classification-tasks-490f1d192379
https://nbviewer.org/github/omontasama/nlp-huggingface/blob/main/fine_tuning/huggingface_fine_tuning.ipynb
https://nbviewer.org/github/omontasama/nlp-huggingface/blob/main/fine_tuning/huggingface_fine_tuning.ipynb
https://www.biteinteractive.com/swift-5-5-asynchronous-looping-with-async-await/
https://www.biteinteractive.com/swift-5-5-asynchronous-looping-with-async-await/
https://programmer.group/how-do-spring-boot-2.x-add-interceptors.html
https://programmer.group/how-do-spring-boot-2.x-add-interceptors.html
https://hardhat.org/tutorial/testing-contracts.html#using-a-different-account
https://hardhat.org/tutorial/testing-contracts.html#using-a-different-account
https://go.dev/doc/tutorial/create-module
https://medium.com/coinmonks/5-minute-guide-to-deploying-smart-contracts-with-truffle-and-ropsten-b3e30d5ee1e
https://medium.com/coinmonks/5-minute-guide-to-deploying-smart-contracts-with-truffle-and-ropsten-b3e30d5ee1e
https://medium.com/coinmonks/5-minute-guide-to-deploying-smart-contracts-with-truffle-and-ropsten-b3e30d5ee1e
https://github.com/microsoft/DirectXTK12/wiki/Using-HDR-rendering
https://github.com/microsoft/DirectXTK12/wiki/Using-HDR-rendering
https://balusc.omnifaces.org/2020/04/jsf-23-tutorial-with-eclipse-maven.html#InstallingWildFly
https://balusc.omnifaces.org/2020/04/jsf-23-tutorial-with-eclipse-maven.html#InstallingWildFly
https://codelabs.developers.google.com/codelabs/developing-android-a11y-service
https://codelabs.developers.google.com/codelabs/developing-android-a11y-service
https://vuejs.org/v2/cookbook/practical-use-of-scoped-slots.html
https://vuejs.org/v2/cookbook/practical-use-of-scoped-slots.html
https://adamj.eu/tech/2020/03/25/django-check-constraints-one-field-set/
https://adamj.eu/tech/2020/03/25/django-check-constraints-one-field-set/
https://codeburst.io/jwt-auth-in-asp-net-core-148fb72bed03?gi=cef51cc81e61
https://codeburst.io/jwt-auth-in-asp-net-core-148fb72bed03?gi=cef51cc81e61

CHI ’23, April 23–28, 2023, Hamburg, Germany Wang et al.

ID Tutorial Title Link Author Source

T26 How to add SectionIndexTitles in SwiftUI https://www.fivestars.blog/code/section-title-index-
swiftui.html

Third-Party Stack Overflow

T27 Creating a React and Spring REST application that
queries Amazon DynamoDB data

https://github.com/awsdocs/aws-doc-sdk-
examples/tree/master/javav2/usecases/creating_
dynamodb_web_app

Official Stack Overflow

T28 How to Train BPE, WordPiece, and Unigram Tokeniz-
ers from Scratch using Hugging Face

https://www.freecodecamp.org/news/train-
algorithms-from-scratch-with-hugging-face/

Personal FreeCodeCamp

T29 React CRUD App Tutorial – How to Build a Book
Management App in React from Scratch

https://www.freecodecamp.org/news/react-crud-
app-how-to-create-a-book-management-app-from-
scratch/

Personal FreeCodeCamp

T30 How to Build a Neural Network from Scratch with
PyTorch

https://www.freecodecamp.org/news/how-to-build-
a-neural-network-with-pytorch/

Personal FreeCodeCamp

T31 How to Build a Blockchain from Scratch with Go https://www.freecodecamp.org/news/build-a-
blockchain-in-golang-from-scratch/

Personal FreeCodeCamp

T32 PHP Laravel Tutorial – How to Build a Keyword Den-
sity Tool from Scratch

https://www.freecodecamp.org/news/how-to-build-
a-keyword-density-tool-with-laravel/

Personal FreeCodeCamp

T33 How to Create a Production-Ready Webpack 4 Config
From Scratch

https://www.freecodecamp.org/news/creating-a-
production-ready-webpack-4-config-from-scratch/

Personal FreeCodeCamp

T34 How to build a PWA from scratch with HTML, CSS,
and JavaScript

https://www.freecodecamp.org/news/build-a-pwa-
from-scratch-with-html-css-and-javascript/

Personal FreeCodeCamp

T35 How to build an Angular 8 app from scratch in 11
easy steps

https://www.freecodecamp.org/news/angular-8-
tutorial-in-easy-steps/

Personal FreeCodeCamp

T36 How to Build Your Coding Blog From Scratch Using
Gatsby and MDX

https://www.freecodecamp.org/news/build-a-
developer-blog-from-scratch-with-gatsby-and-
mdx/

Personal FreeCodeCamp

T37 How to build a Neural Network from scratch https://www.freecodecamp.org/news/building-a-
neural-network-from-scratch/

Personal FreeCodeCamp

T38 Progressive Web Apps 102: Building a Progressive
Web App from scratch

https://www.freecodecamp.org/news/progressive-
web-apps-102-building-a-progressive-web-app-
from-scratch-397b72168040/

Personal FreeCodeCamp

T39 How to build a range slider component in React from
scratch using only div and span

https://www.freecodecamp.org/news/how-to-build-
a-range-slider-component-in-react-from-scratch-
using-only-div-and-span-d53e1a62c4a3/

Personal FreeCodeCamp

T40 How to build an HTML calculator app from scratch
using JavaScript

https://www.freecodecamp.org/news/how-to-
build-an-html-calculator-app-from-scratch-using-
javascript-4454b8714b98/

Personal FreeCodeCamp

T41 You don’t need chatbot creation tools — Let’s build a
Messenger bot from scratch

https://www.freecodecamp.org/news/you-dont-
needs-chatbot-creation-tools-let-s-build-a-
messenger-bot-from-scratch-8fcbb40f073b/

Personal FreeCodeCamp

T42 HTML and CSS Project – How to Build A YouTube
Clone Step by Step

https://www.freecodecamp.org/news/how-to-build-
a-website-with-html-and-css-step-by-step/

Personal FreeCodeCamp

T43 The SaaS Handbook – How to Build Your First
Software-as-a-Service Product Step-By-Step

https://www.freecodecamp.org/news/how-to-build-
your-first-saas/

Personal FreeCodeCamp

T44 A step-by-step guide to making pure-CSS tooltips https://www.freecodecamp.org/news/a-step-
by-step-guide-to-making-pure-css-tooltips-
3d5a3e237346/

Personal FreeCodeCamp

Table 5: Tutorial Lists in Formative Study (2)

https://www.fivestars.blog/code/section-title-index-swiftui.html
https://www.fivestars.blog/code/section-title-index-swiftui.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javav2/usecases/creating_dynamodb_web_app
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javav2/usecases/creating_dynamodb_web_app
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javav2/usecases/creating_dynamodb_web_app
https://www.freecodecamp.org/news/train-algorithms-from-scratch-with-hugging-face/
https://www.freecodecamp.org/news/train-algorithms-from-scratch-with-hugging-face/
https://www.freecodecamp.org/news/react-crud-app-how-to-create-a-book-management-app-from-scratch/
https://www.freecodecamp.org/news/react-crud-app-how-to-create-a-book-management-app-from-scratch/
https://www.freecodecamp.org/news/react-crud-app-how-to-create-a-book-management-app-from-scratch/
https://www.freecodecamp.org/news/how-to-build-a-neural-network-with-pytorch/
https://www.freecodecamp.org/news/how-to-build-a-neural-network-with-pytorch/
https://www.freecodecamp.org/news/build-a-blockchain-in-golang-from-scratch/
https://www.freecodecamp.org/news/build-a-blockchain-in-golang-from-scratch/
https://www.freecodecamp.org/news/how-to-build-a-keyword-density-tool-with-laravel/
https://www.freecodecamp.org/news/how-to-build-a-keyword-density-tool-with-laravel/
https://www.freecodecamp.org/news/creating-a-production-ready-webpack-4-config-from-scratch/
https://www.freecodecamp.org/news/creating-a-production-ready-webpack-4-config-from-scratch/
https://www.freecodecamp.org/news/build-a-pwa-from-scratch-with-html-css-and-javascript/
https://www.freecodecamp.org/news/build-a-pwa-from-scratch-with-html-css-and-javascript/
https://www.freecodecamp.org/news/angular-8-tutorial-in-easy-steps/
https://www.freecodecamp.org/news/angular-8-tutorial-in-easy-steps/
https://www.freecodecamp.org/news/build-a-developer-blog-from-scratch-with-gatsby-and-mdx/
https://www.freecodecamp.org/news/build-a-developer-blog-from-scratch-with-gatsby-and-mdx/
https://www.freecodecamp.org/news/build-a-developer-blog-from-scratch-with-gatsby-and-mdx/
https://www.freecodecamp.org/news/building-a-neural-network-from-scratch/
https://www.freecodecamp.org/news/building-a-neural-network-from-scratch/
https://www.freecodecamp.org/news/progressive-web-apps-102-building-a-progressive-web-app-from-scratch-397b72168040/
https://www.freecodecamp.org/news/progressive-web-apps-102-building-a-progressive-web-app-from-scratch-397b72168040/
https://www.freecodecamp.org/news/progressive-web-apps-102-building-a-progressive-web-app-from-scratch-397b72168040/
https://www.freecodecamp.org/news/how-to-build-a-range-slider-component-in-react-from-scratch-using-only-div-and-span-d53e1a62c4a3/
https://www.freecodecamp.org/news/how-to-build-a-range-slider-component-in-react-from-scratch-using-only-div-and-span-d53e1a62c4a3/
https://www.freecodecamp.org/news/how-to-build-a-range-slider-component-in-react-from-scratch-using-only-div-and-span-d53e1a62c4a3/
https://www.freecodecamp.org/news/how-to-build-an-html-calculator-app-from-scratch-using-javascript-4454b8714b98/
https://www.freecodecamp.org/news/how-to-build-an-html-calculator-app-from-scratch-using-javascript-4454b8714b98/
https://www.freecodecamp.org/news/how-to-build-an-html-calculator-app-from-scratch-using-javascript-4454b8714b98/
https://www.freecodecamp.org/news/you-dont-needs-chatbot-creation-tools-let-s-build-a-messenger-bot-from-scratch-8fcbb40f073b/
https://www.freecodecamp.org/news/you-dont-needs-chatbot-creation-tools-let-s-build-a-messenger-bot-from-scratch-8fcbb40f073b/
https://www.freecodecamp.org/news/you-dont-needs-chatbot-creation-tools-let-s-build-a-messenger-bot-from-scratch-8fcbb40f073b/
https://www.freecodecamp.org/news/how-to-build-a-website-with-html-and-css-step-by-step/
https://www.freecodecamp.org/news/how-to-build-a-website-with-html-and-css-step-by-step/
https://www.freecodecamp.org/news/how-to-build-your-first-saas/
https://www.freecodecamp.org/news/how-to-build-your-first-saas/
https://www.freecodecamp.org/news/a-step-by-step-guide-to-making-pure-css-tooltips-3d5a3e237346/
https://www.freecodecamp.org/news/a-step-by-step-guide-to-making-pure-css-tooltips-3d5a3e237346/
https://www.freecodecamp.org/news/a-step-by-step-guide-to-making-pure-css-tooltips-3d5a3e237346/

	Abstract
	1 Introduction
	2 Background and related work
	2.1 Authoring multi-stage programming tutorials
	2.2 Notebook programming environments
	2.3 Interfaces for Understanding Code Revisions

	3 An Exploratory Analysis of Multi-Stage Programming Tutorials
	3.1 Collecting Representative Multi-Stage Tutorials
	3.2 Results
	3.3 Design Opportunities to Improve Authoring and Reading Experience

	4 System Design
	4.1 Illustrative Scenario
	4.2 Overview of Colaroid Notebooks
	4.3 Cells as Steps in Colaroid
	4.4 Authoring Tutorials by Documenting Incremental Changes
	4.5 Recording Interactions in Output Widgets
	4.6 Revising and Editing Colaroid Notebook Cells
	4.7 Sharing and Distributing Tutorials
	4.8 Reading Tutorials
	4.9 Implementation

	5 System Evaluation Overview
	6 Study 1: Evaluating the Authoring Experience
	6.1 Method
	6.2 Results

	7 Study 2: Evaluating the Reading Experience
	7.1 Method
	7.2 Results

	8 Discussion
	8.1 Outlook
	8.2 Limitations

	9 Conclusion
	Acknowledgments
	References
	A Tutorial Lists in Formative Study

